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Abstract

Increasingly more business models build on mechanisms
for online interaction. Web Services and more recently,
web service business workflows and service orchestrations
provide essential tools for staging successful networked
business to business (B2B) or business to customer (B2C)
transactions.

One of the most important online interaction quality
metric is perceived response time. The ability to sustain a
high throughput and provide fast service effectively means
more business and associated revenue. Down-times and
slow transactions can become a strong deterrent for potential
customers. To achieve maximum performance with a finite
set of resources, these need to be (re)allocated preferably
for each new instance of a workflow execution. It is often
hard for human system operators to perform such allocations
appropriately to achieve maximum utilization and response
times. An ability to automatically monitor and optimize
response performance becomes more important than ever.

In this paper we propose a solution for optimizing (web
service) business workflow response times through dynamic
resource allocation. On-the-fly monitoring is combined
with a novel workflow modeling algorithm that discovers
critical execution paths and builds “dynamic™ stochastic
models in the associated “critical graph”. One novel
contribution of this work is the ability to naturally handle
parallel workflow execution paths. This is essential in
applications where workflows include multiple concurrent
service calls/paths that need to be “joined™ at a later point
in time. We discuss the automatic deployment of on-the-fly
monitoring mechanisms within the resource management
framework. We implement, deploy and experiment with a
proof of concept within a generalized web services business
process (BPEL4WS/SOAP) framework. In the experimental
setup we explore and show the natural adaptation to
changing workflow conditions and appropriate automatic
re-allocation of resources to reduce execution times.
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1 Introduction

In this paper we build on work by Gillmann et. al.
in [4] which proposes an adaptive workflow management
solution integrating service quality awareness with stochastic
modeling of workflows, an approach well suited in the case
of single-threaded workflows with non-concurrent paths.

There exist scenarios however, where such static stochas-
tic models cannot be applied. These include workflows with
parallel threads of (potentially) mutually interacting services.
A classical example is the case of a manufacturing company
workflow, issuing a request to a supplier A for various parts
and, occasionally also to a supplier B (simultaneously). A
static stochastic model of the workflow could not possibly
accommodate this conditional scenario. Moreover if the
two parallel workflow paths A and B interact (e.g. by
messaging), things complicate further.

In this paper we propose to build upon the stochastic
modeling approach introduced in [4] and provide a solution
able to handle such dynamic and parallel workflows. Our
solution is based on the on-the-fly discovery of workflow
critical paths [2] and their analysis within an adaptive
resource reallocation framework.

We also propose, implemented and experimented with
a proof of concept within a web services based business
workflows (i.e. BPEL [1]) framework. The proposed
design is composed of three layers. The first layer enables
the ability to transparently monitor execution times for
the component workflow states (web service calls) and
collect associated execution times. The second layer
reasons about these collected statistics dynamically, with the
aim to optimize global responsiveness (workflow execution
times). This layer then originates resource (re)allocation
recommendations to the third layer, namely the resource
allocation framework.

The main contributions of our work include: (i) a solution
for on-the-fly optimization of average workflow response
time, adaptive to a dynamic environment (e.g., workload pat-
terns, available server resources, network congestion), (ii) a
proof-of-concept implementation of monitoring architecture
components, enabling run-time profiling and data collection
on open-standard Web Service platforms, (iii) a “dynamic”
stochastic workflow modeling approach for workflows with
concurrent paths, and (iv) the experimental analysis thereof
in a web services workflow framework.

The paper is structured as follows. Section 2 introduces
the web service execution monitoring framework. Section



3 defines the modeling framework and establishes an
execution-aware weighting scheme for workflow tasks.
Section 4 discusses the resource allocation algorithm. In
Section 5 we explore limits and improvements to our
solution. Section 6 presents experimental results and Section
7 concludes.

2 Web Service Wrapping

Statistics and local information about individual web
service performance are essential in building any solution for
evaluating and optimizing of overall orchestration/workflow
behavior. The process of collecting these statistics has to
be non-intrusive and transparent from both a programming
and deployment point of view. More specifically, we are
concerned here with the ability to assess local and remote
web service response times within an existing, deployed
BPEL [1] workflow which invokes a set of external services.
One of the main difficulties in designing an automated
solution for this derives from the requirement to be able
to associate each response time sample with both the
corresponding web service and a specific workflow instance.
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Flg ure 1. (a) A remote web service is accessed in a traditional BPEL
invocation. (b) Transparent monitoring entails automatically modifying the
BPEL flow description with calls to invocation wrappers instead of direct web
service invocations.

