The Bond Agent System and Applications

Ladislau Boloni, Kyungkoo Jun, Krzysztof Palacz, Radu Sion, and Dan C. Marinescu
Computer Sciences Department, Purdue University
West Lafayette, IN, 47907, USA
Email: [boloni, junkk, palacz, sion, dcm]@cs.purdue.edu

March 2, 2000

Abstract

In this paper we present the basic design philosophy of the Bond agent system, the
multi-plane agent model and the component-based architecture implementing the model.
We discuss several applications of Bond agents: resource discovery, an adaptive video
service, a workflow management system, a system of agents for remote monitoring of web
servers, and a network of PDE solvers.

1 Introduction

We present some of the features of the Bond agent system and several applications of it. The
original goal was to create an infrastructure for a Virtual Laboratory and to support scheduling
of complex tasks and data annotation for data intensive applications. The Virtual Laboratory
is expected to facilitate remote control and monitoring of experiments, data analysis, replaying
of a past experiment, knowledge sharing among scientists scattered around the country. Early
on, we realized that, due to the complexity of the tasks involved, the infrastructure should
support knowledge and workflow management and be based upon a distributed object system.
We created an agent model and a component-based architecture to assemble the agents [9].

Our thinking and design choices were influenced by existing systems and, whenever possi-
ble, we adopted ideas and integrated implementations fitting our agent model. We integrated
with relative ease JESS, a Java Expert System Shell from Sandia National Laboratory, [20] and
we are in the process of designing a planning engine and integrating a knowledge management
system, see Section 3.1.

Now we outline our views regarding several controversial issues in the area of software
agents and present our design choices. The intelligent agents and the distributed objects and
systems communities have slightly different views regarding the future of software agents. The
first group is primarily concerned with intelligent agents and applications where agents are
indispensable, e.g. space exploration or robotics, where advanced planning and unrestricted
autonomy are necessary. The second group believes in agents with a wide range of intelligence
and autonomy capabilities, useful for the development of the next generation Internet-based
applications.

A recent paper by Nwana and Ndumu [30] provides a lucid but somber analysis of the field.
The authors review the promises and evaluate the progress of the last few years in the field and
conclude that, while progress has been made in several areas including information discovery,
ontologies, agent communication, reasoning and coordination, monitoring and integration of
agents and legacy software for the past five years, the progress in the software agents field has
been by and large, slow and marred by recycling of concepts developed earlier.

The stagnation of the field is attributed by the authors of the study to several causes: (a)
lack of focus on problems that indeed require agent technology as opposed to problems that
can be solved by traditional distributed system. (b) inability to identify a “killer application”,
and (c) a premature tendency towards formalization, attributable to many academic agent
researchers that focus on manufactured agent applications rather than on realistic ones.

Our view regarding applications of software agents is different, we see a fair number of
applications where software agents technology may have a significant impact though more
traditional approaches are possible. The design of complex systems requires components with
different degrees of autonomy, intelligence and mobility, any component may or may not be
viewed as an agent depending upon the particular circumstances it is used. Agents could
be used to support: (a) access to services from platforms ranging from supercomputers to
hand-held devices, (b) composition and customization of services, (c¢) information discovery,
(d) resource management, (e) negotiations and so on.

At the same time, we regard the software engineering of agents as a major concern and
believe that software agent technology should be integrated with other methods and technolo-
gies used to build complex open systems, including object-oriented technology, concurrency,
distribution. If we have to use special agent communication and content languages, design
our own societal services, use special toolkits for building agents, while waiting for someone
to discover a “killer application”, it is very likely that, after five years from now, an equally
somber review of the field could be expected.

Another controversial aspect of agents is related to mobility. Code mobility is a long-term
obsession of distributed system designers, has its roots in work done last decade at MIT on
remote evaluation, on process migration research, fashionable two decades ago, and can be
related to the Xerox Worm. Some question the usefulness of agent mobility, others point out
the tremendous challenges posed by it, security being often at the top of the list, and argue
that we should address first the very difficult problems posed by immobile agents [29]. Systems
like Voyager [21] and IBM’s Aglets [28] were specifically designed to support agent mobility
while others like Retsina [34] or Zeus [31] ignore it. Systems like AgentTCL [27] and Bond
support agent mobility.

We believe that there are applications where support for agent mobility is critical, the agent
is an integral part of the model, e.g. in active networks [8] [39] [36]. There are applications
where mobile agents may have a significant advantage in terms of either functionality or
performance compared with more traditional techniques: (a) extensible servers, applications
where a user is represented by an agent installed at a remote server location, (b) data-intensive
applications where it is impractical to move data, (c) applications in mobile computing area
where the user is intermittently connected to the network and resources available on the
network access device are insufficient, (d) dynamic deployment of software [29].

