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Abstract. As increasing amounts of data are produced, packaged and
delivered in digital form, in a fast, networked environment, one of its
main features threatens to become its worst enemy: zero-cost verbatim
copies. The ability to produce duplicates of digital Works at almost no
cost can now be misused for illicit profit. This mandates mechanisms for
effective rights assessment and protection.

One such mechanism is based on Information Hiding. By concealing a
resilient rights holder identity “signature” (watermark) within the digi-
tal Work(s) to be protected, Information Hiding for Rights Assessment
(Watermarking) enables ulterior court-time proofs associating particular
Works with their respective rights holders.

One main challenge is the fact that altering the Work in the process of
hiding information could possibly destroy its value. At the same time one
has to be concerned with a malicious adversary, with major incentives
to remove or alter the watermark beyond detection – thus disabling the
ability for court-time proofs – without destroying the value of the Work
– to preserve its potential for illicit profit.

In this chapter we explore how Information Hiding can be deployed as
an effective tool for Rights Assessment for discrete digital data. More
specifically, we discuss numeric and categorical relational data.

1 Introduction

Mechanisms for privacy assurances (e.g., queries over encrypted data) are es-
sential to a viable and secure management solution for outsourced data. On a
somewhat orthogonal dimension but equally important, we find the requirement
to be able to assert and protect rights over such data.

Different avenues are available, each with its advantages and drawbacks. En-
forcement by legal means is usually ineffective, unless augmented by a digital
counterpart such as Information Hiding. Digital Watermarking as a method of
Rights Assessment deploys Information Hiding to conceal an indelible “rights
witness” (“rights signature”, watermark) within the digital Work to be pro-
tected (see Figure 1). The soundness of such a method relies on the assumption
that altering the Work in the process of hiding the mark does not destroy the
value of the Work, while it is difficult for a malicious adversary (“Mallory”) to
remove or alter the mark beyond detection without doing so. The ability to resist
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Fig. 1. Introduction: (a) Digital Watermarking conceals an indelible “rights witness”
(“rights signature”, watermark) within the digital Work to be protected. (b) In court, a
detection process is deployed to prove the existence of this “witness” beyond reasonable
doubt (confidence level) and thus assess ownership.

attacks from such an adversary, mostly aimed at removing the watermark, is one
of the major concerns in the design of a sound solution.

There exists a multitude of semantic frameworks for discrete information
processing and distribution. Each distinct data domain would benefit from the
availability of a suitable watermarking solution.

Significant research efforts [2] [3] [8] [11] [14] [15] [22] [24] have been invested
in the frameworks of signal processing and multimedia Works (e.g., images, video
and audio).

Here we explore Information Hiding as a rights assessment tool for discrete

data types i.e., in a relational database context. We explore existing watermark-
ing solutions for numeric and categorical data types.

The Chapter is organized as follows. In Section 2 we explore the broader
issues and challenges pertaining to steganography for rights protection. Then,
in Sections 3 and 4 solutions for numeric respectively categorical data types are
introduced. Related work is discussed in Section 5. Section 6 briefly discusses
the current state of the art and Section 7 concludes.

2 Model

Before we proceed however, let us first understand how the ability to prove rights
in court relates to the final desiderata, namely to protect those rights. After all,
doesn’t simply publishing a summary or digest of the Work to be protected –
e.g., in a newspaper, just before releasing the Work – do the job? It would seem
it enables one to prove later in court that (at least a copy of) the Work was in
one’s possession at the time of release. In the following we address these and
other related issues.



2.1 Rights Protection through Assessment

The ability to prove/assess rights convincingly in court constitutes a deterrent
to malicious Mallory. It thus becomes a tool for rights protection if counter-
incentives and legal consequences are set high enough. But because Information
Hiding does not provide a means of actual access control, the question of rights
protection still remains. How are rights protected here?