For the purpose of optimizing overall workflow behavior,
we need the ability to monitor composing individual web
service behavior directly for each execution instance, with a
minimal overhead. In our solution, we propose to enable this
through a novel call-tracing mechanism, namely invocation
wrappers. An invocation wrapper is a software component
(e.g. Java class) associated with a specific web service
that acts as a proxy for it (within a workflow execution
engine, e.g. invoked from the associated BPEL file) while
also collecting execution time statistics into a common
repository. In Figure 1 (a) a traditional BPEL web service
invocation/call is depicted. Figure 1 (b) illustrates the
same call, wrapped within an associated invocation wrapper
(ws_wrapper). Thus invocation wrappers are a solution for
dynamic and transparent response time profiling.

Naturally, most workflows invoke multiple web services
throughout their lifetime. When multiple web services are
coming into play, an optimization of the global workflow
execution/response time can be achieved by an adaptive
resource allocation scheme, considering each invoked
component, see Figure 2 (a).
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Fi gure 2. (a) When multiple web services compete, the resource
allocation is greatly improved if on-the-fly workflow performance awareness is
built in. (b) The invocation wrapper is automatically produced by the wrapper
compiler from the java invocation stubs generated by a WSDL to java converter
and a unique identifier for the current workflow.

For (mainly) economic reasons, invocation wrappers
need to be non-intrusive from both a programmer’s and
runtime deployment point of view. Legacy applications
are to be handled and assuming a runtime profiling
aware programming model is not always natural. Thus,
the monitoring framework has to provide for automatic
transparent invocation wrapping for targeted web services
within a BPEL process.

Achieving this goal entails two dimensions. First, the
workflow specification file (BPEL, omitted due to space
constraints) needs to be augmented with invocation wrapper
calls instead of direct web service invocations. A traditional
call to a web service method getValue(Stringname) is
wrapped by invoking the wrapper instead. An additional
(“wf_id”) parameter is added to its signature, initialized with
a per-workflow unique identifier. This parameter is used to
associate the collected web service execution statistics with
their corresponding workflow. Additionally, the wrapper
partner will have an associated WSDL [8] file derived from
the original web service description file augmented with the
new method signature(s), passing workflow identification
information to the wrapper.

The second stage in automatically wrapping a web
service invocation provides for each wrapped web service
an invocation wrapper. The invocation wrapper is to be
automatically generated (see Figure 2 (b)) by a specialized
wrapper compiler (an extension of WSDL2Java) that takes
as input a unique current workflow identifier and a
web service invocation stub and generates the invocation
wrapper. The wrapper is a modified version of the web
service invocation stub, augmented with code that collects
time-stamp information about the current execution and
stores it in a specialized system-wide statistics collector
bean. Space constraints prevent further elaboration.

3  Workflow Modeling

Once the monitoring framework is in place, our solution
deploys a novel inference mechanism able to model
and predict workflow behavior and associated optimizing



resource (re)allocations for the composing tasks. Here we
outline this model.

3.1 Stochastic Workflow Modeling

In [3] and [4] Gillman et al. motivate and discuss the issue
of service quality guarantees in the framework of workflow
management for e-services. A solution based on static
stochastic modeling of workflow behavior is provided.

The core algorithm starts by defining the concept of
a “flow process”, a ‘“stochastic process with a finite
set of states”. Certain conditions and assumptions are
then associated with the transitions between these states,
including: (i) “the time until the flow process performs the
next transition is randomly distributed”, (ii) there is a given
(static) probability of the flow process entering a certain
state, and (iii) this probability is independent of the time the
process spent in the current state and also (iv) “independent
of the process’s earlier history”.

A stochastic model is built for a given workflow using the
assumptions above. It is then coupled with a “performance
model” in which each service call (server) is modeled by
“considering only its mean service time per request and the
second moment of this metric”. By estimating these values
(through “collecting and evaluating online statistics™) and
feeding them into the stochastic model, resource allocation
requirements are inferred for optimizing execution times.