The paper is organized as follows. Section 2 and 3 present defining features of the Bond
system and work in progress. Several applications of Bond agents are examined in Section 4.

2 The Bond Agent System

2.1 The Agent Model

The Bond agent model is influenced by the definition of an agent given by Stan Franklin and
Art Graesser [19]: an autonomous agent is a system situated within and part of an environment
that senses that environment and acts on it, over time, in pursuit of its own agenda and so
as to effect what it senses in the future.

The agent execution model assumes that the agent has an explicit goal. Agents receive
external events and generate actions. However, the actions of an agent are determined by the

pursue of its goal. Of course, events may trigger immediate responses, but agents perform
actions even without any external input. An agent terminates its execution when its goal is
accomplished.

Since an agent can emulate every other execution model, some researchers are inclined to
view every program as an agent. Although this approach may be sometimes useful, it does
not lend itself to efficient implementations, the simpler the execution model the more optimal
implementation is possible. For example, we can optimize the response time of a stateless
server far better than of an agent with a complex state.

The structure of Bond agents reflects this execution model and allows an agent to interact
with other agents, take actions on its own, and mainain a complex state. Although this
framework can be used to implement non-interactive programs or servers in the classical
sense, these implementations may be suboptimal.

Bond is based upon the AM{™ model [11]. We believe this model to be well suited to
an object-oriented implementation, though less powerful than BDI. This model allows us to
reason about agents while using an object-oriented programming style.

An important aspect of agent design is the communication style. Most agent systems use
a message-oriented style although recently agents based upon CORBA MASIF specification
[4], e.g. Grasshopper [7, 13] are emerging. Agents using message-oriented communication
either rely on an agent communication language like KQML [17] or FIPA [2] or use free-
format communication. Several agent toolkits use KQML, e.g., JATLite from Stanford [35]
and the AgentBuilder [1], a commercial product. Other commercial products, e.g., Aglets [28]
or Voyager [21] use free-format communication. The Bond agent system uses KQML. Like
other agent system we take advantage of few performatives supported by KQML, internally a
KQML message is represented by a table consisting of attribute name and value pairs. This
approach allowed us to add to our system XML-based communication with ease. At this time,
Bond agents can mix KQML or XML messages.

Another important consideration in the design of an agent system is mobility. Agent
systems like Aglets from IBM, [28], Telescript [40] from General Magic consider migration a
defining property of an agent and a basic design goal is to allow an agent to migrate at any
time. In Bond, migration is considered a rare event in the life of an agent and migration is
possible only under certain circumstances and we implement a weak migration model. We
restrict the locations an agent may migrate to and the time when migration is possible. A
Bond agent runs under the control of the agent factory and uses the communication substrate
provided by a Resident, thus it cannot migrate freely to any site [11]. An agent may move at
the time of a transition from one state to another. If multiple planes are running concurrently
then we have to wait until each plane reaches a transition.

To migrate an agent we simply send the blueprint of the agent and the model including
the current state of the agent to a new site, [11]. The agent factory at the receiving end
re-assembles the agent and when so instructed activates it from the state found in the model.

The statechart model [23] designed by David Harel is used to specify embedded systems
and UML [32]-based systems. Our multi-plane agent state machine can be seen as a different
way of expressing the parallelism which in statecharts are expressed as concurrent sub-states.
On the other hand we have chosen to use a simpler state machine than those used in state
charts. For example, in statecharts transitions can have conditions and actions associated with
them, while in our model, only states can generate actions and transitions are unconditional.
The theoretical foundation behind this decision is that in our model the structural component
(the multiplane state machine), the active components (the strategies) and the model of
the world are clearly separated. If we introduced a condition on a transition, that would
clearly be a boolean function on the model, thus making the state machine dependent on
the model. If an action were associated with the transition that would either imply that

actions can be generated outside strategies, or alternatively that there is a strategy which is
not determined by the state vector. Both of these semantics are expressed in our model by
inserting an intermediate node between the source and destination, the strategy of these node
than performing the desired action or evaluating the condition. Thus, the multi-plane state
machines in our model can be larger for the same task than the corresponding statechart, but
they are easier to analyze and generate, because of the simpler semantics. On the other hand,
real time systems are easier to specify in the statechart format. Another feature of statecharts,
the possibility to define embedded sub-states is also missing in our system. Its functionality
in most cases can be replaced by the state vector of the multi-plane state machine. We are
currently investigating the possible benefits of introducing sub-states in our model; although
they improve the expressiveness of the system, they also introduce difficulties in implementing
checkpointing, migration and agent surgery [12].

