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Abstract. The paper discusses the design and prototype implementa-
tion of a QoS-aware multimedia database system. Recent research in
multimedia databases has devoted little attention to the aspect of the
integration of QoS support at the user level. Our proposed architec-
ture to enable end-to-end QoS control, the QoS-Aware Query Processor
(QuaSAQ), satisfies user specified quality requirements. The users need
not be aware of detailed low-level QoS parameters, but rather specifies
high-level, qualitative attributes. In addition to an overview of key re-
search issues in the design of QoS-aware databases, this paper presents
our proposed solutions, and system implementation details. An impor-
tant issue relates to the enumeration and evaluation of alternative plans
for servicing QoS-enhanced queries. This step follows the conventional
query execution which results in the identification of objects of interest
to the user. We propose a novel cost model for media delivery that ex-
plicitly takes the resource utilization of the plan and the current system
contention level into account. Experiments run on the QuaSAQ proto-
type show significantly improved QoS and system throughput.

1 Introduction

As compared to traditional applications, multimedia applications have special
requirements with respect to search and playback with satisfactory quality. The
problem of searching multimedia data has received significant attention from
researchers with the resulting development of content-based retrieval for multi-
media databases. The problem of efficient delivery and playback of such data
(especially video data), on the other hand, has not received the same level of
attention. From the point of view of multimedia DBMS design, one has to be
concerned about not only the correctness but also the quality of the query results.
The set of quality parameters that describes the temporal /spatial constraints of
media-related applications is called Quality of Service (QoS) [1]. Guaranteeing
QoS for the user requires an end-to-end solution — all the way from the retrieval
of data at the source to the playback of the data at the user.

In spite of the fact that research in multimedia databases has covered many
key issues such as data models, system architectures, query languages, algorithms
for effective data organization and retrieval [2], little effort has been devoted to
the aspect of the integration of QoS support. In the context of general multime-
dia system, research on QoS has concentrated on system and network support



with little concern for QoS control on the higher (user, application) levels. High-
level QoS support is essential in any multimedia systems because the satisfaction
of human users is the primary concern in defining QoS [3]. Simply deploying a
multimedia DBMS on top of a QoS-provisioning system will not provide end-
to-end QoS. Moreover, such a solution is unable to exploit the application level
flexibility such as the user’s acceptable range of quality. For example, for a physi-
cian diagnosing a patient, the jitter-free playback of very high frame rate and
resolution video of the patient’s test data is critical; whereas a nurse accessing
the same data for organization purposes may not require the same high quality.
Such information is only available at the user or application levels.

We envision users such as medical professionals accessing these databases via
a simple user interface. In addition to specifying the multimedia items of interest
(directly or via content-based similarity to other items), the user specifies a set
of desired quality parameter bounds. The quality bounds could be specified
explicitly or automatically generated based upon the user’s profile. The user
should not need to be aware of detailed system QoS parameters but rather
specifies high-level qualitative attributes (e.g. “high resolution”, or “CD quality
audio”). Thus a QoS-enabled database will search for multimedia objects that
satisfy the content component of the query and at the same time can be delivered
to the user with the desired level of quality.

In this paper we discuss the design and prototype implementation of our
QoS-aware multimedia DBMS. We describe the major challenges to enabling
end-to-end QoS, and present our proposed solutions to these problems. To the
best of our knowledge, this is the first prototype system that achieves end-to-
end QoS for multimedia databases. We present experimental results from our
prototype that establish the feasibility and advantages of such a system. Our
implementation builds upon the VDBMS prototype multimedia database system
developed by our group at Purdue University [4]. Among other enhancements,
QuaSAQ extends VDBMS to build a distributed QoS-aware multimedia DBMS
with multiple copies of storage/streaming manager.

To address the structure of a QoS-provisioning networked multimedia sys-
tem, four levels of QoS have been proposed: user QoS, application QoS, system
QoS, and network QoS [1, 5]. We consider a series of QoS parameters in our
research as shown in Table 1. QoS guarantees for individual requests and the
overall system performance are in most cases two conflicting goals since the en-
tire QoS problem is caused by scarcity of resources. Most current research on
QoS fail to address the optimization of system performance. In this paper, we
highlight the key elements of our proposed approach to supporting end-to-end
QoS and achieving high performance in a multimedia database environment.
The approach is motivated by query processing and optimization techniques in
conventional distributed databases.