3.1.1 Limitations of Plain Stochastic Modeling

The static stochastic approach is certainly suited for a
number of workflow scenarios under given assumptions.
One of the most restrictive assumption is the requirement
that the Markov model transition probabilities are history
independent (point (iii) above, “independent of the time
period that the flow process spent in ... [a previous state]”).

There are scenarios however, where such static stochastic
models cannot be applied. These include workflows with
parallel threads of (potentially) mutually interacting services.
A classical example could be the case of a manufacturing
company workflow, issuing a request to a supplier A
for various parts and, occasionally also to a supplier B
(simultaneously). A static stochastic model of the workflow
could not possibly accommodate this conditional scenario.
Moreover, input data-dependency in workflow transitions is
often occurring and this dependency is mostly related to the
past history of the flow, thus directly conflicting with point
(iv) in Section 3.1 above.

Yet another important aspect that cannot be handled by a
purely stochastic approach is the scenario of parallelism, e.g.
inter-thread or inter-process asynchronous communication
within the same workflow. (in the previous example, if
the two parallel workflow paths A and B interact, e.g. by
messaging) For this aspect, an apparent solution would be
to augment the semantics of transitions with synchronization
primitives, however this is highly likely leading to an
un-intuitive, complex model. In the following we show
how “dynamic” stochastic modeling over the space of graphs

defined by workflow-instance critical paths can be used to
naturally handle these issues.

3.2 Instance Critical Paths

Starting from the need to address the limitations outlined
above, we propose an alternative to simple stochastic
modeling, more suited to handling these and other specific
workflow-modeling challenges. Our solution relies on the
concept of workflow critical paths. Critical paths aim
to capture the most time-consuming activities within a
workflow. In other words, the question that is answered is:
which of the composing workflow tasks have the most impact
on the overall workflow execution time ? Traditionally
[7]1 [5]1, a workflow critical path is defined as the longest
execution path from the initial task to the final task of the
workflow. Here we use a by-construction runtime definition,
designed specifically to leverage data available from the
monitoring framework. Our definition computes critical
paths for workflow instances on the fly by processing runtime
execution statistics. In the following we are using the term
critical path or instance critical path to denote a path within
a workflow instance (not schema).

Let there be a workflow composed of a set of states/tasks
S = {5, 51,52,...,5,} and transitions T C S x S (i.e.
(Si,S;) € Tiff. there exists a workflow transition from task
S; to task S;). Let O(S;) = {X|V(S;, X) € T}, the set
of all potential “target” (child) transitions of S; and I(S;) =
{XV(X, S;) € T} the set of all “incoming” transitions of .S;
(see Figure 3 (a)).

Let there be a set of predicates P defining the semantics
of workflow execution, in particular its transition schedule.
Each task S; with a single incoming transition (|I(S;)| = 1)
is considered to immediately start executing. For each task ,
the execution behavior is defined by a conditional “incoming
transition evaluation” expression, SY NC'g, I(S;) —
{true, false} that govern the transition execution. S; only
starts executing if SY NCg, () becomes true. SY NCyg, can
evaluate an arbitrary boolean formula on the state of the
incoming transitions. We assume that SY NCl, is expressed
in a normal conjunctive form.

Considering a certain workflow instance, for each task S,
let 7; be the time when S; starts executing and 7; + J; the
time when .S; finishes (i.e. is removed from A(), the set of
active tasks, see definition below).

If for example SY NC(AC, BC') = (AC and BC), then
task C is not executing until both transitions AC and BC are
done by the workflow, i.e. when both tasks, A and B finish
executing. To be noted that in this particular case, C' starts
executing at time 7¢ = max (74 + 04,75 + 05).

For each task S;, the outgoing transitional behavior
is modeled by a specific function, TRANS(S;) which
determines which of the transitions in O(S;) are to be
pursued upon completion. These semantics of business
workflows allow for multiple parallel “threads”. If for
example TRANS(C) = {D, E} then, after completing C,
the workflow is “split” into two parallel execution threads
starting in D and E. Because of this, at each point in time,



several tasks in (.S) can be “active”. Let A(t) C S (or shorter
A(), for current time) be the set of active tasks of the given
workflow at time ¢.

Let Sy and S,, (by convention) be the initial, respectively
final task of the workflow. In the following we are only
concerned with workflow instances that are terminating.
In other words, the flow execution starts in state/task Sy
(A(0) = {So}) at time 7y and ends when task S,, is reached
(S, € A()) at a time 7,. One main goal for workflow
optimization is minimizing the execution time, (7, — 79).