It is intuitive that such a method works only if the rightful rights-holder
(Alice) actually knows about Mallory’s misbehavior and is able to prove to
the court that: (i) Mallory possesses a certain Work X and (ii) X contains a
“convincing” (e.g., very rare with respect to the space of all considered similar
Works) and “relevant” watermark (e.g., the string “(c) by Alice”).

What watermarking itself does not offer is a direct deterrent. If Alice does
not have knowledge of Mallory’s illicit possession of the Work and/or if it is
impossible to actually prove this possession in court beyond reasonable doubt,
then watermarking cannot be deployed directly to prevent Mallory. If, however,
Information Hiding is aided by additional access control levels, it can become
very effective.

For example, if in order to derive value from the given Work (e.g., watch a
video tape), Mallory has to deploy a known mechanism (e.g., use video player),
Information Hiding could be deployed to enable such a proof of possession, as
follows: modify the video player so as to detect the existence of a watermark and
match it with a set of purchased credentials and/or “viewing tickets” associated
with the player’s owner. If no match is found, the tape is simply not played back.

This scenario shows how watermarking can be deployed in conjunction with
other technologies to aid in managing and protecting digital rights. Intuitively,
a certain cost model is assumed here: the cost of reverse engineering this process
is far higher than the potential derived illicit gain.

This illustrates the game theoretic nature at the heart of the watermarking
proposition and of information security in general. Watermarking is a game with
two adversaries, Mallory and Alice. At stake lies the value inherent in a certain
Work X , over which Alice owns certain rights. When Alice releases X , to the
public or to a licensed but potentially un-trusted party, she deploys watermarking
for the purpose of ensuring that one of the following holds:

– she can always prove rights in court over any copy or valuable derivate of X
(e.g., segment thereof)

– any existing derivate Y of X , for which she cannot prove rights, does not
preserve any significant value (derived from the value in X)

– the cost to produce such an un-watermarked derivate Y of X that is still
valuable (with respect to X) is higher than its value

Newspaper Digests To achieve the above however, Alice could publish a sum-
mary or digest (e.g., cryptographic hash) of X in a newspaper, thus being able
to claim later on at least a time-stamp on the possession of X . This could appar-
ently result in a quite effective, albeit costly, alternative to Watermarking the
Work X .



There are many simple reasons why it would not work, including (i) scala-
bility issues associated with the need for a trusted third party (newspaper), (ii)
the cost of publishing a digest for each released Work, (iii) scenarios when the
fact that the Work is watermarked should be kept secret (stealthiness) etc.

Maybe the most important reason however, is that Mallory can now claim
that his ownership of the Work precedes X ’s publication date, and that Alice
simply modified it (i.e., a stolen copy) and published a digest thereof herself. It
would then be up to the court to decide if Mallory is to be believed or not, hardly
an encouraging scenario for Alice. This could work if there existed a mechanism
for the mandatory publication of digests for each and every valuable Work, again
quite likely impractical due to both costs and lack of scalability to a virtually
infinite set of data producers and Works.

Deploying such aids as rights assessment tools makes sense only in the case of
the Work being of value only un-modified. In other words if it does not tolerate
any changes, without losing its value, and Mallory is caught in possession of
an identical copy, Alice can successfully prove in court that she possessed the
original at the time of its publication (but she cannot prove more). Considering
that, in the case of watermarking, the assumption is that, no matter how small,
there are modifications allowed to the Works to be protected, in some sense the
two approaches complement each other. If no modifications are allowed, then a
third-party “newspaper” service might work for providing a time-stamp type of
ownership proof that can be used in court.

Steganography and Watermarking There exists a fundamental difference
between Watermarking and generic Information Hiding (steganography) from an
application perspective and associated challenges. Information Hiding in general
(and covert communication in particular), aims usually at enabling Alice and
Bob to exchange messages in a manner as resilient and stealthy as possible,
through a hostile medium where Malory could lurk. On the other hand, Digital
Watermarking is deployed by Alice as a court proof of rights over a Work, usually
in the case when Mallory benefits from using/selling that very same Work or
maliciously modified versions of it.