The key idea of our approach is to augment the query evaluation and opti-
mization modules of a distributed database management system (D-DBMS) to
directly take QoS into account. To incorporate QoS control into the database,
user-level QoS parameters are translated into application QoS and become an



Table 1. Examples of QoS parameters in video databases.

||QOS Level |QoS Parameter ||

Application|Frame Width, Frame Height, Color Resolution,

Time Guarantee, Signal-to-noise ratio (SNR), Security
System CPU cycles, Memory buffer, Disk space and bandwidth
Network Delay, Jitter, Reliability, Packet loss,

Network Topology, Bandwidth

augmented component of the query. For each raw media object, a number of
copies with different application QoS parameters are generated offline by transcod-
ing and these copies are replicated on the distributed servers. Based on the infor-
mation of data replication and runtime QoS adaptation options (e.g. frame drop-
ping), the query processor generates various plans for each query and evaluates
them according to a predefined cost model. The query evaluation/optimization
module also takes care of resource reservation to satisfy low-level QoS. For this
part, we propose the design of a unified API and implementation module that
enables negotiation and control of the underlying system and network QoS APIs,
thereby providing a single entry-point to a multitude of QoS layers (system and
network). The major contributions of this paper are: 1) We propose a query
processing architecture for multimedia databases for handling queries enhanced
with QoS parameters; 2) We propose a cost model that evaluates QoS-aware
queries by their resource utilization with consideration of current system status;
3) We implement the proposed query processor within a multimedia DBMS and
evaluate our design via experiments run on this prototype.

The paper is organized as follows: Section 2 deals with the main issues en-
countered in the process of designing and implementing the system. Section 3
presents the actual architecture of the Quality of Service Aware Query Proces-
sor (QuaSAQ). We also discuss details pertaining to the design of individual
components in the architecture. The prototype implementation of QuaSAQ is
detailed in Section 4. Section 5 presents the evaluation of the proposed QuaSAQ
architecture. In Section 6, we compare our work with relevant research efforts.
Section 7 concludes the paper.

2 Issues

Building a distributed multimedia DBMS requires a careful design of many com-
plex modules as well as effective interactions between these components. This
becomes further complicated if the system is to support non-trivial aspects such
as QoS. In order to extend the D-DBMS approach to address end-to-end QoS,
several important requirements have to be met. These include:

1. Smart QoS-aware data replication algorithms have to be developed. Indi-
vidual multimedia objects need to be replicated on various nodes of the



database. Each replica may satisfy different application QoS in order to
closely meet the requirements of user inputs. The total number and choice
of QoS of pre-stored media replicas should reflect the access pattern of media
content. Therefore, dynamic online replication and migration has to be per-
formed to make the system converge to the current status of user requests.
Another concern in replication is the storage space.

2. Mapping of QoS parameters between different layers has to be achieved. First
of all, user-level qualitative QoS inputs (e.g. DVD-quality video) need to be
translated into application QoS (e.g. spatial resolution) since the underlying
query processor only understands the latter. One critical point here is that
the mapping from user QoS to application QoS highly depends on the user’s
personal preference. Resource consumption of query plans is essential for
cost estimation and query optimization in QoS-aware multimedia databases.
This requires mapping application QoS in our QoS-enhanced queries to QoS
parameters on the system and network level.

3. A model for the search space of possible execution plans. The search space
is of a very different structure from that of a traditional D-DBMS. In the
latter, the primary data model for search space comprises a query tree. The
query optimizer then explores the space using strategies such as dynamic
programming and randomized search to find the “best” plan according to a
cost model [6]. In our system, various components such as encryption, encod-
ing, and filtering must be individually considered in addition to the choice of
database server and physical media object. Depending on the system status,
any of the above components can be the dominant factor in terms of cost.

4. A cost estimation model is needed to evaluate the generated QoS-aware
plans. Unlike the static cost estimates in traditional D-DBMS; it is critical
that the costs under current system status (e.g. based upon current load
on a link) be factored into the choice of an acceptable plan. Furthermore,
the cost model in our query processor should also consider optimization
criteria other than the total time®, which is normally the only metric used in
D-DBMS. A very important optimization goal in multimedia applications is
system throughput. Resource consumption of each query has to be estimated
and controlled for the system to achieve maximum throughput and yet QoS
constraints of individual requests are not violated.