A business workflow is thus completely described by
S, T and TRANSs,()VS; € S. For the purpose
of evaluating and, more importantly, optimizing runtime
behavior, this defining description needs to be augmented
with the ability to model workflow performance by handling
more “‘measurable” quantities. For a workflow instance,
the monitoring framework provides execution and transition
statistics.  For each task S; € S, let T'S(S;) be the
set of all pairs of corresponding (7;, ;) times. Let
TS = Uie(o,n)(TS(Si))- Also, let TR(Si,t) C O(SZ)
be the set of transitions “fired” after task .S; completes at
time ¢. These statistics are collected by the monitoring
framework. TR() effectively models TRANS(S;). Let
TR = Uig(0,n)(TR(5:)).

3.2.1 Sequential Workflow

If, for any two task executions 7,j with (7;,0;), (75,9;) €
TS we have (1, + 6;) < 7 or (5 +9;) < 7, (e.
(13, 7i +0;) N (75, 7j + &;) = @) then the workflow effectively
behaves sequentially !. In this case we define the workflow
critical path c as an ordered (by start times 7;) sequence of
(Si, ;) pairs such that: for any two pairs (S;, 7;), (S;,7;) €
c there exists a transition (S;,S;) € TR(S;,7;) and
(SQ, 7’0)7 (Sn, Tn) € c.

3.2.2 Parallel Workflow

For each execution instance of a parallel workflow (i.e.
where there exist 4, j € (0, n) such that (7;, 7;,+8;)N (75, 7+
;) # ¢) we define the critical path cp as an ordered sequence
of (S;, 7;) pairs, by construction as described in Figure 3 (b).
conj_trans(SY NCj,) is defined as follows. If SYNCy =
(XAVYA) N (ZA Vv WA) A ... (normal conjunctive
form on truth-values of incoming transitions), then for each
pair of expressions (XA V Y A), conj_trans(SYNCy)
contains the one expression corresponding to the “faster”
firing transition (the expression becomes true faster). For
example if (7x + dy) < (7v + dy), then X A fires first
(if XA € TR(X,(rx + dy))) and X A is included in
conj trans(SYNCj4).

Thus, by construction, a critical path (see Figures 4 (a),
4 (b)) aims to capture the true workflow service bottlenecks
from a parallel execution perspective. At each step we select
the transition corresponding to the task that is the “latest” to
finish among the transitions required for the continuation of

1ts (potentially) parallel behavior is “masked” by the non-“overlapping”
nature (in terms of execution) of all participating tasks.

Cp — [(5717 Tn)]
A— S,
while (A # Sp) do
forall S; € I(A) where
(Si, A) € conjtrans(SYNC4) do
find S; where (7 + 6;) = maxz(7; + ;)
cp — cp U (S5, 75)
A S;
return cp

Flg ure 3. (a) Incoming and outgoing task transitions (for task C) (b)
Critical path construction algorithm

the execution. As will be seen in Section 5.2 inter-thread
asynchronous messaging can also be naturally expressed by
critical path semantics.

Figure 4. (a) Potential critical paths for a workflow behaving
sequentially. (b) Potential critical paths for a parallel workflow.

3.3 Critical Graph

Minimizing a given workflow instance response time is
naturally equivalent to minimizing the execution time of its
corresponding critical path. Optimizing workflow execution
over multiple instances however, is a more challenging
task, especially considering history and input data-dependent
transitions. In the following we devise a method that
aims to accurately and adaptively model average future
workflow response time behavior using previously seen
multiple execution instances. This model is then to be used
in recommending tasks for resource re-allocations with the
final goal to optimize global response time.

Let there be a set of m observed past workflow execution
instances and their corresponding critical paths C' =
{c1,...,cm}. For each critical path ¢; € C, let t; be the
starting time of its initial task (Sp).

Because all the critical paths are ultimately composed of
subsets of the original workflow graph (and contain by nature
at least the initial (Sy) and final (.5, ) tasks), intuitively we
“group” them into a critical graph g(¢) 2 by colluding all
common tasks of each critical path into a graph “node” as
shown in Figure 5 (b). Each such node S; corresponds to an
observed critical path task. Because of the collusion effect,
each S; is naturally augmented with a set of timestamps
(T'S(S;)) corresponding to the T-value on each critical path
where the associated task appeared.