In Digital Watermarking, the actual value to be protected lies in the Works
themselves whereas pure steganography usually makes use of them as sim-
ple value “transporters”. In Watermarking, Rights Assessment is achieved by
demonstrating (with the aid of a “secret” known only to Alice – “watermark-
ing key”) that a particular Work exhibits a rare property (“hidden message” or
“watermark”). For purposes of convincing the court, this property needs to be
so rare that if one considers any other random Work “similar enough” to the
one in question, this property is “very improbable” to apply (i.e., bound false-
positives rate). It also has to be relevant, in that it somehow ties to Alice (e.g.,
by featuring the bit string “(c) by Alice”).

There is a threshold determining the ability to convince the court, related to
the “very improbable” assessment. This defines a main difference from steganog-
raphy: from the court’s perspective, specifics of the property (e.g., watermark



message) are not important as long as they link to Alice (e.g., by saying “(c)
by Alice”) and, she can prove “convincingly” it is she who induced it to the
(non-watermarked) original.

In watermarking the emphasis is on “detection” rather than “extraction”.
Extraction of a watermark, or bits of it, is usually a part of the detection process
but just complements the process up to the extent of increasing the ability
to convince in court. If recovering the watermark data in itself becomes more
important than detecting the actual existence of it (i.e., “yes/no” answer) then,
from an application point of view, this is a drift toward covert communication
and pure Information Hiding (steganography).

2.2 Consumer Driven Watermarking

An important point about watermarking should be noted. By its very nature, a
watermark modifies the item being watermarked: it inserts an indelible mark in
the Work such that (i) the insertion of the mark does not destroy the value of
the Work, i.e., it is still useful for the intended purpose; and (ii) it is difficult for
an adversary to remove or alter the mark beyond detection without destroying
this value. If the Work to be watermarked cannot be modified without losing
its value then a watermark cannot be inserted. The critical issue is not to avoid
alterations, but to limit them to acceptable levels with respect to the intended
use of the Work.

Thus, an important first step in inserting a watermark, i.e., by altering it,
is to identify changes that are acceptable. Naturally, the nature and level of
such change is dependent upon the application for which the data is to be used.
Clearly, the notion of value or utility of the data becomes thus central to the
watermarking process. For example, in the case of software, the value may be in
ensuring equivalent computation, whereas for natural language text it may be in
conveying the same meaning – i.e., synonym substitution is acceptable. Similarly,
for a collection of numbers, the utility of the data may lie in the actual values,
in the relative values of the numbers, or in the distribution (e.g., normal with a
certain mean). At the same time, the concept of value of watermarked Works is
necessarily relative and largely influenced by each semantic context it appears in.
For example, while a statistical analyst would be satisfied with a set of feature
summarizations (e.g., average, higher-level moments) of a numeric data set, a
data mining application may need a majority of the data items, for example to
validate a classification hypothesis.

It is often hard to define the available “bandwidth” for inserting the wa-
termark directly. Instead, allowable distortion bounds for the input data can
be defined in terms of consumer metrics. If the watermarked data satisfies the
metrics, then the alterations induced by the insertion of the watermark are con-
sidered to be acceptable. One such simple yet relevant example for numeric
data, is the case of maximum allowable mean squared error (MSE), in which
the usability metrics are defined in terms of mean squared error tolerances as
(si − vi)

2 < ti, ∀i = 1, ..., n and
∑

(si − vi)
2 < tmax, where S = {s1, ..., sn} ⊂ R,

is the data to be watermarked, V = {v1, ..., vn} is the result, T = {t1, ..., tn} ⊂ R



and tmax ∈ R define the guaranteed error bounds at data distribution time. In
other words T defines the allowable distortions for individual elements in terms
of MSE and tmax its overall permissible value.