5. Once an acceptable quality plan has been chosen, the playback of the media
objects in accordance with the required quality has to be achieved. Gener-
ally, QoS control in multimedia systems are achieved in two ways: resource
reservation and adaptation [1]. Both strategies require deployment of a QoS-
aware resource management module, which is featured with admission con-
trol and reservation mechanisms. There may also be need for renegotiation
(adaptation) of the QoS constraints due to user actions during playback.

Our research addresses all above challenges. In the next section, we present a
framework for QoS provisioning in a distributed multimedia database environ-
ment with the focus on our solutions to items 3 and 4 listed above. For items

1 Sometimes response time is also used, as in distributed INGRES.



2 and 5, we concentrate on the implementation and evaluation of known ap-
proaches within the context of multimedia databases. Item1 will be covered in a
follow-up paper.

3 Quality-of-Service Aware Query Processor (QuaSAQ)

Figure 1 describes in detail the proposed architecture of our QoS-aware dis-
tributed multimedia DBMS, which we call Quality-of-Service Aware Query Pro-
cessor (QuaSAQ). In this section, we present detailed descriptions of the various
components of QuaSAQ.

1. Components for offline il. Components for online
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Fig. 1. QuaSAQ architecture

3.1 Offline Components

The offline components of QuaSAQ provide a basis for the database adminis-
trators to accomplish QoS-related database maintenance. Two major activities,
offline replication and QoS sampling, are performed for each media object in-
serted into the database. As a result of those, relevant information such as the
quality, location and resource consumption pattern of each replica of the newly-
inserted object is fed into the Distributed Metadata Engine as metadata. Please
refer to [7] for more details of replication and QoS mapping in QuaSAQ.



3.2 QoP Browser

The QoP Browser is the user interface to the underlying storage, processing
and retrieval system. It enables certain QoP parameter control, generation of
QoS-aware queries, and execution of the resulting presentation plans. The main
entities of the QoP Browser include: The User Profile contains high-level QoP
parameter mappings to lower level QoS parameter settings as well as various user
related statistics acquired over time, enabling better renegotiation decisions in
case of resource failure. The Query Producer takes as input some user actions
(requests with QoP inputs) and the current settings from the user profile and
generates a query. As compared to those of traditional DBMS, the queries gener-
ated in QuaSAQ are enhanced with QoS requirements. We call them QoS-aware
queries. The Plan FExecutor is in charge of actually running the chosen plan.
It basically performs actual presentation, synchronization as well as runtime
maintenance of underlying QoS parameters.

Quality of Presentation. From a user’s perspective, QoS translates into the
more qualitative notion of Quality of Presentation (QoP). The user is not ex-
pected to understand low level quality parameters such as frame rates or packet
loss rate. Instead, the user specifies high-level qualitative parameters to the best
of his/her understanding of QoS. Some key QoP parameters that are often con-
sidered in multimedia systems include: spatial resolution, temporal resolution or
period, color depth, reliability, and audio quality. Before being integrated into a
database query, the QoP inputs are translated into application QoS based on the
information stored in the User Profile. For example, a user input of “VCD-like
spatial resolution” can be interpreted as a resolution range of 320x240 — 352 x 288
pixels. The application QoS parameters are quantitative and we achieve some
flexibility by allowing one QoP mapped to a range of QoS values. QoS require-
ments are allowed to be modified during media playback and a renegotiation is
expected. Another scenario for renegotiation is when the user-specified QoP is
rejected by the admission control module due to low resource availability. Under
such circumstances, a number of admittable alternative plans will be presented
as a “second chance” for the query to be serviced.

One important weakness of these qualitative formulations of QoP is their
lack of flexibility (i.e. failure to capture differences between users). For example,
when renegotiation has to be performed, one user may prefer reduction in the
temporal resolution while another user may prefer a reduction in the spatial
resolution. We remedy this by introducing a per-user weighting of the quality
parameters as part of the User Profile.

3.3 Distributed Metadata Engine

In a multimedia DBMS, operations such as content-based searching depend heav-
ily, if not exclusively, on the metadata of the media objects [2]. As mentioned
in Section 2, video objects are stored in several locations, each copy with dif-
ferent representation characteristics. This requires more items in the metadata
collection. Specifically, we require at least the following types of metadata for a
QoS-aware DBMS:



— Content Metadata: describe the content of objects to enable multimedia
query, search, and retrieval. In our system, a number of visual and seman-
tic descriptors such as shot detection, frame extraction, segmentation, and
camera motion are extracted.

— Quality Metadata: describe the quality characteristics (in the form of appli-
cation level QoS) of physical media objects. For our QoS-aware DBMS, the
following parameters are kept as metadata for each video object: resolution,
color depth, frame rate, and file format.