2.2 A Component-Based Architecture for Agents

Now we present a component-based architecture for software agents. In this architecture an
agent consists of a group of active objects linked together by a data structure, rather than
a large monolithic code. The behavior of the agent is determined by the active and passive
objects and the data structure. The active objects usually consist of compiled code, thus can
be executed with little additional overhead. The data structure can be modified with ease
allowing for flexible behavior. The structure of the agent is presented in Figure 1. The four
major components of an agent are: the model, the agenda, the state machines, and strategies.

The model of the world is a container object which contains the information the agent has
about its environment. There is no restriction of the format of this information: it can be
a knowledge base or ontology composed of logical facts and predicates, a pre-trained neural
network, a collection of meta-objects or different forms of handles of external objects (file
handles, sockets, etc), or typically, a heterogeneous collection of all these. The model also
stores information the agent has about itself, e.g., plans or intentions if the agent conforms to
the BDI model.

The agenda object defines the goal of the agent. The agenda implements a boolean function
and a distance function on the model. The boolean function shows if the agent accomplished
its goal or not. The agenda acts as a termination condition for the agents, except for agents
with a continuous agenda where their goal is to maintain the agenda as being satisfied. The
distance function may be used by the strategies to choose their actions.

The multi-plane state machine of the agent is a data structure composed of a number of
state machines arranged in planes. The state of each state machine is defined by the active
node. The state of the agent is defined by a wvector of states. An agent changes its state
by performing transitions. In turn transitions are triggered by internal or external events.
External events are messages sent by other agents or programs. The set of external messages
that trigger transitions of the agent’s state machine defines the control subprotocol of the agent.

Each node of the multi-plane state machine has associated a strategy object. Strategy
objects generate actions based upon the model and the agenda of the agent. Strategies do
not reveal internal state information - their behavior is determined exclusively by the model
and the agenda. The strategies must store their state in the model. Actions are considered
atomic from the agent’s point of view, external and/or internal events interrupt the agent only
between actions. Each action is defined exclusively by the agenda of the agent and the current
model. A strategy can terminate by triggering a transition or by generating an internal event.
After the completion of the transition the agent moves into a new state where a different
strategy defines its behavior.

The implementation we propose for the agent execution model is based on strategies.

Agenda

Figure 1: The multi-plane structure of agents

Informally, a strategy is a function which takes as parameters the model of the world and the
agenda of the agent and returns actions. From the implementation point of view, a strategy is
a Java object with a function called action() that performs the actions needed at the given
instance.

The strategies are activated: (a) in response to external events and (b) as the flow of
control requires while pursuing the agent’s agenda. Messages from remote applications, and
user interface events like pressed keys, mouse-clicks are examples of external events. The
strategies are activated by the event handling mechanism - the Java event system for GUI
events, or the messaging thread for messages in case of external events, or by an action
scheduler.

The state of the agent is defined by a vector of states, which implies that the behavior or
the agent is determined by a wvector of strategies.

This structure allows us to assign different strategies for handling different types of events -
for example a strategy from one plane handles the messages, while the other plane is handling
the user interface events. One of the planes may provide reasoning or planning functions, one
the execution, another one carry out housekeeping operations. The strategies in these planes
are activated by the action scheduler.

The multi-plane structure provides the means to express concurrent agent activities. The
actual nature of the parallelism is determined by the scheduling mechanism used by the action
scheduler. In case of a round-robin activation mechanism the actions belonging to different
strategies are interleaved without overlapping while multi-threaded execution allows for truly
concurrent actions. Other possible activation schemes are priority-based and preemptive.

The agents are described by their active components (the strategies) and the structural
components - the multi-plane state machine.

A strategy should be compatible with the agent implementation language, Java in case of
Bond. There are two requirements a software component should meet to be a valid strategy:
it should allow its state to be linked to the model and it should break its behavior into
actions. JavaBeans, ActiveX objects, C++ libraries or functions in interpreted languages can
all be valid strategies. In the Bond system, besides Java-written strategies, we are currently
supporting strategies written in Jess and Python through the JPython interpreter. Any other
language can be used through the Java native interface.

The structural component of an agent, the multi-plane state machine, can be constructed
as a program, but a more flexible approach is a textual description, interpreted by an agent
factory. An agent description language called Blueprint was defined to describe the structure
of an agent. We are now extending the blueprint agent description language to accommodate

XML-based agent description. Other agent systems, e.g. Zeus [31], use a visual programming
interface to create agents.