Often however, specifying only allowable change limits on individual values,
and possibly an overall limit, fails to capture important semantic features asso-
ciated with the data – especially if the data is structured. Consider for example,
age data. While a small change to the age values may be acceptable, it may be
critical that individuals that are younger than 21 remain so even after water-
marking if the data will be used to determine behavior patterns for under-age
drinking. Similarly, if the same data were to be used for identifying legal vot-
ers, the cut-off would be 18 years. Further still, for some other application it
may be important that the relative ages, in terms of which one is younger, not
change. Other examples of constraints include: (i) uniqueness – each value must
be unique; (ii) scale – the ratio between any two number before and after the
change must remain the same; and (iii) classification – the objects must remain
in the same class (defined by a range of values) before and after the water-
marking. As is clear from the above examples, simple bounds on the change of
numerical values are often not enough.

Structured collections, present further constraints that must be adhered to
by the watermarking algorithm. Consider a data warehouse organized using a
standard Star schema with a fact table and several dimension tables. It is im-
portant that the key relationships be preserved by the watermarking algorithm.
This is similar to the “Cascade on update” option for foreign keys in SQL and
ensures that tuples that join before watermarking also join after watermarking.
This requires that the new value for any attribute should be unique after the
watermarking process. In other words, we want to preserve the relationship be-
tween the various tables. More generally, the relationship could be expressed
in terms of an arbitrary join condition, not just a natural join. In addition to
relationships between tuples, relational data may have constraints within tuples.
For example, if a relation contains the start and end times of a web interaction,
it is important that each tuple satisfies the condition that the end time be later
than the start time.

There exists a trade-off between the desired level of marking resilience and
resistance to attacks, and the ability to preserve data quality in the result, with
respect to the original. Intuitively, at the one extreme, if the encoded watermark
is to be very “strong” one can simply modify the entire data set aggressively,
but at the same time probably also destroy its actual value. As data quality re-
quirements become increasingly restrictive, any applied watermark is necessarily
more vulnerable. Often we can express the available bandwidth as an increasing
function of allowed alterations. At the other extreme, a disproportionate concern
with data quality will hinder most of the watermarking alterations, resulting in
a weak, possibly non-existent encoding.

Naturally, one can always identify some use that is affected by even a mi-
nor change to any portion of the data. It is therefore important that (i) the
main intended purpose and semantics that should be preserved be identified



during watermarking and that (ii) the watermarking process not interfere with

the final data consumer requirements. We call this paradigm consumer driven

watermarking.
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Fig. 2. In consumer-driven watermarking a set of data constraints are continuously
evaluated in the encoding process to ensure quality of the result.

Some of the solutions discussed here are consumer driven enabled through
feedback mechanisms (see Figure 2) that allow the watermarking process to
“rollback” modifications that would violate quality constraints in the result on a
step by step basis. This ensures the preservation of desired quality metrics with
respect to the original un-watermarked input Work.

2.3 Discrete Data vs. Multimedia

An established body of research [2] [3] [8] [11] [14] [15] [22] [24] has resulted
from work on Information Hiding and Watermarking in frameworks such as
signal processing and multimedia (e.g., images, video and audio). Here we explore
Information Hiding as a rights assessment tool for discrete data types.

Let us briefly explore the relationship between the challenges and techniques
deployed in both frameworks. Because, while the terms might be identical, the
associated models, challenges and techniques are different, almost orthogonal.
Whereas in the signal processing case there usually exists a large noise band-
width, due to the fact that the final data consumer is likely human – with
associated limitations of the sensory system – in the case of discrete data types
this cannot be assumed and data quality assessment needs to be closely tied
with the actual watermarking process (see Section 2.2).