— Distribution Metadata: describe the physical locations (i.e. paths, servers,
proxies, etc.) of the media objects. It records the OIDs of objects and the
mapping between media content and media file.

— QoS profile: describe the resource consumption in the delivery of individual
media objects. The data in QoS profiles is obtained via static QoS map-
ping performed by the QoS sampler. The QoS profiles are the basis for cost
estimation of QoS-aware query execution plans.

We distribute the metadata in various locations enabling ease of use and migra-
tion. Caching is used to accelerate non-local metadata accesses.

3.4 Quality Manager

The Quality Manager is the focal point of the entire system. It is heavily inte-
grated with the Composite QoS APIs in order to enable reservation and negoti-
ation. It has the following main components:

Plan Generator. The Plan Generator is in charge of generating plans that
enable the execution of the query from the Query Producer. The Content Meta-
data is used to identify logical objects that satisfy the content component of
the query (e.g. videos with images of George Bush or Sunsets). A given logical
object may be replicated at multiple sites and further with different formats. For
example, a given video may be stored in different resolutions and color depth at
two different sites. The plan generator determines which of the alternatives can
be used to satisfy the request and also the necessary steps needed to present it
to the user.

The final execution of QoS-aware query plans can be viewed as a series of
server activities that may include retrieval, decoding, transcoding between dif-
ferent formats and/or qualities, and encryption. Therefore, the search space of
alternative QoS-aware plans consists of all possible combinations of media repos-
itories, target objects, and server activities mentioned above. We can model the
search space as a universe of disjoint sets. Each set represents a target media
object or a server activity whose possible choices serve as elements in the set.

Suppose we have n such sets A1, As, ..., A,, then an execution plan is an ordered
set a1, as, ..., a, satisfying the following conditions:
(1) m < n;

(2) Va; (1<i<m),3A;35a (1<i<n);



(3) For any i # j with a; € Ay and a; € A;, we have k # .

The semantics of the above conditions are: (1) The total number of compo-
nents in a plan cannot exceed the number of possible server activities; (2) All
components in a plan come from some disjoint set; and (3) No two components
in a plan come from the same set. The size of the search space is huge even
with the above restrictions. Suppose each set of server activity has d elements,
the number of possible plans is O(n!d"). Fortunately, there are also some other
system-specific rules that further reduce the number of alternative plans. One
salient rule is related to the order of server activities. For example, the first
server activity should always be the retrieval of a media object from a certain
site, all other activities such as transcoding, encryption have to follow the the
media retrieval in a plan. If the order of all server activity sets are fixed, the size
of search space decreases to O(d").
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Fig. 2. Illustrative plan generation in QuaSAQ

Runtime QoS FEwvaluation and Plan Drop. The Plan Generator described
above does not check generated plans for any QoS constraints. We can perform
those verifications by applying a set of static and dynamic rules. First of all,
decisions can be made instantly based on QoS inputs in the query. For example,
we cannot retrieve a video with resolution lower than that required by the user.
Similarly, it makes no sense to transcode from low resolution to high resolution.
Therefore, QoS constraints help further reduce the size of search space by de-
creasing the appropriate set size d. In practice, d can be regarded as a constant.
Some of the plans can be immediately dropped by the Plan Generator if their
costs are intolerably high. This requires QuaSAQ to be aware of some obvious
performance pitfalls. For example, encryption should always follow the frame
dropping since it is a waste of CPU cycles to encrypt the data in frames that
will be dropped. Once a suitable plan has been discovered, the Plan Generator
computes its resource requirements (in the form of a resource vector) and feeds
it to the next component down the processing pipe-line.



Hllustrative examples of plans. The path in solid lines shown in Figure 2 rep-
resents a query plan with the following details: 1. retrieve physical copy number
1 of the requested media from the disk of server B; 2. transfer the media to
server A; 3. transcode to MPEGI1 format with certain target QoS; 4. drop all
the B frames during delivery; 5. encrypt the media data using algorithm 1. The
dotted line corresponds to a simpler plan: retrieve the same object and transcode
with the same target QoS, no frame dropping or encryption is needed. An even
simpler plan would be a single node in set A1, meaning the object is sent without
further processing.