3 Work in Progress

3.1 Knowledge Management

Bond adopts the knowledge model provided by the Open Knowledge Base Connectivity Pro-
tocol [16]. This is achieved through integration with Protégé 2000, a knowledge modeling tool
and programming library [22]. Each instance of the base class of the Bond object hierarchy
can be viewed as an instance frame conforming to one or more class frames; subsequently the
own slots associated with each Bond object represent assertions about the object or about
the abstract entity represented by it. The uses of knowledge management abstractions in
Bond include descriptions of capabilities of strategies and agents, representation of properties
registered with community services, planning operator pre- and postconditions and data struc-
tures used for communication with the inference engine. Thanks to the facilities of Protégé,
knowledge represented in a running Bond system can be exported in the Resource Description
Framework format and new Bond objects can be assembled from imported RDF descriptions.

3.2 Agent Management. The Microserver.

Management, monitoring and debugging in multi-agent systems pose serious challenges. Agent
debugging and monitoring should be done with as little intrusion as possible, agent manage-
ment should be highly efficient, we need a uniform interface to access agent properties.

We propose to enable dynamic access to running agents and their properties using a mi-
croserver. A microserveris a light thread managing predefined access-points to enable external
access through an appropriate protocol, e.g., HT'TP, to agent’s properties.

The property access-point enables public access to the agent properties. For example in
case of distributed monitoring we can access the public name space from within the running
Java Virtual Machine, or name spaces composed of variable properties which may be .set()
and .get().

The method invocation access-point enables RMI-like calls to any Bond object including
agents. The task of the microserver is to translate from the internal object messaging protocol
(inside the Java Virtual Machine) to the external (ex. HTTP) access protocol. The design
of the formats and serialization of corresponding call arguments and results are especially
challenging.

We implemented access-points corresponding to the Bond Object and the Bond Directory.
Our implementation enables access to all objects registered with the local directory, access to
dynamic and static properties of an object, and arbitrary calls to any method. The access
points allow us to access the agent factory and to create and control Bond agents, to access
the model and strategies of a running agent. Thus we are making significant steps towards
distributed Web-based debugging of agents.

Bond supports several different communication mechanisms, such as reliable message de-
livery, best-effort message delivery and multicast message delivery. Each Bond object is able
to send and receive messages using methods provided by the bondCommunicator class.

Upon initialization, an instance of bondCommunicator is created and available for object
communication purposes. It is running as a separate Bond messaging thread. This thread
implements all the function of message sending, receiving and delivering. Bond uses an ab-
straction called a communication engine to describe the interface between bondCommunicator
and the communicating objects.

VA Entity UDP communication engine Directory
Web __(formatting
Browse internal access —& Agent : probe
TCP communication engine gen ! ;
Factory | : I
external access, Entity i
(ex. HTTP) —» Access Y |
Point multicast communication i
interface engine data
——internal access ! model
(@ () i I
Entity Web communication engine !
(HTTP MicroServer) ;
system i
reusable e internal access :
HTTP point ;
N bond :
—r Web external access |
micro ! subset of system (ex. HTTP) Access | Bond Resident
server N entities / Paint__/
system (ex. BOND)

Figure 2: (a) The Microserver uses the access point interface implemented by the system
access point in order to export properties of internal system entities. (b) The Microserver is
integrated naturally as a communication engine in Bond. The Access points are corresponding
to the agent factory, directory, agents and any other bond Object within the current Resident.

We integrated the HT'TP microserver implementation as another communication engine in
Bond. This approach is consistent with the overall Bond architecture. It allows direct browser
access to any Bond object including the agent factory, as well as the ability to integrate the
Bond framework with other systems using a microserver and a general purpose access-point.

Another interesting issues to explore is the deployment of probes to access a Bond ob-
ject. Probes are objects attached dynamically to Bond objects to augment their ability to
understand new sub-protocols [9], [10], and support new functionality.

In this case, either a direct microserver-based probe can be used, enabling the object to
directly export it’s own functionality or specialized probes may be designed in order to just
enable the system’s web communication engine (microserver) to access the object. This is
subject to further design changes.

We implemented several general-purpose access-points, reusable to a great extent by any
Java-based agent or distributed object system, e.g., the generic Java object field and the
Java object method invocation access-points. These access-points are written as namespaces,
implementing the NameSpace and AccessPoint interfaces.

The Java Object Reflection Field Accesspoint exports and allows access to any Java ob-
ject’s properties in a transparent manner (from the Object’s perspective). It can be used to
remotely monitor changes in the Object as seen in it’s properties (variables, methods).

The Java Method Invocation Accesspoint exports callability of corresponding object’s
methods. This implies the ability to serialize call arguments as well as getting back method
return. Issues such a protocol timeouts, stream serialization issues etc. arise but are partially
solved in the current implementation.

Both access-points use the Java reflection mechanisms to discover object properties, fields
and methods without involving the Object’s code itself in this discovery. This is one of the
strong points to be made about this approach. The initial designer of any system that is to be
MicroServer enabled is not involved with issues pertaining to external access. In this respect
the access-points can be reused as “observers” within any (currently Java based) system.

