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Cryptographic network file system

✤ How to achieve

✤ a network file system

✤ where data storage can be outsourced

✤ securely and efficiently?



Cryptographic network file system



Goals

✤ Formal security definition for cryptographic file system

✤ confidentiality & integrity against attacker which controls data 
storage

✤ Efficient construction

✤ better computational overhead for crypto operations



Requirements

✤ Confidentiality & integrity of stored data

✤ Random access

✤ Only constant amount of trusted storage per file

✤ Small computational overhead



Merkle hash tree

✤ Popular solution for protecting 
data integrity

✤ Data blocks at leaf nodes

✤ Tree of hash values

✤ Root should be stored securely

✤ O(log n) cost for update
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Merkle hash tree + encryption

✤ Put encrypted data blocks at 
leaf nodes

✤ Blockwise encryption using 
CTR, for example

✤ Protects confidentiality and 
integrity
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How to enhance Merkle tree?

✤ Efficiency

✤ Hash function is fast, but not too fast

✤ Speed of SHA-1 only about 1.5 times faster than AES-128, in most 
software environments

✤ SHA-2 slower than AES-128 in general

✤ Security

✤ Secure, but could leak information if not used carefully



Formalism

✤ A file represents a sequence of file blocks D1D2...Dn

✤ Allowed operations (file encryption key is implicit)

✤ Read(k), Length(), Update(k, D), Append(D), Delete()

✤ T: trusted storage, S: data storage

✤ (t, s) ∈ T×S: state of a file, starting from a fixed initial state, updated 
by file operations

✤ Failed operation cannot change t, but it may change s



Security definitions

✤ Integrity: infeasibility of alteration of file content

✤ Attacker is allowed to interact with the file, making file operation 
queries

✤ Attacker can feed arbitrary state s’ before any file operation

✤ Attacker wins if he requests read(k) and obtain D’≠Dk

✤ Dk: kth block of the correct file content



Security definitions

✤ Confidentiality

✤ infeasibility to learn anything about a file block, other than by 
reading the block

✤ Even when the attacker somehow coerces a valid user to read a 
block of plaintext or eavesdrops it, still unread blocks do not 
give any information



Universal hash-based MACs

✤ Universal hash function : Prob[Hk(x)=Hk(y)]<ε for any x≠y

✤ Structure of Hk(x) is very simple

✤ Long data block is ‘compressed’ by cheap universal hashing, then 
‘encrypted’ by XORing to an enciphered nonce

τ = Mk, k’(N, M) = Hk(M) ⊕ Ek’(N)

✤ Attacker cannot produce a forgery: (N, M, τ) satisfying τ = Hk(M) ⊕ 
Ek’(N) with new (N, M)

✤ We use Poly1305-AES, but other UH-based MACs are also usable



Nonce-based MAC tree 
construction

✤ If nonce is untampered, validity of 
data & MAC can be checked

✤ Root nonce is securely stored

✤ Trust is transferred down the tree

✤ Leaf nonces are used to encrypt 
data blocks

✤ Needs only to protect nonces & 
nonces can be shorter than hashes!
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How to encrypt using nonces

✤ Nonces at the leaf nodes, Nk(0) are used for encrypting each file blocks 
in CTR mode, and also for authenticating file blocks

✤ If, Nk(0) are kept in a trusted storage & incremented properly 
whenever update of a block happens, this encryption & 
authentication can be proven to be secure

✤ But, since Nk(0) are protected by the MAC tree, still this is secure



Implementation & performance

✤ Implemented the file system on 
a FUSE based network file 
system

✤ One for our MAC tree, one 
for Merkle hash tree

✤ Cost of authentication is about 
50% of the Merkle tree 
construction in general
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Thank You!