Runtime Cost Evaluator. The Runtime Cost Evaluator is the main compo-
nent that computes (at runtime) estimated costs for generated plans. It sorts
the plans in ascending cost order and passes them to the Plan Executor in the
QoP Browser. The first plan in this order that satisfies the QoS requirements is
used to service the query. In a traditional D-DBMS, the cost of a query is gener-
ally expressed as the sum of time spent on CPU, I/O and data transferring. In
QuaSAQ), the total time for executing any query plans is exactly the same since
the streaming time for a media object is fixed. As a result, processing time is no
longer a valid metric for cost estimation of the QoS-aware query plans.

We propose a cost model that focuses on the resource consumption of alter-
native query execution plans. Multimedia delivery is generally resource intensive,
especially on the network bandwidth. Thus, to improve system throughput is an
important design goal of media systems. Intuitively, the execution plan we may
choose should be one that consumes as few resources as possible and yet meets
all the QoS requirements. Our cost model is designed to capture the ‘amount’
of resources used in each plan. Furthermore, the cost model id also valid for
other global optimization goals such as minimal waste of resources, maximized
user satisfaction, and fairness. Our ultimate goal is to build a configurable query
optimizer whose optimization goal can be configured according to user (DBA)
inputs. We then evaluate plans by their cost efficiency that can be denoted as:

__G
- Ofr)

where C' is the cost function, r the resource vector of the plan being evaluated,
and G the gain of servicing the query following the plan of interest. An optimal
plan is the one with the highest cost efficiency. The generation of the G value
of a plan depends on the optimization goal used. For instance, a utility function
can be used when our goal is to maximize the satisfiability of user perception of
media streams [8]. A detailed discussion of the configurable cost model mentioned
above is beyond the scope of this paper. Instead, we present a simple cost model
that aims to maximize system throughput.

Lowest Resource Bucket (LRB) model. Suppose there are n types of re-
sources to be considered in QuaSAQ, we denote the total amount of resource i
as R;. In our algorithm, we build a virtual resource bucket for each individual



resource. All R; values are standardized into the height of the buckets. There-
fore, the height of all buckets is 1 (or 100%). The buckets are filled when the
relevant resources are being used and drained when the resources are released.
Therefore, the height of the filled part of any bucket ¢ is the percentage of re-
source ¢ that is being used. For example, the filled part of bucket R2 in Figure
3d has height 42, which means 42% of Rj is currently in use. The cost evaluation
is done as follows: for any plan p, we first transform the items in p’s resource
vector into standardized heights related to the corresponding bucket (denoted
as r1,ra,...,7y,); we then fill the buckets accordingly using the transformed re-
source vector and record the largest height among all the buckets. The query
that leads to the smallest such maximum bucket height wins. In Figure 3, the
cost of three plans (a, b, ¢) are marked by dotted lines. Putting them all to-
gether, we found the filled height of plan 2 is the lowest and plans 2 is chosen
for execution. Formally, the cost function of the LRB model can be expressed as

f(rl,rg,...,rn):m%x{Ui;_ri} (1)

i=1 f

where Uj; is the current usage of resource i. The input is the resource vector of
the plan being evaluated.

aPanl b. Plan 2

R1 R2 R3 R4

c.Plan3 d. putting together

100

50 L
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Fig. 3. Cost evaluation by the Lowest Resource Bucket model

The reasoning of the above algorithm is easy to understand: the goal is to
make the filling rate of all the buckets distribute evenly. Since no queries can
be served if we have an overflowing bucket, we should prevent any single bucket
from growing faster than the others. This algorithm is not guaranteed to be
optimal, it works fairly well, as shown by our experiments (Section 5.2).



3.5 QoS APIs

The Composite QoS API hides implementation and access details of underly-
ing APIs (i.e. system and network) and offers control to upper layers (e.g. Plan
Generator) at the same time. The major functionality provided by the Com-
posite QoS API is QoS-related resource management, which is generally accom-
plished in the following aspects: 1. Admission control, which determines whether
a query/plan can be accepted under current system status; 2. Resource reserva-
tion, an important strategy toward QoS control by guaranteeing resources needed
during the lifetime of media delivery jobs; 3.Renegotiation that are mainly per-
formed under two scenarios mentioned in Section 3.2.

Transport API It is basically composed of the underlying packetization and
synchronization mechanisms of continuous media, similar to those found in gen-
eral media servers. The Transport API has to honor the full reservation of re-
sources. This is done through interactions with the Composite QoS API. The
interface to some of the other server activities such as encryption, transcoding,
and filtering are also integrated into the Transport API.