4 Applications

To test the limitations and the flexibility of our system, we developed several applications of
the Bond agents ranging from a resource discovery agent to a network of PDE solver agents.
We overview some of these applications.

Blueprint Repository

Bond Resident Bond|Regident at the Target Site
Y
Agent
(achieve :content assemble-agent m
:bpt http:/www.cs.purdue.edu/agent.bpt) i Agent o
Beneficiary Factory S)
Agent)| (achieve :content modify-agent :bondiD xxx,___| |

“bpt http:/www.cs.purdue.edu/surgery.bpt)
Agent
/o%/

Figure 3: The dynamic deployment and modification of monitoring agents. The Beneficiary
agent sends either a blueprint (solid line) or a surgery script (dotted line) to an agent factory
to deploy a monitoring agent or to modify an existing one. The agent factory assembles it
with strategies which are available from either local or remote blueprint repository

4.1 Resource Discovery

The Bond agents for resource discovery and monitoring have distinct advantages over statically
configured monitors which have to be re-designed and programmed if they are deployed to
other heterogeneous nodes. Moreover the local monitors should be pre-installed [18] [14]
[6]. The dynamic composability and surgery of the Bond agents makes it possible to deploy
monitoring agents on the fly with strategies compatible with target nodes, and modify them
on demand either to perform other tasks or to operate on other heterogeneous resources.

We developed an agent-based resource discovery and monitoring system shown in Figure
3. Agents running at individual nodes learn about the existence of other agents by using
distributed awareness, a distributed mechanism by which each node maintains locations of
other nodes it has communicated with over a period of time and exchanges periodically this
information among themselves [25]. Whenever an agent, a beneficiary agent, needs detailed
information about individual components of other nodes, it uses the distributed awareness
information to identify a target node, then creates a blueprint of a monitoring agent capable
of probing and reporting the required information on the target node, and sends the blueprint
to an agent factory of it. The agent factory assembles the monitoring agent with strategies
comaptible on its node and launches it to work. A blueprint repository, which is either local
or remote, stores a set of strategies. By sending a surgery script, the beneficiary agent can
modify the agents as desired.

This solution is scalable and suitable for heterogeneous environments where the architec-
ture and the hardware resources of individual nodes differ, the services provided by the system
are diverse, the bandwidth and the latency of the communication links cover a broad range.
On the other hand, the amount of resources used by agents might be larger than those required
by other monitoring systems.

4.2 An Adaptive Video Server

Adaptive MPEG agent system implements an architecture supporting server reconfiguration
and resource reservations for a video application [26]. Software agents provide feedback re-
garding desired and attained quality of service at the client side. Server agents respond by
reconfiguring video streaming and reserving communication bandwidth and/or CPU cycles
according to a set of rules. An inference engine, a component of the server agent, controls an

Figure 4: The MPEG system consists of a server and a set of server agents and client agents.
The server and client agents support video streaming and display functions respectively. With
a set of rules, the server agents can respond to changing resource state by adapting the video
streaming.

adaptation mechanism. A native bandwidth scheduler and a CPU scheduler in Solaris 2.5.1
support QoS reservation

The architecture of the adaptive MPEG agent system is shown in Figure 4. An MPEG
client agent is responsible for displaying a video stream and monitoring the reception of the
video stream. When a client agent requests a video, an MPEG video server spawns an MPEG
server agent which delivers and controls video streaming. Two communication channels exist
between a client and its corresponding server side: a control channel for streaming commands
and feedback from client to server, and a data channel for the streaming.

The MPEG server agent is configured to deliver an MPEG compressed video stream at
start-up. As resource state of network bandwidth and CPU loads on the server and client
change, the server agent can gracefully adapt by selecting one of three supported streaming
modes: B/P frame dropping mode, Server decoding mode, and server decoding and dropping
mode.

The application-specific program that adapts the current streaming mode to system re-
source state is written as a set of rules for the Java Expert System Shell (JESS) [20]. Our
adaptation design is based on the following considerations. There are three resources on an
end-to-end streaming path: server CPU, network, and client CPU, any one of which is a
potential bottleneck limiting performance. Once a bottleneck is identified, one of the follow-
ing adaptation rules reacts accordingly: bandwidth reservation rule, CPU reservation rule,
dropping rule, decoding rule, and decoded dropping rule.

The advantage of the agent-based MPEG system is greater flexibility and system recon-
figurability. The rules governing the behavior of the agents can be modified dynamically.
Moreover, the agents themselves can be modified to add another streaming modes by the
surgery.

