
CCSW 2009, 13 Nov 2009

On Protecting Integrity and 
Confidentiality of Cryptographic File 
System for Outsourced Storage

Aaram Yun, Chunhui Shi, Yongdae Kim
University of Minnesota



Cryptographic network file system

✤ How to achieve

✤ a network file system

✤ where data storage can be outsourced

✤ securely and efficiently?



Cryptographic network file system



Goals

✤ Formal security definition for cryptographic file system

✤ confidentiality & integrity against attacker which controls data 
storage

✤ Efficient construction

✤ better computational overhead for crypto operations



Requirements

✤ Confidentiality & integrity of stored data

✤ Random access

✤ Only constant amount of trusted storage per file

✤ Small computational overhead



Merkle hash tree

✤ Popular solution for protecting 
data integrity

✤ Data blocks at leaf nodes

✤ Tree of hash values

✤ Root should be stored securely

✤ O(log n) cost for update

D1 D2 D3 D4 D5 D6 D7 D8

H1
(1) H2

(1) H3
(1) H4

(1) H5
(1) H6

(1) H7
(1) H8

(1)

H1
(2) H2

(2) H3
(2)

H1
(3)



Merkle hash tree + encryption

✤ Put encrypted data blocks at 
leaf nodes

✤ Blockwise encryption using 
CTR, for example

✤ Protects confidentiality and 
integrity

D1 D2 D3 D4 D5 D6 D7 D8

H1
(1) H2

(1) H3
(1) H4

(1) H5
(1) H6

(1) H7
(1) H8

(1)

H1
(2) H2

(2) H3
(2)

H1
(3)



How to enhance Merkle tree?

✤ Efficiency

✤ Hash function is fast, but not too fast

✤ Speed of SHA-1 only about 1.5 times faster than AES-128, in most 
software environments

✤ SHA-2 slower than AES-128 in general

✤ Security

✤ Secure, but could leak information if not used carefully



Formalism

✤ A file represents a sequence of file blocks D1D2...Dn

✤ Allowed operations (file encryption key is implicit)

✤ Read(k), Length(), Update(k, D), Append(D), Delete()

✤ T: trusted storage, S: data storage

✤ (t, s) ∈ T×S: state of a file, starting from a fixed initial state, updated 
by file operations

✤ Failed operation cannot change t, but it may change s



Security definitions

✤ Integrity: infeasibility of alteration of file content

✤ Attacker is allowed to interact with the file, making file operation 
queries

✤ Attacker can feed arbitrary state s’ before any file operation

✤ Attacker wins if he requests read(k) and obtain D’≠Dk

✤ Dk: kth block of the correct file content



Security definitions

✤ Confidentiality

✤ infeasibility to learn anything about a file block, other than by 
reading the block

✤ Even when the attacker somehow coerces a valid user to read a 
block of plaintext or eavesdrops it, still unread blocks do not 
give any information



Universal hash-based MACs

✤ Universal hash function : Prob[Hk(x)=Hk(y)]<ε for any x≠y

✤ Structure of Hk(x) is very simple

✤ Long data block is ‘compressed’ by cheap universal hashing, then 
‘encrypted’ by XORing to an enciphered nonce

τ = Mk, k’(N, M) = Hk(M) ⊕ Ek’(N)

✤ Attacker cannot produce a forgery: (N, M, τ) satisfying τ = Hk(M) ⊕ 
Ek’(N) with new (N, M)

✤ We use Poly1305-AES, but other UH-based MACs are also usable



Nonce-based MAC tree 
construction

✤ If nonce is untampered, validity of 
data & MAC can be checked

✤ Root nonce is securely stored

✤ Trust is transferred down the tree

✤ Leaf nonces are used to encrypt 
data blocks

✤ Needs only to protect nonces & 
nonces can be shorter than hashes!

N1
(0) N2

(0) N3
(0)

N1
(1) N2

(1) N3
(1)

N4
(0) N5

(0) N6
(0) N7

(0) N8
(0)

T1
(1) T2

(1) T3
(1)

T1
(2)

N1
(2)

MMM

M



How to encrypt using nonces

✤ Nonces at the leaf nodes, Nk(0) are used for encrypting each file blocks 
in CTR mode, and also for authenticating file blocks

✤ If, Nk(0) are kept in a trusted storage & incremented properly 
whenever update of a block happens, this encryption & 
authentication can be proven to be secure

✤ But, since Nk(0) are protected by the MAC tree, still this is secure



Implementation & performance

✤ Implemented the file system on 
a FUSE based network file 
system

✤ One for our MAC tree, one 
for Merkle hash tree

✤ Cost of authentication is about 
50% of the Merkle tree 
construction in general

!"

#!!!"

$!!!!"

$#!!!"

%!!!!"

%#!!!"

&!!!!"

&#!!!"

'!!!!"

()*"

+,--"

.)/."

+,--"

()*"

+,--"

.)/."

+,--"

()*"

+,--"

.)/."

+,--"

()*"

+,--"

.)/."

+,--"

0-)12*.)," 0-)12345*6" 7,8+-2*.)," 7,8+-2345*6"

-9*:1-*" );+."



Thank You!