4 QuaSAQ Implementation

We implement a prototype of QuaSAQ on top of the Video Database Man-
agement System (VDBMS) developed at Purdue University [4]. The QuaSAQ
development is done using C++ under the Solaris 2.6 environment. Figure 4
shows the architecture of VDBMS enhanced with the QuaSAQ prototype.
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Fig. 4. System architecture for QoS-aware multimedia DBMS prototype



QuaSAQ and VDBMS. Developed from the object-relational database en-
gine PREDATOR[9] with Shore[10] as the underlying storage manager (SM),
VDBMS is a multimedia DBMS that supports full-featured video operations (e.g.
content-based searching, streaming) and complex queries. Most of the VDBMS
development was done by adding features to PREDATOR. We extended the cur-
rent release of VDBMS, which runs only on a single node, to a distributed version
by realizing communication and data transferring functionalities among differ-
ent sites. As shown in Figure 4, QuaSAQ augments VDBMS and sits between
Shore and PREDATOR in the query processing path. In our QuaSAQ-enhanced
database, queries on videos are processed in two steps: 1. searching and identifi-
cation of video objects done by the original VDBMS; 2. QoS-constrained delivery
of the video by QuaSAQ [3]. In VDBMS, the query processor returns an object
ID (OID), by which Shore retrieves the video from disk. With QuaSAQ, these
OIDs refer to the video content (represented by logical OID) rather than the
entity in storage (physical OID) since multiple copies of the same video exist.
In QuaSAQ, the mapping between logical OIDs and physical OIDs are stored
as part of the metadata (Section 3.3). Upon receiving the logical OID of the
video of interest from PREDATOR, the Quality Manager of QuaSAQ annotates
a series of plans for QoS-guaranteed delivery and chooses one to execute. It
communicates with either QuaSAQ modules in remote sites or local Shore com-
ponent (depending on the plan it chooses) to initiate the video transmission.
Note the sender of the video data is not necessarily the site at which the query
was received and processed.

QuaSAQ Components. Most of the QuaSAQ components are developed by
modifying and augmenting relevant modules in VDBMS (e.g. client program,
SQL parser, query optimizer). Replicas for all videos in the database are gener-
ated using a commercial video transcoding/encoding software VideoMach?. The
choice of quality parameters is determined in a way that the bitrate of the re-
sulting video replicas fit the bandwidth of typical network connections such as
T1, DSL, and modems [7]. To obtain an online video transcoder, we modified the
source code of the popular Linux video processing tool named transcode® and
integrated it into the Transport API of our QuaSAQ prototype. The major part
of the Transport API is developed on the basis of a open-source media stream-
ing program?. It decodes the layering information of MPEG stream files and
leverages the synchronization functionality of the Real Time Protocol (RTP).
We also implement various frame dropping strategies for MPEGI videos as part
of the Transport API. We build the Composite QoS APIs using a QoS-aware
middleware named GARA [11] as substrate. GARA contains separate managers
for individual resources (e.g. CPU, network bandwidth and storage bandwidth).
The CPU manager in GARA is based on the application-level CPU scheduler
DSRT [12] developed in the context of the QualMan project [13]. QoS-aware
network protocols are generally the solution to network resource management,

2 Release 2.6.3, http://www.gromada.com
3 Release 0.6.4, http://www.theorie.physik.uni-goettingen.de/~ostreich/transcode/
* http://www.live.com



which requires participation of both end-systems and routers. In GARA, the
DiffSrv mechanism provided by the Internet Protocol (IP) is used.

5 Experimental Results

We evaluated the performance of QuaSAQ in comparison with the original
VDBMS system. The experiments are focused on the QoS in video delivery
as well as system throughput. An important metric in measuring QoS of net-
worked video streaming tasks is the inter-frame delay, which is defined as the
interval between the processing time of two consecutive frames in a video stream
[12, 14]. Ideally, the inter-frame delay should be the reciprocal of the frame rate
of the video. For the system throughput, we simply use the number of concurrent
streaming sessions and the reject rate of queries.