4.3 Agent-Based Workflow Management

Motivated by deficiencies of existing workflow management systems (WFMS) in the area of
flexibility and adaptability to change we initiated work on building a workflow management
framework on top of the Bond system [33]. Usually in WFMS implementations agents enhance

the functionality of existing WFMS and act as personal assistants performing actions on
behalf of the workflow participants and/or facilitating interaction with other participants or
the workflow enactment engine. We propose an agent-based WFMS architecture in which
software agents perform the core task of workflow enactment. In particular we concentrate
on the use of agents as case managers: autonomous entities overlooking the processing of
single units of work. Our assumption is that an agent—based implementation is more capable
of dealing with dynamic workflows and with complex processing requirements where many
parameters influence the routing decisions and require some inferential capabilities. We also
believe that the software engineering of workflow management systems is critical and instead
of creating monolithic systems we should assemble them out of components and attempt to
reuse the components.

Workflow Description (WDL or PN)

Workflow Definition and sis

WDL to PN translator

‘ PN -based analysis tools ‘

Blueprint to PN Translator J

‘ PN to Blueprint Translator

1

Blueprint
Repository

Bond Agent Framework Bond AgentFramework
Agent Factory Agent Factory

Agent WM Agent

Figure 5: Workflow management in Bond

Figure 5 illustrates the definition and execution of a workflow in Bond. The workflow man-
agement agent originally created from a static description can be modified based upon the
information provided by the monitoring agent. Several workflows may be created as a result
of mutations suffered by the original workflow [38]. Once the new blueprint is created dynam-
ically, it goes through the analysis procedure and only then it can be stored in the blueprint
repository. The distinction between the monitoring agent and the workflow management agent
is blurred, if necessary they can be merged together into a single agent.

We use Petri nets as an unambiguous language for specifying the workflow definition and
provide a mechanism for enacting a large class of Petri net—based workflow definitions on the
Bond finite state machine. For interoperatbility reasons we also supply a translator from the
industry standard Workflow Process Definition Language [15] to our internal representation.

4.4 Remote Web Server Monitoring

The widespread use of web servers for business-oriented activities requires service guarantees
because large variations of response time or even a very short time service failure can make an
enormous negative economic impact as estimated in [24]. In addition to the service guarantee,
the need for support for multiple classes of services based on QoS, various web-server farming,
and security against denial-of-service will affect the future technologies related to web server
configuration and management.

An agent-controlled management of web servers is under development. It can facilitate
the tasks of web administrators. One typical example of those tasks is the following; based on

10

the report from commercial web monitoring service companies [3] [5], the web administrators
reboot failed servers, improve revealed bottlenecks, and optimize systems. Intelligent agents
can automate these tasks with a set of rules describing conditions and corresponding actions,
which mainly control parameters of servers.

An architecture of agent-controlled web cluster is shown in Figure 6. Actual web servers
place behind a proxy, a frond-end server which dispatch requests to the web servers according
to a dispatching table defined by a set of policies or load balancing algorithms. Only the proxy
is exposed to outer world users. This is similar to other web cluster architectures except
having an adaptation agent and monitoring agents.

The adaptation agent controls the web configuration by using intelligence simulated by a
set of management rules provided by administrators, e.g. the dispatching table modification
for load balancing, caching, QoS connection, and request filtering. The adaptation agent also
communicates with its peers controlling other sites mirroring the service for global load balance
and traffic optimization. The prominent advantage of the management by the adaptation agent
is the flexibility coming from the separation of the agent from functional servers, while other
web clusters use the static and monolithic management scheme.

The monitoring agents are mobile agents deployed to strategic places on the Internet to
collect performance data of the web service by accessing the web service periodically. They
can measure response time, test new transaction, monitor error or failure in the perspective of
human users. The data provided by these agent are used by the adaptation agent to improve
the web configuration. The monitoring agent is useful in the sense that they faciliate the
external monitoring by which the bottleneck detection is possible because the server response
time consists of communication time and processing time.

Web

Monitoring —
Service

el 2

London

Monitoring
agent

adl

HongKong Monitoring
agent

adf

Los angeles Monitoring
agent

Adaptation
agent

=10 m
B,
Web Proxy % Web Server

s i el

Chicago Monitoring New York Monitoring
agent agent

~—’ web Server

Figure 6: Agent-based web management and monitoring system. The adaptation agent is
responsible for controlling a set of web servers. It manages a dispatching table for load
balancing and QoS-aware web service. The monitoring agents collect web-performance data
in the perspective of human users

At the same time, we propose to develop the following agents: an agent simulating the
web-surfing behavior of human users for customer-oriented data, an interface agent for ad-
ministrators to manually configure web cluster, and an agent controlling monitoring agents by
directing the geographic distribution of monitoring agents, the temporal activation patterns
of the monitoring agents, and the workload caused by the monitoring agents.