Some nodes in the critical graph are going to be more
“hot/active” than others. For example in Figures 5 (a)

2Because of its dynamic nature, the critical graph will “look different” at
different points in time, hence the g(t) notation. For simplicity reasons in
the following we are using g instead to mean the graph at the current time.



and (b) task B is occurring more frequent compared to
D for example. Thus, intuitively, in order to optimize
overall performance it could be helpful to rank the tasks
accordingly and then use this ranking to recommend
appropriate allocation of resources.
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Fi gure 5. (a) Four sample observed critical paths in different execution
instances of the given workflow. (b) Composing multiple observed critical
paths into a critical graph.

The first idea that comes to mind is the use of a stochastic
Markov model to augment the critical graph and build a
probabilistic weight of each occurring graph state (task)
according to its occurrence frequency. Thus, for each task
S; € g, we count its number of observed executions
|T'S(S;)|, normalize over all tasks in g and use this as a
frequency weight:

[TS(S)|

w8 = S~ ITS(S))

ey

There are several drawbacks to this formula. Because of its
static nature, it does not adapt to workflow behavior changes
easily. Hot current tasks are being potentially out-weighted
by hot tasks in the far past. To fix this we propose an idea
similar to the memory-aware Markov model described in [6],
namely the use of time-locality in the weight computation.
For each task \S;, we can determine its occurrence time from
the collected statistics available in T'S(S;). Let times(S;) =
{7|V6, (1,6) € TS(S;)}. Thus, if ¢ is the current time, (1)
becomes 3 (see also [6]):

w(S;) N ()

1
T e, TS 2

TEtimes(S;)

Equation (2) does a far better job in adapting to workflow
changes by its inherent time-locality awareness. Neverthe-
less, because of the data-dependent nature of workflow tasks,
there arises another problem, namely the ability to handle
different execution times for different observed instances of
a given task. That is, task .S; can have a varying impact on
the resulting workflow performance if each of its execution
instances behave differently. For example, instances of a task
that were quite frequent but fast executing in the far past
might be less important overall than more recent instances
of the same task that are not as frequent but much slower
executing. We propose to somehow consider also observed
execution times in the computation of the task’s weight. Thus

3For illustrative purposes, this is not normalized to 1.0 but can be easily
brought to a normalized form if required.

(2) becomes:

w(S;) X se~ =) (3)

1

S 5G] 2
! 7,0)€TS(S;)
Equation (3) associates a weight to a task, by considering
both its time locality as well as its execution duration.
A recent task is weighted more than an older one. A
hot task is also weighted more than one less frequently
occurring. A slow executing task is also assigned a higher
weight than a fast executing one. The global parameters
a € (0,1] is defining the importance of the start-time
and execution duration respectively in one task’s weight.
There is a trade-off to be observed between a prevalent
time-locality aware behavior and a more execution time

dependent weighting. See also Section 6.
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Flg ure 6. Pruning the critical graph for efficiency is not trivial. Care
should be taken to not introduce additional incorrect critical paths in the result
(g, O—-E—-D—-I—-H—-J—-F—-K).

It is worth noting that, apparently, for efficient parsing
and storage reasons, the critical graph seems to allow an
additional pruning/canonical reduction step meant to reduce
its size while maintaining its entire transition structure. For
example, in the graph in Figure 6, apparently the transition
from I to H, occurring multiple times, can be “collapsed”
into one single instance. If such optimization techniques
are to be deployed however, care should be taken to not
introduce additional incorrect critical paths in the resulting
“optimized graph”. In this particular case, the proposed
optimization is not sound, in that it introduces a critical path
(O—FE—-D—-1—-H—J-—F — K) that was never observed
in the initial construction process.

4 Resource Allocation

The weights defined by equation (3) define an ordering
on a set of tasks, with the recent, hot, slow executing
tasks being weighted higher. This ordering features a
certain degree of adaptability, also tunable from the o
parameter. As tasks become slower and/or less frequent
the weights naturally adjust. Intuitively, these weights
provide an “importance” metric for executing tasks, that
could be used in the resource (re)allocation process to speed
up the global workflow execution. Thus, the next step
in the optimization process sorts the tasks appearing in



the critical graph according to their weight and proposes
a weight-proportional (re)allocation of additional resources
to the higher-weighted ones. This aims to reduce the task
execution time and thus the global workflow execution time
(as the weight models the importance of this task in the
global workflow).