Another important differentiating focus is the emphasis on the actual ability
to convince in court as a success metric, unlike most approaches in the signal
processing realm, centered on bandwidth. While bandwidth is a relevant related
metric, it does not consider important additional issues such as malicious trans-
forms and removal attacks. For rights assertion, the concerns lie not as much
with packing a large amount of information (i.e., watermark bits) in the Works
to be protected, as with being able to both survive removal attacks and convince

in court.
Maybe the most important difference between the two domains is that, while

in a majority of watermarking solutions in the multimedia framework, the main
domain transforms are signal processing primitives (e.g., Works are mainly con-
sidered as being compositions of signals rather than strings of bits), in our case
data types are mostly discrete and are not naturally handled as continuous sig-
nals. Because, while discrete versions of frequency transforms can be deployed
as primitives in information encoding for digital images [8], the basis for doing
so is the fact that, although digitized, images are at the core defined by a com-
position of light reflection signals and are consumed as such by the final human
consumer. By contrast, arbitrary discrete data is naturally discrete 1 and of-
ten to be ingested by a highly sensitive semantic processing component, e.g., a
computer rather than a perceptual system tolerant of distortions.

2.4 Relational Data

For completeness let us briefly overview main components of a relational model
[7]. In such a model, relations between information items are explicitly specified:
data is organized as “a number of differently sized tables” [7] composed of “re-
lated” rows/columns. A table is a collection of rows or records and each row in a
table contains the same fields. Certain fields may be designated as data keys (not
to be confused with “cryptographic keys”) when a functional dependency or key
constraint, holds for the table. Often, indexing is deployed to speed up searches
on values of such primary key fields. Data is structured logically into valued
attributes. From this perspective, a table is a collection of such attributes (the
columns of the table) and models a relation among them. The data rows in the
tables are also called tuples. Data in this model is manipulated using a relational

algebra. Main operations in this algebra are set operations (e.g., union, intersec-
tion, Cartesian product), selection (of some tuples in tables) and projection (of
some columns/attributes).

Rights protection for such data is important in scenarios where it is sensitive,
valuable and about to be outsourced. A good example is a data mining appli-
cation, where data is sold in pieces to parties specialized in mining it, e.g., sales
patterns database, oil drilling data, financial data. Other scenarios involve for
example online B2B interactions, e.g., airline reservation and scheduling portals,
in which data is made available for direct, interactive use (see Figure 3). Given

1 Unless we consider quantum states and uncertainty arising in the spin of the electrons
flowing through the silicon.



the nature of most of the data, it is hard to associate rights of the originator
over it. Watermarking can be used to solve this issue.
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Fig. 3. Rights Assessment is important when valuable data is outsourced to a third
party.

2.5 The Adversary

Watermarking is a game between the watermarker and malicious Mallory. In this
game, the watermarker and Mallory play against each other within subtle trade-
off rules aimed at keeping the quality of the result within acceptable bounds. It is
as if there exists an impartial referee (the data itself) moderating each and every
“move”. As discussed above, it is important to make this “referee” an explicit
part of the marking process (consumer-driven paradigm). It is also important to
understand Mallory and the adversarial setting.

Once outsourced, i.e., out of the control of the watermarker, data might be
subjected to a set of attacks or transformations; these may be malicious – e.g.,
with the explicit intent of removing the watermark – or simply the result of nor-
mal use of the data. An effective watermarking technique must be able to survive



such use. In a relational data framework important attacks and transformations
are:

A1. Sampling. The attacker (Mallory) can randomly select and use a sub-
set of the watermarked data set that might still provide value for its intended
purpose (“subset selection”). More specifically, here we are concerned with both
(A1.a) horizontal and (A1.b) vertical data partitioning – in which a valuable
subset of the attributes are selected by Mallory.

A2. Data Addition. Mallory adds a set of tuples to the watermarked set.
This addition is not to significantly alter the useful properties of interest to
Mallory.

A3. Alteration. Altering a subset of the items in the watermarked data set
such that there is still value associated with the result. In the case of numeric
data types, a special case needs to be outlined here, namely (A3.a) a linear
transformation performed uniformly to all of the items. This is of particular
interest as it can preserve significant valuable data-mining related properties of
the data.