11

4.5 A Network of PDE Solver Agents

Data parallelism is a common approach to reduce the computing time and to improve the
quality of the solution for data-intensive applications. Often the algorithm for processing each
data segment is rather complex and the effort to partition the data, to determine the optimal
number of data segments, to combine the partial results, to adapt to a specific computing
environment and to user requirements must be delegated to another program. Mixing control
and management functions with the computational algorithm leads in such cases to brittle and
complex software. We developed a network of PDE solver agents and discussed its application
for modeling propagation and scattering of acoustic waves in the ocean [37].

Agents with inference abilities coordinate the execution and mediate the conflicts while
solving PDEs. Three types of agents are involved: one PDECoordinator agent, several
PDESolver and PDEMediator agents. The PDECoordinator is responsible with the control
of the entire application, a PDEMediator arbitrates between the two solvers sharing a bound-
ary between two domains, and a PDESolver is a wrapper for the legacy application. Thus
we were able to identify with relative ease the functions expected from each agent and write
new strategies in Java. The actual design and implementation of the network of PDE solving
agents took less than one month. Thus, the main advantage of the solution we propose is a
drastic reduction of the development time from several months to a few weeks.

5 Conclusions

The agent system discussed in this paper can be positioned among the mainstream, multipur-
pose agent systems with several distinctive features:

e An agent implements a multi-plane state machine model.

e We introduce an agent description language called blueprint to specify the structure an
agent. An agent factory translates a blueprint into an internal data structure controlling
the run-time behavior of the agent and allows Bond agents to be modified at run time
and to migrate.

e We pay close attention to the software engineering of agents and define a component-
based architecture. Strategies and planes are reusable components. Our goal is to build
an agent using off-the-shelf components.

e We aim to control and debug agents using a Web-based interface.

The flexibility of the design is illustrated by several applications discussed in Section 4.

6 Acknowledgments

The work reported in this paper was partially supported by a grant from the National Science
Foundation, MCB-9527131, by the Scalable I/O Initiative, and by a grant from the Intel
Corporation.

References

[1] Agentbuilder framework. URL http://www.agentbuilder.com.

[2] Fipa specifications. URL http://www.fipa.org.

12

3]
[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Keynote. URL http://www.keynote.com.

MASIF - The CORBA Mobile Agent Specification. URL http://www.omg.org/cgi-bin/
doc?orbos/98-03-09.

Service Metrics. URL http://www.servicemetrics.com.
Tivoli Enterprise Solutions. URL http://www.tivoli.com/products/solutions.

C. Baumer, M. Breugst, S. Choy, and T. Magedanz. Grasshopper — A universal agent
platform based on OMG MASIF and FIPA standards. In Ahmed Karmouch and Roger
Impley, editors, First International Workshop on Mobile Agents for Telecommunication
Applications (MATA’99), pages 1-18, Ottawa, Canada, October 1999. World Scientific
Publishing Ltd.

S. Bhattacharjee, K. L. Calvert, and E. Zegura. On Active Networking and Congestion.
Technical Report GIT-CC-96-02, Georgia Institute of Technology. College of Computing.

L. Boloni and D. C. Marinescu. An Object-Oriented Framework for Building Collabo-
rative Network Agents. In A. Kandel, K. Hoffmann, D. Mlynek, and N.H. Teodorescu,
editors, Intelligent Systems and Interfaces. Kluwer Publising House, 1999.

Ladislau Boloni, Ruibing Hao, Kyungkoo Jun, and Dan C. Marinescu. An object-oriented
approach for semantic understanding of messages in a distributed object system. In Pro-
ceedings of the International Conference on Software Engineering Applied to Networking
and Parallel/ Distributed Computing, Rheims, France, May 2000.

Ladislau Boloni and Dan C. Marinescu. A component agent model - from theory to
implementation. In Proceedings of the AT2AI Workshop, Vienna, Austria, April 2000,
to appear.

Ladislau B6l6ni and Dan C. Marinescu. Agent surgery: The case for mutable agents.
In Proceedings of the Third Workshop on Bio-Inspired Solutions to Parallel Processing
Problems (BioSP3), Cancun, Mezxico, May 2000.

M. Breugst, I. Busse, S. Covaci, and T. Magedanz. Grasshopper — A Mobile Agent
Platform for IN Based Service Environments. In Proceedings of IEEE IN Workshop
1998, pages 279—290, Bordeaux, France, May 1998.

S. Chapin, D. Katramatos, J. Karpovich, and A. Grimshaw. Resource management
in legion. In Proceedings of the 5th Workshop on Job Scheduling Strategies for Paral-
lel Processing in conjunction with the International Parallel and Distributed Processing
Symposium, April 1999.