Ezxperimental setup. The experiments are performed on a small distributed
system containing three servers and a number of client machines. The servers
are all Intel machines (one Pentium 4 2.4GHz CPU and 1GB memory) run-
ning Solaris 2.6. The servers are located at three different 100Mbps Ethernets
in the domain of purdue.edu. Each server has a total streaming bandwidth of
3200KBps. The clients are deployed on machines that are generally 2-3 hops
away from the servers. Due to lack of router support of the DiffSrv mechanism,
only admission control is performed in network management. A reasonable as-
sumption here is that the bottlenecking link is always the outband link of the
severs and those links are dedicated for our experiments. Instead of user in-
puts from a GUI-based client program [4], the queries for the experiments are
from a traffic generator. Our experimental video database contains 15 videos in
MPEG-1 format with playback time ranging from 30 seconds to 18 minutes. For
each video, three to four copies with different quality are generated and fully
replicated on three servers so that each server has all copies.

5.1 Improvement of QoS by QuaSAQ

Figure 5 shows the inter-frame delay of a representative streaming session for
a video with frame rate of 23.97 fps. The data is collected on the server side,
e.g. the processing time is when the video frame is first handled. Only end-point
system resources should be considered in analyzing server-side results. The left
two graphs of Figure 5 represent the result of the original VDBMS while the
right two graphs show those with QuaSAQ. We compare the performance of
both systems by their response to various contention levels. On the first row,
streaming is done without competition from other programs (low contention)
while the number of concurrent video streams are high (high contention) for
experiments on the second row.

Under low contention, both systems (Fig 5a and 5b) demonstrated timely
processing of almost all the frames, as shown by their relatively low variance of
inter-frame delay (Table 2). Note that some variance are inevitable in dealing
with Variable Bitrate (VBR) media streams such as MPEG video because the
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frames are of different sizes and coding schemes (e.g. I, B, P frames in a Group
of Pictures (GOP) in MPEG). Such intrinsic variance can be smoothed out if
we collect data on the GOP level (Table 2).

Table 2. Statistics of Inter-frame and Inter-GOP delays shown in Figure 5. Unit for
all data is millisecond, S.D. = Standard Deviation.

Inter-frame | Inter-GOP

Ezperiment Mean| S. D. Mean| S. D.
VDBMS, Low Contention |42.07| 34.12 |622.82| 64.51
VDBMS, High Contention [48.84|164.99|722.83|246.85
QuaSAQ, Low Contention [42.16| 30.89 [624.84| 10.13
QuaSAQ, High Contention|42.25| 30.29 {626.18| 8.68

VDBMS is unable to maintain QoS under high contention. Its variance of
inter-frame delays (Fig 5¢) are huge as compared to those of QuaSAQ (Fig
5d). Note the scale of the vertical axis in Figure 5c¢ is one magnitude higher
than those of three other diagrams. The reason for such high variance is poor
guarantee of CPU cycles for the streaming jobs. The job waits for its turn of
CPU utilization at most of the time. Upon getting control over CPU, it will
try to process all the frames that are overdue within the quantum assigned by
the OS (10ms in Solaris). Besides high variance, the average inter-frame delay
is also large for VDBMS under high contention (Table 2). Note the theoretical
inter-frame delay for the sample video is 1/23.97 = 41.72ms. On the contrary,
QuaSAQ achieves similar performance when system contention level changes.
With the help of QoS APIs, the CPU needs in QuaSAQ are highly guaranteed,
resulting in timely processing of video frames on the end-point machines. Data
collected on the client side show similar results [7].

5.2 System throughput

We compare the throughput of QuaSAQ and the original VDBMS (Fig 6). The
same set of queries are fed into the tested systems. Queries are generated such



that the access rate to each individual video is the same and each QoS parameter
(QuaSAQ only) is uniformly distributed in its valid range. The inter-arrival time
for queries is exponentially distributed with an average of 1 second. The original
VDBMS obviously keeps the largest number of concurrent streaming sessions
(Fig 6a). However, the seemingly high throughput of VDBMS is just a result of
lack of QoS control: all video jobs were admitted and it took much longer time
to finish each job (Table 2). To avoid an unfair comparison between VDBMS
and QuaSAQ, a VDBMS enhanced with QoS APIs is introduced. The streaming
sessions in this system are of the same (high) quality as those in QuaSAQ (data
not shown). According to Figure 6a, throughput for all three systems stabilize
after a short initial stage. QuaSAQ beats the “VDBMS + QoS API” system
by about 75% on the stable stage in system throughput. This clearly shows the
advantages of QoS-specific replication and Quality Manager that are unique in
QuaSAQ. The superiority of QuaSAQ is also demonstrated in Figure 6b where
we interpret throughput as the number of succeeded sessions per unit time.
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Fig. 6. Throughput of different video database systems

We also evaluate our resource-based cost model (Fig 7). We compare the
throughput of two QuaSAQ systems using different cost models: one with LRB
and one with a simple randomized algorithm. The latter randomly selects one
execution plan from the search space. The randomized approach is a frequently-
used query optimization strategy with fair performance. Without performance
being significantly better than that of the randomized approach, a newly-proposed
cost model can hardly be regarded successful. The queries are generated in the
same way as those in the previous experiment (Fig 6). It is easy to see that
the resource-based cost model achieves much better throughput (Fig 7a). The
number of sessions supported is 27% to 89% higher than that of the system with
the randomized method. The high system throughput caused by the proposed
cost model is also consistent with its low reject rate shown in Figure 7b.