A4. Ulterior Claims of Rights. Mallory encodes an additional watermark
in the already watermarked data set and claims rights based upon this second
watermark.

A5. Invertibility Attack. Mallory attempts to establish a plausible (water-
mark,key) pair that matches the data set and then claims rights based on this
found watermark [8, 9].

Given the attacks above, several properties of a successful solution surface.
For immunity against A1, the watermark has to be likely encoded in overall
data properties that survive sampling, e.g., confidence intervals, statistical bias.
With respect to (A1.b) special care has to be taken such that the mark survives
this partitioning. The encoding method has to feature a certain attribute-level
property that could be recovered in such a vertical partition of the data. We
believe that while vertical data partitioning attacks are possible and also very
likely in certain scenarios, often value is to be found in the association between
a set of relation attributes. These attributes are highly likely to survive such an
attack, as the final goal of the attacker is to produce a still-valuable result. If
the assumption is made that the attack alterations do not destroy the value of
the data, then A3 could be handled by encoding the primitive mark in resilient
global data properties. As a special case, A3.a can be resisted by a preliminary
normalization step in which a common divider to all the items is first identified
and applied.

While powerful, for arbitrary watermarks, the invertibility attack A5 can be
defeated by requiring the encoded string to be relevant (e.g. “(c) by Mallory”)
and the encoding to be “convincing” (see Section 2.1). Then the probability of
success of invertibility searches becomes upper bound.

In order to defeat A4, the watermarking method has to provide the ability
to determine encoding precedence, e.g., if it can be proved in court that one
watermark encoding was “overwritten” by a later one. Additionally, in the case
of such a (court time) dispute, the parties could be requested to present a portion



of the original, un-watermarked data. Only the rightful rights holder would be
able to produce such a proof, as Mallory could only have access to already
watermarked data.

It is worth also noting that, intuitively, if, in the process of watermarking, the
data is altered to its usability limits, any further alteration by a watermarker is
likely bound to yield an unusable result. Achieving this might be often desirable 2

and has been explored by Sion et. al. in a proof of concept implementation [34] as
well as by Li et. al. in [20] (this is discussed in more detail elsewhere in this book).
The challenges of achieving such a desiderata however, lies in the impossibility to
define absolute data quality metrics that consider all value dimensions of data.

3 Numeric Types

In this section we explore watermarking solutions in the context of relational data
in which one or more of the attributes are of a numeric type. Among existing
solutions we distinguish between single-bit (the watermark is composed of a
single bit) and multi-bit (the watermark is a string of bits) types. Orthogonally,
the encoding methods can be categorized into two; we chose to call them direct-

domain and distribution encodings. In a direct-domain encoding, each individual
bit alteration in the process of watermarking is directly correlated to (a part of)
the encoded watermark. In distribution encodings, the encoding channel lies
often in higher order moments of the data (e.g., running means, hierarchy of
value averages). Each individual bit alteration impacts these moments for the
purpose of watermark encoding, but in itself is not directly correlated to any
one portion of the encoded watermark.

Single Bit Direct Domain Encoding In [1,16] Kiernan, Agrawal et.al. pro-
pose a direct domain encoding of a single bit watermark in a numeric relational
database.

Overview. Its main algorithm proceeds as follows. A subset of tuples are selected
based on a secret criteria; for each tuple, a secret attribute and corresponding
least significant (ξ) bit position are chosen. This bit position is then altered ac-
cording to yet another secret criteria that is directly correlated to the watermark
bit to be encoded. The main assumption is, that changes can be made to any at-
tribute in a tuple at any least significant ξ bit positions. At watermark detection
time, the process will re-discover the watermarked tuples and, for each detected
accurate encoding, become more “confident” of a true-positive detection.

There are a set of important assumptions underlying this method. Maybe the
most important one is that “the relational table being watermarked is such that
if all or a large number of the ξ least significant bits of any attribute are dropped
or perturbed, then the value of the data is significantly reduced. However, it is

2 This is formulated as the “optimality principle” in [26], as well as previous results
such as [28] and [31].



possible to change a small number of the bits and not decrease the value of the
data significantly” [16].

