

Website Fingerprinting

Attacking Popular Privacy Enhancing Technologies with the Multinomial Naïve-Bayes Classifier

Dominik Herrmann, Hannes Federrath University of Regensburg, Germany Rolf Wendolsky JonDos GmbH

Motivation – To Whom It May Concern

- Various Privacy Enhancing Technologies (PET) offer protection against eavesdropping
 - SSH/SSL tunnels and VPNs
 - multi-hop anonymisation services

- Users want protection against malicious ISPs and other users
- Criminals want to hide their activities from the authorities

Attack Scenario

Overview of Our Fingerprinting Attack

- Attacker wants to learn URLs of websites that are requested over an encrypted tunnel by the victim.
- Website Fingerprints: Attack exploits characteristic structure of websites.
- Attacker: passive, local, external observer

PROCEDURE

- Set up a database with traffic profiles of all websites of interest (training phase)
- Compare observed traffic with all profiles from database to predict likely candidates

Overview of Our Fingerprinting Attack

- Attacker wants to learn URLs of websites that are requested over an encrypted tunnel by the victim.
- Website Fingerprints: A of websites.
- Attacker: passive, local, e

PROCEDURE

- Set up a database with tra (training phase)
- Compare observed traffic predict likely candidates

Overview of Our Fingerprinting Attack

- Attacker wants to learn URLs of websites that are requested over an encrypted tunnel by the victim.
- Website Fingerprints: Attack exploits characteristic structure of websites.
- Attacker: passive, local, external observer _____

Most PETs are supposed to protect against such harmless attackers!

PROCEDURE

- Set up a database with traffic profiles of all websites of interest (training phase)
- Compare observed traffic with all profiles from database to predict likely candidates

Previous works concentrate on OpenSSH and two well-known fingerprinting techniques

Operating on file sizes:

• Sun et al. (2002)

but: file sizes cannot be observed in encrypted tunnels!

Operating on IP packet sizes:

- Bissias et al. (2005): identify only 20% of sites
- Liberatore & Levine (2006): identify up to 73% of sites using Jaccard coefficient and Naïve-Bayes classifier

Focus of Our Paper

Operating on file sizes:

▶ Sun et al. (200

Liberatore & L

Can we improve accuracy?

but: file sizes cannot be observed in encrypted tunnels!

What about other PETs?

Operating on IP packet sizes.

▶ Bissias et al. (2005) · identify only 20% of sites

Does it work in practice?

using Jaccard coefficient and Naïve-Bayes classifier

Agenda

Motivation and Scenario

Novel Fingerprinting Technique

Evaluation

Addressing Real-World Issues

Modeling Website Fingerprinting as Supervised Learning Problem

class = URLs
instance = observed IP packets
attribute = packet size
attribute value = packet size frequency

Example:

- class: www.yahoo.com
- ▶ some instance: -160, 1500, 468, -52, 1500, 1500, -52, 1500
- set representation: (-160, -52, 468, 1500)
- vector representation: (1, 2, 1, 4)

Review of Existing Fingerprinting Techniques

Jaccard Coefficient

- $sim(A, B) = |A \cap B| / (A \cup B); sim(A, B) \in [0;1]$
- Operates on set representation of instances
- Poor accuracy for padded packets

Naïve Bayes Classifier

- Estimates probability density function for each packet size
- Increased accuracy with Kernel Density Estimation (KDE)
- Overfitting if only similar training instances are available

Our Fingerprinting Technique: Multinomial Naïve Bayes (MNB) Classifier

- Popular classifier in text mining domain (spam detection)
- We believe that Website Fingerprinting is a similar problem.

- Operates on packet size frequency distribution
- Idea: the more often the most important packet sizes of the test instance *i* appear in traces belonging to class *c*, the more likely does instance *i* belong to class *c*
- Low computational complexity

Several optimisations to transform frequency vectors:

FF transformation

scale frequencies logarithmically to avoid bias towards classes with many packets with high frequencies

Several optimisations to transform frequency vectors:

FF transformation

scale frequencies logarithmically to avoid bias towards classes with many packets with high frequencies

IDF transformation

scale down frequencies of terms that are not characteristic for a class (inverse document frequency)

Several optimisations to transform frequency vectors:

FF transformation

scale frequencies logarithmically to avoid bias towards

Several optimisations to transform frequency vectors:

FF transformation

scale frequencies logarithmically to avoid bias towards classes with many packets with high frequencies

IDF transformation

scale down frequencies of terms that are not characteristic for a class (inverse document frequency)

Cosine normalisation

normalise attribute vectors to uniform length (division by Euclidean length of each vector)

Agenda

Motivation and Scenario

Novel Fingerprinting Technique

Evaluation

Addressing Real-World Issues

Data Collection Methodology

- ▶ We obtained real-world traffic dumps from 775 popular domains
- Automated Firefox to download each site multiple times
- Recorded packet size and direction with *tcpdump*
- ▶ 300,000 traffic dumps for various PET systems within two months

Dataset will be available at our site for future research: <u>http://www-sec.uni-r.de/website-fingerprinting/</u>

Best Accuracy for TF Transformation and Normalisation

Normalisation makes classifier operate on relative packet frequencies

More Results for OpenSSH

Multinomial Naïve Bayes with TF and normalisation:

- Already 90% accuracy for 1 training instance; 94% for 4 instances
- No substantial increase for more than 4 training instances

- Fingerprints built from frequency distribution of IP packet sizes are very robust against changes to contents of sites.
- Accuracy with old fingerprints decreases rather slowly: still over 90% after 17 days

Cannot directly compare these results with previous work!

