On Protecting Integrity and
Confidentiality of Cryptographie File

System for Outsourced Storage

Aaram Yun, Chunhui Shi, Yongdae Kim
University of Minnesota

CCSW 2009, 13 Nov 2009

Cryptographic network file system

* How to achieve
* anetwork file system
* where data storage can be outsourced

* securely and etficiently?

Cryptographic network file system

Trdted server

Crypto keys &
Secure metadata

Decrypted
data

Fetched ciphertext

_

Encrypted data

Storage server

Goals

* Formal security definition for cryptographic file system

* confidentiality & integrity against attacker which controls data
storage

+ Efficient construction

* better computational overhead for crypto operations

Requirements

* Confidentiality & integrity of stored data
* Random access
* Only constant amount of trusted storage per file

* Small computational overhead

Merkle hash tree

* Popular solution for protecting
data integrity

+* Data blocks at leaf nodes

+ Tree of hash values

* Root should be stored securely

* O(log n) cost for update

Merkle hash tree + encryption

* Put encrypted data blocks at
leaf nodes

* Blockwise encryption using
CTR, for example

* Protects confidentiality and
integrity

How to enhance Merkle tree?

* Efficiency
+ Hash function is fast, but not too fast

* Speed of SHA-1 only about 1.5 times faster than AES-128, in most
software environments

* SHA-2 slower than AES-128 in general
* Security

* Secure, but could leak information if not used carefully

Formahism

* A file represents a sequence of file blocks D1D>...Dn
* Allowed operations (file encryption key is implicit)
+ Read(k), Length(), Update(k, D), Append(D), Delete()
T: trusted storage, S: data storage

* (t, s) € TxS: state of a file, starting from a fixed initial state, updated
by file operations

+ Failed operation cannot change t, but it may change s

Security definitions

* Integrity: infeasibility of alteration of file content

* Attacker is allowed to interact with the file, making file operation
queries

* Attacker can feed arbitrary state s” before any file operation
* Attacker wins if he requests read(k) and obtain D’=Dx

+ Dy kth block of the correct file content

Security definitions

* Confidentiality

* infeasibility to learn anything about a file block, other than by
reading the block

+ Even when the attacker somehow coerces a valid user to read a
block of plaintext or eavesdrops it, still unread blocks do not
give any information

Umiversal hash-based MACs

* Universal hash function : Prob[Hi(x)=Hi(y)]<e for any x=y
* Structure of Hi(x) is very simple

* Long data block is ‘compressed’ by cheap universal hashing, then
‘encrypted’ by XORing to an enciphered nonce

T = My, (N, M) = Hk(M) ® Ex(N)

* Attacker cannot produce a forgery: (N, M, 1) satisfying T = Hi«(M) @
Ew(N) with new (N, M)

* We use Poly1305-AES, but other UH-based MACs are also usable

Nonce-based MAC tree

construction

1
Tp

/
/
I ///
d
M <«

If nonce is untampered, validity of
data & MAC can be checked

Root nonce is securely stored
Trust is transferred down the tree

Leaf nonces are used to encrypt
data blocks

Needs only to protect nonces &
nonces can be shorter than hashes!

How to encrypt using nonces

* Nonces at the leaf nodes, Ni(? are used for encrypting each file blocks
in CTR mode, and also for authenticating file blocks

* If, Ni© are kept in a trusted storage & incremented properly
whenever update of a block happens, this encryption &
authentication can be proven to be secure

* But, since N\ are protected by the MAC tree, still this is secure

Implementation & performance

40000
35000
30000
25000
20000
15000
10000

5000

enc/dec M auth

1l

hash
tree

mac
tree

Read-char

hash
tree

Mmac
tree

Read-block

hash
tree

mac
tree

Write-char

hash
tree

Mmac
tree

Write-block

* Implemented the file system on
a FUSE based network file
system

* One for our MAC tree, one
for Merkle hash tree

+ Cost of authentication is about
50% of the Merkle tree
construction in general

Thank You!