The authors make an argument for this being a reasonable assumption as
such techniques have been used by publishers of books of mathematical tables
for a long time – e.g., by introducing small errors in published logarithm ta-
bles and astronomical ephemerides to identify pirated copies [15]. Examples of
real-world data sets that satisfy such an assumption are given, including tables
of parametric specifications (mechanical, electrical, electronic, chemical, etc.),
surveys (geological, climatic, etc.), and life sciences data (e.g., gene expression).

Solution Details. For consistency, the original notation is used: a database rela-
tion R with the following schema is R(P, A0, . . . , Aν−1), is assumed, with P the
primary key attribute. All ν attributes A0, . . . , Aν−1 are candidates for marking:
the values are assumed such that small changes in the ξ least significant bits are
imperceptible. γ denotes a control parameter that determines the average num-
ber ω of tuples marked (ω = η

γ
), where η is the number of tuples in the database.

r.X is used to denote the value of attribute X in tuple r, α denotes a “signifi-
cance level” and τ a “threshold” for the test of “detecting a watermark”. K is
a key known only to the database owner, and there exists G, a pseudo-random
sequence number generator [23] (next(G) denotes the next generated sequence
number).

Note: There are a set of changes between the initial proposed scheme in [16]
and its journal version [1]. Here we discuss the (more robust) journal version.

1) foreach tuple r ∈ R do
2) seed G with r.P concatenated with K
3) if (next(G) mod γ = 0) then // mark this tuple
4) attribute index i = next(G) mod ν // mark attribute Ai

5) bit index j = next(G) mod η // mark jth bit
6) r.Ai = mark(next(G),r.Ai,j)
7) mark(random number i, value v, bit index j) return value
8) if (i is even) then

9) set the jth least significant bit of v to 0
10) else

11) set the jth least significant bit of v to 1
12) return v

Fig. 4. Watermark insertion for the single-bit encoding of [1,16].

Watermark insertion is illustrated in Figure 4. The main steps of the algo-
rithm are as follows. Initially (step 2) the random sequence generator is initialized
such that its output is distinct for any given distinct tuple value. This mecha-
nism is deployed in order to achieve a certain tuple ordering independence of the
encoding. The output of G is then used to determine: (i) if the current tuple is to



be watermarked (step 3), (ii) which attribute value to mark (step 4), (iii) which
bit within that attribute’s value to alter (step 5), and (iv) what new bit-value to
assign to that bit-position in the result (step 6, invocation of mark()). This en-
coding guarantees that, in order to entirely remove a watermark, Mallory is put
in the position of guessing correctly the marked tuples, attributes and altered
bit positions.

Once R is published, the data owner, Alice, would like to determine whether
the (similar) relation S published by Mallory has been pirated from R. The sets
of tuples and of attributes in S are assumed to be strict subsets of those in
R. Additionally, Mallory is assumed not to drop the primary key attribute or
change the value of primary keys. Then watermark detection is a direct inverse
of insertion. It proceeds as follows (see Figure 5).

1) totalcount = matchcount = 0
2) foreach tuple s ∈ S do
3) seed G with s.P concatenated with K
4) if (next(G) mod γ = 0) then // tuple was marked
5) attribute index i = next(G) mod ν // Ai was marked

6) bit index j = next(G) mod η // jth bit was marked
7) totalcount = totalcount + 1
8) matchcount = matchcount + match (next(G,s.Ai,j)
9) τ = threshold(totalcount,α)
10) if ((matchcount < τ ) or (matchcount > totalcount - τ )) then
11) suspect piracy
12) match(random number i, value v, bit index j) return integer
13) if (i is even) then

14) return 1 if the jth least significant bit of v is 0 else return 0
15) else

16) return 1 if the jth least significant bit of v is 1 else return 0

Fig. 5. Watermark detection for the single-bit encoding of [1,16].