Benchmarking Existing Website Fingerprinting Techniques with Our Sample

OpenSSH, 4 training and 4 test instances, $delta_t = 6$ days

highest accuracy: MNB with TF+normalisation

SINGLE HOP SYSTEMS

Stunnel

OpenSSH

Cisco IPSec VPN

OpenVPN

MULTI HOP SYSTEMS

JonDonym (*aka* JAP/AN.ON)

SINGLE HOP SYSTEMS	ACCURACY	
Stunnel	97.6%	
OpenSSH	96.7%	
Cisco IPSec VPN	96.2%	
OpenVPN	94.9%	

MULTI HOP SYSTEMS

JonDonym (*aka* JAP/AN.ON)

20.0%

Tor

3.0%

SINGLE HOP SYSTEMS	ACCURACY	
Stunnel	97.6%	
OpenSSH	96.7%	
Cisco IPSec VPN	96.2%	
OpenVPN	94.9%	
MULTI HOP SYSTEMS	St	till way better than random ussing: $p = 1 / 775 = 0.58\%$
JonDonym (<i>aka</i> JAP/AN.ON) 20.0%	

3.0%

SINGLE HOP SYSTEMS	ACCURACY		
Stunnel	97.6%		
OpenSSH	96.7%		
Cisco IPSec VPN	96.2%		
OpenVPN	94.9%		

MULTI HOP SYSTEMS

JonDonym (*aka* JAP/AN.ON)

with 10 guesses 20.0% 47.5% 3.0% 22.1%

SINGLE HOP SYSTEMS	ACCURACY	BEST CLASSIFIER
Stunnel	97.6%	TF-N
OpenSSH	96.7%	TF-N
Cisco IPSec VPN	96.2%	TF-N
OpenVPN	94.9%	TF-N

MULTI HOP SYSTEMS

JonDonym (*aka* JAP/AN.ON)

with 10 guesses 20.0% 47.5% N 3.0% 22.1% N

SINGLE HOP SYSTEMS	ACCURACY	BEST CLASSIFIER	NO. OF UNIQUE PACKET SIZES
Stunnel	97.6%	TF-N	1605
OpenSSH	96.7%	TF-N	420
Cisco IPSec VPN	96.2%	TF-N	108
OpenVPN	94.9%	TF-N	2898
	No	ocorrelation with	n accuracy!
MULTI HOP SYSTEMS	C	with 10 guesses	
JonDonym (<i>aka</i> JAP/AN.ON)	20.0% 47.	5% N	205
Tor	3.0% 22	.1% N	869

Discussion of Results

- OpenSSH results indicative for all studied single-hop systems
- Low accuracies for multi-hop systems due to
 - fixed-length packages (e.g. Tor has cell size of 512 bytes)
 - **noise** (e.g. due to TCP retransmissions)

- We cannot conclude that multi-hop systems are immune against fingerprinting attacks!
- System-specific attacks will likely achieve higher accuracies.

Agenda

Motivation and Scenario

Novel Fingerprinting Technique

Evaluation

Addressing Real-World Issues

Research Assumptions

Results obtained using research assumptions from related studies:

- Knowledge about victim: attacker uses similar browser, Internet access and PET system to build fingerprints database
- Closed-world: classifier will never encounter traffic of a site it hasn't been trained for
- Browser configuration: no caching, no prefetching, no update checks
- Extractable profiles: attacker can extract traffic of individual page impressions from encrypted stream

Evaluation of Two Real-World Issues with OpenSSH Dataset

ENABLING BROWSER CACHE

- Previous work suggests that fingerprinting becomes difficult once browser cache is enabled.
- Cannot reproduce this with our sample: accuracy drops by only 5%

FALSE ALARMS

- Leaving closed world scenario behind: false alarms for uninteresting sites become a problem
- ▶ If only 78 of 775 pages are considered *interesting*,
 - ▶ 1.5% of *uninteresting* instances cause a false alarm
 - ▶ 40% of instances from *interesting* sites are classified correctly

Areas of Future Work

• Assess utility for **forensics**:

tune attack for recognition of a very small number of sites

- Evaluate protection of countermeasures:
 e.g. Traffic Flow Confidentiality by Kiraly et al. (2008)
- Applicability to Cloud Computing protocols: must pay attention to traffic profile of messages

Website Fingerprinting

- Introduced Multinomial Naïve Bayes classifier
- Operates on transformed relative IP packet size frequencies
- Higher effectivity/efficiency for OpenSSH than existing fingerprinting techniques (accuracy of up to 97%)
- Attack also relevant for PETs with fixed-size messages (with limited accuracy)
- Browser caching is apparently negligible

Dominik Herrmann, Hannes Federrath University of Regensburg, Germany

Rolf Wendolsky JonDos GmbH

Management of Information Security (Prof. Dr. Hannes Federrath) http://www-sec.uni-r.de/website-fingerprinting/