Workflow Management Coalition. Interface 1: Process definition interchange process
model, 11 1998. WIMC TC-1016-P v7.04.

R. Fikes and A. Farquhar. Distributed repositories of highly expressive reusable knowl-
edge. Technical Report 97-02, Knowledge Systems Lab Stanford, 1997.

Tim Finin et al. Specification of the KQML Agent-Communication Language — plus
example agent policies and architectures, 1993.

S. Fitzgerald, I. Foster, C. Kesselman, G. Laszewski, W. Smith, and S. Tuecke. A directory
service for configuring high-performance distributed computations. In Proceedings of the
6th IEEE Symp. on High-Performance Distributed Computing, pages 365-375, 1997.

13

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

S. Franklin and A. Graesser. Is it an agent, or just a program? In Proceedings of the
Third International Workshop on Agent Theories, Architectures and Languages. Springer
Verlag, 1996.

E. Friedman-Hill. Jess, the java expert system shell. Technical Report SAND98-8206,
Sandia National Laboratories, 1999.

G. Glass. ObjectSpace voyager — the agent ORB for Java. Lecture Notes in Computer
Science, 1368:38-77, 1998.

W. E. Grosso, H. Eriksson, R. W. Fergerson, J. H. Gennari, S. W. Tu, and M. A. Musen.
Knowledge modeling at the millennium (the design and evolution of protege-2000). Tech-
nical Report SMI-1999-0801, Stanford Medical Informatics, 1999.

D. Harel, A. Pnueli, J. P. Schmidt, and R. Sherman. On the Formal Semantics of
Statecharts. In 2nd IEEE Symposium on Logic in Computer Science, 1987.

Zona Research Inc. White Paper: The Economic Impacts of Unacceptable Web Site
Download Speeds, 1999.

K. Jun, L. Boloni, K. Palacz, and D. C. Marinescu. Agent—-Based Resource Discovery. In
Proceedings of Heterogeneous Computing Workshop 2000, 2000.

K. Jun, L. B6l6ni, D. Yau, and D. C. Marinescu. Intelligent QoS Support for an Adaptive
Video Service. In Proceedings of IRMA 2000, to appear, 2000.

David Kotz and Robert S. Gray. Mobile code: The future of the Internet. In Proceedings
of the Workshop “Mobile Agents in the Context of Competition and Cooperation (MACS3)”
at Autonomous Agents ’99, pages 6-12, May 1999.

D. B. Lange and M. Oshima. Programming and Deploying Java Mobile Agents with
Aglets. Addison Wesley Longman, 1998.

Dejan Milojicic. Mobile Agent Applications. IEEE Concurrency, 7(3), 1999.

Hyacinth Nwana and Divine Ndumu. A perspective on software agents research. The
Knowledge Engineering Review, January 1999.

Hyacinth Nwana, Divine Ndumu, Lyndon Lee, and Jaron Collis. Zeus: A tool-kit
for building distributed multi-agent systems. Applied Artifical Intelligence Journal, 13
(1):129-186, 1999.

Object Management Group. OMG Unified Modeling Language Specification.

Krzysztof Palacz and Dan C. Marinescu. An agent-based workflow management sys-
tem. In Proc. AAAI Spring Symposium Workshop ”Bringing Knowledge to Business
Processes”, 2000.

M. Paolucci, D. Kalp, A. Pannu, O. Shehory, and K. Sycara. Lecture Notes in Artificial
Intelligence, Intelligent Agents, chapter A Planning Component for RETSINA Agents.

Charles Petrie. Agent-based engineering, the web, and intelligence. IEEE FEzpert,
11(6):24-29, December 1996.

J. Smith, K. Calvert, S. Murphy, H. Orman, and L. Peterson. Activating Networks: A
Progress Report. April, 1999.

14

[37] P. Tsompanopoulou, L. B6l6ni, D. C. Marinescu, and J. R. Rice. The Design of Software
Agents for a Network of PDE Solvers. In Workshop on Agent Technologies for High
Performance Computing, Agents 99, pages 57-68. IEEE Press, 1999.

[38] W. M. P. van der Aalst and T. Basten. Inheritance of Workflows. An approach to tackling
problems related to change. (draft).

[39] D. Wetherall, J. Guttag, and D. Tennenhouse. ANTS: A Toolkit for Building and Dy-
namically Deploying Network Protocols. In IEEE INFOCOM, San Francisco, 1998.

[40] James E. White. Telescript technology: Mobile agents. In Jeffrey Bradshaw, editor,
Software Agents. AAAI Press/MIT Press, 1996.

15