4.1 Resource Model

Let us model the resource allocation process in more
detail. Let there be the notion of a resource (e.g. CPU
time) that can be quantified and allocated to each workflow
composing task. Let r; be the allocated amount for
considered task S;. Intuitively, in many scenarios there
(arguably) exists a direct dependency between r; and the
task execution time ;. The more resources a task receives,
the less time it should take executing. For illustrative
purposes let this dependency be (see Figure 7 (b)) increasing
and such that there exists a certain point, min(d;), below
which the execution time of .S; does not improve, even if
more resources (i.e. than max(r;)) are allocated. Also,
let min(r;) be the minimal amount of resources that .S;
can function with. Thus, for any task S; we have r; €
(min(r;), maz(r;)).

Given this model, let us construct a resource allocation
algorithm that would optimally handle a fixed amount of total
resources r to a given set of tasks. For simplicity purposes,
let us make yet another assumption. Once a workflow
starts executing, each task has continuously allocated an
amount of resources of at least min(r;) (we do not model
out-swapping). Thus r > Y~ min(r;).

If » > ), max(r;) each task could be allocated a
maximum required amount of resources, thus functioning
at its best potential. In this over-provisioning scenario,
resource allocation can not improve workflow execution
time. Thus, we are mainly concerned with the case when
r € (>, min(r;), Y, max(r;)). This is the case where
all tasks are functioning (with minimal resources min(r;)),
but resource allocation can improve execution times for the
highest weighted tasks.

4.2 Algorithm

We propose a resource allocation algorithm (see Figure 7
(a)) as a continuously running separate thread with control
ability over resources and the execution environment of the
composing workflow tasks (i.e. webservices).

W <« null d
whiIAe(true) do ‘A
W g « compute weights according to (3)
sort Wpg
if (Ayy (Wa, Wg) > 0) then min(d)

res «— (r — Zj 77‘Lin(7‘]‘))

forall w; € W (in sorted order) do
r; — min((min(r;) + Ar;(res)), max(r;))
res « res — (r; — min(r;))

min(r)) max(r) 1

Fi gure 7. (a) Resource allocation algorithm (running thread). (b)
Proposed task execution time — resource dependency.

The algorithm starts by assessing the “distance” between

the current and the previously (at the time of the last
allocation) computed task weights. If this difference exceeds
a certain threshold ((Aw (W4, Wpg) > 6)), resource
reallocation is initiated. Tasks are allocated the remaining
resources, according to their respective weights. Ar;(z) =
su%’wj x x, represents the chunk to be allocated to task 5;
out of the total remaining resource amount x. The thread
then sleeps for a certain amount of time before resuming
execution *.
Increased Adaptivity. What if Ay (W4, Wg) > 6 is too
restrictive for the given workflow and will never be satisfied
? In other words, what if the task weights vary but to a
degree that is insufficient to exceed the threshold. While
the threshold value was introduced to fight the scenario of
continuous re-allocations without much benefit, workflow
behavior is hardly possible to bound ahead of time. It might
be useful to “force” a re-allocation to be performed if too
much time has elapsed since the last one. This idea can
be coupled with the thresholding mechanism in a natural
way by changing the re(allocation) triggering condition into:
Aw (Wa,Wg) + @At > 0, where At is the time elapsed
since the last re(allocation) operation varphi € (0,1).

5 Discussion
5.1 Allocation Stability

The resource allocation algorithm (Figure 7) suffers from
a potential instability problem. If some resources get
reallocated from a task A to a task B because currently,
w(A) < w(B), itis likely that in the next execution instance,
04 is going to increase (as less resources are available to A).
This in turn will yield an increase in w(A). This might result
in w(A) > w(B), thus prompting resource allocations in the
opposite direction, from B to A.

The algorithm can be modified to provide a complete
solution to this issue as follows. Keep a history for each task
Si, remembering its two past differing associated weights
(for past reallocation cycles) w!(S;), w?(S;). w?(S;) is
the current weight of the task. Lets assume that w!(S;) >
w?(S;) (the task was allocated more resources as a result of
wt(S;) and then its weight dropped, possibly because of an
associated speedup). Let w3(S;) be the future weight that
would be associated with this task if resources would be
(de)allocated according to the current weight w?(S;). The
future weight can be estimated by approximating d; from
the past execution times in 7°S(S;) and by assuming no
new task execution happens before the next reallocation. If
w?(S;) < w3(S;) ~ w'(S;) (close to the original weight)
the deallocation would obviously result in oscillation; the
algorithm should NOT deallocate any resources that were
allocated to S; but rather ignore it and proceed to the next
task, by reallocating the remaining resources.

