PIR: crypto design
berspective

aggelos@cse.uconn.edu
http://www.cse.uconn.edu/~akiayias




the algorithm is polynomial-
time, thus is efficient

the algorithm
takes 4msec in my

Powerbook, thus is
efficient.

the algorithm
runs in c- (n? + 3nlogn)
time, thus is efficient.




® Polynomial-time vs. Non-polynomial-time : The
inherent complexity of problem.The absolute
boundary of efficient computation.

® Exact time/space/communication-complexity
function: good data structures / clever all
around design/ art of computer programming.

® Benchmarks : the bottom-line/ hardware -
software coupling / compiler optimization.




® Definition / Motivation.
® First solution/ Feasibility/ Polynomial-time.

® More solutions... Diversity. Alternate
settings. Exact complexity functions.

® First implementations.

® Fine tunings. More implementations.
Benchmarks.




Party A performs a number of crypto operations "per X" of its input.

® ‘“Per-bit” vs.Per-block’

® Per-bit is easier to desigh and argue the
security of.

e HOWEVER : complexity suffers a
multiplicative factor.




input length T
security parameter k

crypto - op complexity f(k’)

“Per-bit” vs. “Per-block”

O(n- f(k) O+ f(k))




® First provably secure public-key cryptosystem:
[GM82] : per=bit primitive.

® First provably secure digital signature:
[GMR88] : per=bit primitive.

® First zero-knowledge proof:
[GMR85] : per=bit primitive.




None of the previous schemes is in use.

Still, they were seminal works that pointed
to the right direction.

Now, 20 years later we have: finely tuned

benchmarked and secure per=-block
cryptographic primitives implemented in

every computer.




® First (single-server) PIR:
[KO97] :a per=bit primitive.

® First (single-server) poly-log PIR:
[CMS99] :a per=bit primitive.

e A Per-bit to Per-block transformation is
possible for both the above protocols.




® More suitable for judging communication
complexity of block PIR protocols.

® What is the communication rate for each bit
that is PIR transfered?

® Observe :all “per-bit” protocols transformed
to “‘per-block™ have vanishing rates in the size of
the database.

We need constant rate protocols -
e “Per block™ constructions




® PIR has a characteristic that many previous
cryptographic primitives do not have:

® PK-encryption, digital signatures, zk-proofs
etc. are essentially solving the impossible thus
even per-bit primitives can be useful!

® PIR can be solved by transferring the
database. duh!




® Gentry-Ramzan PIR (ICALP 2005):

® Transmission Rate:~1/4

® Lipmaa PIR (ISC 2005) original rate : ~1/1ogn

® New optimized version rate ~1




Transmission rate still an asymptotic
parameter.What about the constants!?

What about time complexity?

What about benchmarks on real inputs?




® Optimized version of Lipmaa’s PIR has superb
communication complexity :
e.g.,for 1MB PIR transfer the communication can be

merely 1.56 MB!
® Time-complexity for server can be very taxing:

® [GRO5] one modular exponentiation with huge
exponent. (proportional to the database)

® [Lip0O5] many modular exponentiations with regular size

exponents but over huge groups!
)




Use optimized [GRO5] PIR for
blocks and estimate
implementation costs for a
hypothetical database.

Caveat : the following numbers are rough
estimates that are NOT based on an
implementation. They are subject to change
once an implementation is at hand.




Database consists of 2048 entries of documents each 64Kbytes
long.

Required communication for a PIR read : ~ 256Kbytes.

Client computation-time : ~ 95 seconds.
extrapolation from Powerbook G4 1.3 GHz openssl benchmarks.

Server computation-time ~ 45 seconds.
extrapolation from Sun fire T2000 1.2 GHz 8core openssl benchmarks.

Sending the whole database (128MB) at 350 KB/sec
bandwidth : 374 seconds.

the above assume 1024-bit moduli




® [GRO5] has a heavy toll on the client.

Understanding the underlying intractability assumption may
lead to substantial improvements (or substantial
degradation if the assumption crumbles).

® Optimized version of [Lip05] has better
com. complexity and superior client side
computation.
Server side computation blows up though.




e Improve on [GRO5][Lip05].

® Focus on related primitives: Reduction of Block-PIR

to Secure Multivariate Polynomial evaluation
from [Kiayias-Yung ICALP ‘02].

® Design PIRs based on alternative assumptions: avoid
modular exponentiations and other expensive
operations.




® Practical PIR?

® not there yet but we are maybe just seeing
the first glimpses of it.

® My prediction based on history and the recent
works just described: upcoming cryptography

research focusing on the right direction will
beat the problem soon.

® Support crypto research.