Overhead of QuaSAQ. QuaSAQ is a light-weight extension to VDBMS. The
throughput data in Section 5.2 already show that the overhead for running
QuaSAQ does not affect performance. The major cost of QuaSAQ comes from
the CPU cycles used for maintenance of the underlying QoS resource manage-
ment modules. The DSRT scheduler reports an overhead of 0.4 —0.8ms for every
10ms [12]. This number is only 0.16ms in the machines we used for experiments
(1.6% overhead). The CPU use for processing each query (a few milliseconds) in
QuaSAQ is negligible.
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6 Related Work

Numerous research projects have been dedicated to the theory and realization
of QoS control on the lower (system, network) levels [13, 11, 14]. The software
releases of QualMan [13] and GARA [11] projects are the foundations upon
which we build our low level QoS APIs. On the contrary, research on user-level
QoS has attracted less attention and left us many open issues.

The following pieces of work are directly related to our QoS-aware multime-
dia DBMS. In [15], a QoS management framework for distributed multimedia
applications is proposed with the focus of dynamic negotiation and translation of
user-level QoS by QoS profiling. The same group also presents a generic frame-
work for processing queries with QoS constraints in the context of conventional
DBMS [16]. They argue for the need to evaluate queries based on a QoS-based
cost model that takes system performance into account. However, the paper lacks
technical details on how to develop and evaluate these cost models. A conceptual
model for QoS management in multimedia database systems is introduced in [8].
In this paper, QoS is viewed as the distance between an actual presentation and
the ideal presentation (with perfect quality) of the same media content. The
metric space where the distances are defined consists of n dimensions, each of
which represents a QoS parameter. Utility functions are used to map QoS into a
satisfaction value, either on a single dimension or all QoS as a whole. The paper
also proposes a language for QoS specification. Although the architecture of a
prototype utilizing their QoS model is illustrated, further details on implemen-
tation and evaluation of the system are not discussed. Our work on QoS differs
from [8] in two aspects: we focus on the change of query processing mechanisms
in multimedia DBMS while they are more inclined to QoS semantics on a gen-
eral multimedia system; we invest much effort in experimental issues while they
introduce only a theoretical framework. The design and realization of QuaSAQ
is motivated by a previous work [3]. The main contribution of [3] is to specify
QoS in video database queries by a query language based on constraint logic
programming. They propose the content and view specifications of queries. The
former addresses correctness while the latter captures the quality of the query
results. Similar to [8], the paper concentrates on building a logical framework
rather than the design and implementation of a real system.

Other related efforts include: The idea of Dynamic Query Optimization [17]
is analogous to QoS renegotiation in QuaSAQ; [18] studies cost estimation of



queries under dynamic system contentions; and [19] discusses QoS control for
general queries in real-time databases.

7 Conclusions and Future Work

We have presented an overview of our approach to enabling end-to-end QoS for
distributed multimedia databases. We discussed various issues pertaining to de-
sign and implementation of a QoS-aware query processor (QuaSAQ) with the fo-
cus of novel query evaluation and optimization strategies. As a part of the query
processing scheme of QuaSAQ, we presented a novel cost model that evaluates
query plans by their resource consumption. QuaSAQ was implemented and eval-
uated on the context of the VDBMS project. Experimental data demonstrated
the advantages of QuaSAQ in two aspects: highly improved QoS guarantee and
system throughput.

We are currently in the process of implementing a more complete version
of QuaSAQ as part of our ongoing projects. This includes efforts to add more
resource managers in the Composite QoS API, security mechanisms, and more
refined plan generator and cost models. The QuaSAQ idea also needs to be
validated on distributed systems with scales larger than the one we deployed the
prototype on. On the theoretical part, we believe the refinement and analysis of
the resource-based cost model is a topic worthy of further research.
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