4 Alternately, this delay between allocation evaluations could be replaced
by, or combined with an active notification mechanism activated by changes
in the workflow response time for example



In other words, we check if the weight of a task went
down because of its increased speed (after allocation). If the
future weight of the task is going to be back up (similar to
the old weight) this might result in instability, thus needs to
be avoided. We argue that this (or a similar) heuristic can
significantly reduce or even completely eliminate oscillations
and instability.

5.2 Asynchronous Messaging

Asynchronous communication between parallel tasks (see
Figure 8 (a)) needs to be considered when optimizing
overall workflow execution times because the messaging
constructs and semantics have a direct impact on these times.
Fortunately, it turns out that asynchronous messaging can be
naturally handled within the critical paths framework with a
minimal set of associated algorithm extensions.

For each asynchronous communication instance between
two parallel processes (sequences of tasks) P, and P, there
exists a invoke (P; — ) and a receive (P, +— P») semantic
link. Because of the nature of asynchronous messaging and
the BPEL business flows, from the execution flow and times
point of view, these links behave effectively like transitions
between tasks in P, and P». Thus, our main extension to the
algorithm involves the critical path construction mechanism
in Section 3.2. Instead of considering only the explicit
transitions in T we augment this set with these links and treat
them as transitions in the rest of the algorithm. The message
initiation via invoke is virtually instantaneous (message goes
in P»’s incoming mailbox), it can be ignored for simplicity.
Thus let T* = T U receive_links, where receive_links is
the set of all pairs of tasks (X, Y") like in Figure 8 (a), where
Y is areceive activity and X initiates a reply message for Y.

In the following let us analyze the extended critical
path construction in the case of two parallel processes.
There are two possible asynchronous messaging scenarios.
In the first case (Figure 8 (b)), process P; initiates
an asynchronous message exchange with P,, continues
executing and eventually blocks waiting for a reply. In other
words, the reply arrives after (at time ¢, > to) it is expected.
In this case, intuitively, the workflow execution is impacted
by t;, thus by the reply activity/task X. The critical path
should thus contain {(W, w ), (X, 1), (Z,t3)}.

In the second scenario, the reply arrives before (at
time ¢, < t9) it is expected in P; and is queued in
P;’s message handler. Thus, in this case, the workflow
execution is not impacted at all by the reply and process P;
continues un-interrupted with activity Z. The critical path
construction mechanism should result in a path containing
{(VVa TW)? (Za t3)} (Tw not ﬁgured)~

5.3 Limited Storage

In Section 3.3 a certain assumption was underlying the
definition of task weights. A virtually infinite amount of
memory was required to keep one task’s execution history
in T'S(S;). This is sometimes not desirable.

message handler P,
for P,

Fi gure 8. (a) Asynchronous messaging scenario between two workflow
processes/threads. (b) Reply arrives after it is looked for. Process 1 blocks
waiting. The current workflow instance critical path naturally includes the
invoke activity in process 2 and the blocking receive in process 1. (c) Reply
arrives before it is looked for and becomes queued. Process 1 continues
virtually un-interrupted ((t3 — t2) & 0) upon executing receive. The critical
path includes just tasks within process 1 (as process 2 is faster and “keeps up”,
thus not impacting overall execution time).

This can be solved by observing that equation (3) is
suitable for a natural incremental computation. If we change
the notation such that w(t) denotes the weight of task .S;
as computed at current time ¢, then we have a dependency
between w(t) and w(t + At) for any At > 0 as follows:

w(t+AL) = —aAt 5€—a(t77+At)]

X [e scw(t)+

St+At (r.8)ETS(S;)AT>t+At

where s¢ = 3 ¢ o |TS(S;)| such that V(7,0) € T'S(5;),
7 < t. In effect, this re-formulation shows the natural
ability to compute the task weight dynamically out of a
previous task weight incrementally, thus requiring virtually
no additional storage.

6 Experiments

We implemented a proof-of-concept package (wfx.*) of
the workflow modeling and resource allocation algorithms
presented. Our implementation allows the definition, virtual
execution, monitoring and resource allocation for arbitrary
workflows and associated tasks. We also implemented
experimental versions of our wrapper technology and tested
it with the IBM BPWS4J Engine.

workflow response
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Flgure 9. (a) Simple parallel workflow. Transitions 5-7 and 5-6 are
triggered simultaneously. (b) Average workflow response time as a function of
individual service times for the workflow in (a). It can be seen (as intuitively
expected) that tasks 1 and 8 have a higher impact on the workflow execution
(they are executed every time).

We performed experiments and analyzed the behavior of
various classes of workflows with very promising results.

Here we are discussing a simple, yet illustrative workflow
depicted in Figure 9 (a). This workflow is simple enough



to be easy to comprehend and is composed of an initial
traditional stochastic flow (that can be handled by simple
stochastic modeling [4]) followed by concurrent execution
of tasks 6 and 7 (they start simultaneously, upon completion
of 5) and a conjunctive join condition 3 for task 8.

To assess, the initial impact of each task in the global
execution times, in Figure 9 (b) the overall workflow
response time is depicted as a function of the individual task
execution times. It can be seen that (as can be inferred from
the workflow schema), task 1 seems to correlate stronger
(steeper incline) with the global workflow times, than task 2
for example. Task 2 is only triggered 30% of the time which
would explain its lower observed weight in the overall times.
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Flg ure 10. (a) The critical weights accurately follow increases in task
execution times, prompting additional resource allocation. Pictured is task 4
in the workflow in Figure 9 (a). (b) As the transition probability increases (for
task 2 in Figure 9 (a)), the associated critical weight follows almost linearly.

Validating the critical weights is of significant importance
if the allocation mechanism is to function properly and
recommend appropriate resource allocations. In the
experiment depicted in Figure 10 (a) gradually increasing
task execution times naturally result in higher weights,
prompting the allocation of additional resources.

In Figure 10 (b) we can see how higher transition
probabilities (e.g. for task 2) yield almost linearly following
values in the resulting weights. This shows that there exists
a natural direct relationship between the weighting process
(and additional resource allocation) and the task execution
frequency. This in effect ties our work with the work in [4]
and shows that it also correctly handles stochastic aspects.
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Fi gure 11. (a) The stability and frequency of the resource (re)allocation
process can be controlled by adjusting the critical weights (re)allocation
threshold 0. As it relaxes (increases), the (re)allocation frequency drops.
(b) As the dominant task in the workflow changes (e.g. from 1 to 8), the
resource allocation mechanism closely follows with a minimal latency delay
(1-2 workflow executions). This shows the adaptivity to changes in workflow
behavior.

An experiment exploring the stability of the resource
allocation process is illustrated in Figure 11 (a). Stable

SHandling conjunctive joins is one of the important novel use scenarios
that our solution handles.

allocation schemes put less loads on resource managers
and also likely minimize resource shifting overheads (not
considered here). It can be seen how 6 can be used as
a fine-tuning “knob” balancing this trade-off between high
(re)allocation frequency and stability.

The experiment illustrated in Figure 11 (b) analyzes
the adaptivity of the resource allocation mechanism. This
is important to allow for quick turn-around times and
stability in the resource allocation mechanisms. Depicted
are both the actual dominant task (longest execution time) in
various workflow instances and the proposed main additional
resource re-allocation candidate. It can be seen that
the algorithm adapts quickly to changes in the workflow
behavior, with a minimal “following delay” (1-2 workflow
instances).  This is great news, in that it guarantees
that resource allocation converges quickly and improves
execution times accordingly.

7 Conclusions

In this paper we proposed a “dynamic” stochastic
workflow modeling approach suited to handle workflows
with concurrent paths. We then explored this approach
experimentally through the design and proof of concept
implementation of a novel monitoring component which
transparently gathers execution statistics about the compos-
ing workflow tasks (web services). These statistics are then
used in the resource (re)allocation algorithm to optimize
overall workflow performance.

Various issues remain to be explored. Different (poten-
tially composite) quality metrics and alternative wrapping
solutions, minimizing overheads could be considered. It
might be desirable to augment the solution with effective
correlation sets handling.  Additionally, deployment of
such components in mainstream industry resource managers
should be investigated and pursued.
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