Alice starts by identifying the bits that should have been marked by the
insertion algorithm. To do so, it executes the operations described in lines 1
through 5 of the insertion algorithm (steps 3 through 6). The assumption is that
the original database primary key is preserved in S. Each such identified bit is
tested for a match with the value that should have been assigned by the insertion
algorithm. Each match is counted. If the resulting count is either too small or
too large, piracy is suspected. In the case of too small a number, the method
assumes that somehow Mallory has identified the marked bits and systematically
flipped each one.

In other words, the insertion algorithm is modulated on a set of successive
independent coin tosses. A detection algorithm over ω bits will yield a number
of matches with a binomial distribution (ω, 1/2) for the null hypothesis of non-



piracy. Naturally, in the absence of piracy, the expected number of matches is
ω
2
. The paper proposes to suspect piracy if the observed number of matches m

is so large or so small that its probability under the null hypothesis is highly
unlikely.

This can be modeled by first fixing an acceptable value for the significance

level α ∈ (0, 1) and then computing a threshold τ ∈ (0, ω
2
) such that the proba-

bility of m < τ or m > ω − τ under the null hypothesis is less than or equal to
α.

The authors discuss additional extensions and properties of the solution in-
cluding the following:

– Incremental Updatability: Updates can be handled independently of the
existing watermark as the selection and marking criteria are self-sufficient
and only depend on the primary key value.

– Blind Watermarking: The method does not require the availability of the
un-watermarked data at detection time.

– Varying Parameters: The assumption that any two attributes are marked
at the same rate can be removed. Different attributes can be marked at
different rates because the attributes may tolerate different error rates and,
if the rate parameters are secret, Mallory’s task become even more difficult.
Additionally, the number of bits available for marking can be varied from
one attribute to another.

– Relations Without Primary Keys: The authors also discuss extensions aimed
at handling the case of relations without primary keys. This is an important
problem as it has the potential to overcome the required assumption of un-
changed primary key values in the watermarked data at detection time. In
the case of no primary key, the authors propose to designate another at-
tribute, or a number of most significant bit-portions of the currently consid-
ered one, as a primary key. This however presents a significant vulnerability
due to the very likely existence of duplicates in these values. Mallory could
mount a statistical attack by correlating marked bit values among tuples
with the same most significant bits. This issue has been also considered
in [18] where a similar solution has been adopted. This, is discussed in more
detail elsewhere in this book.

3.1 Multi-Bit Watermarks

While there likely exist applications whose requirements are satisfied by single-
bit watermarks, often it is desirable to provide for “relevance”, i.e., linking the
encoding to the rights holder identity. This is especially important if the water-
mark aims to defeat against invertibility attacks (A5).

In a single-bit encoding this can not be easily achieved. Additionally, while
the main proposition of watermarking is not covert communication but rather
rights assessment, there could be scenarios where the actual message payload is
of importance.



One apparent direct extension from single-bit watermarks to a multi-bit ver-
sion would be to simply deploy a different encoding, with a separate watermark
key, for each bit of the watermark to be embedded. This however, might not
be possible, as it will raise significant issues of inter-encoding interference: the
encoding of later bits will likely distort previous ones. This will also make it
harder to handle ulterior claim of rights attacks (A4).

In the following we discuss multi-bit watermark encodings. We briefly discuss
a direct-domain encoding [19] that extends the work by Kiernan, Agrawal et.
al. [1, 16] and then explore a distribution-encoding method by Sion et. al. [27,
29, 30, 32, 33] and [34].

Multi-Bit Direct Domain Encoding In [19] Li et. al. extend the work by
Kiernan, Agrawal et. al. [1, 16] to provide for multi-bit watermarks in a direct
domain encoding. This is discussed in extended detail elsewhere in this book.
Here we briefly summarize. The scheme functions as follows. The database is
parsed and, at each bit-encoding step, one of the watermark bits is randomly
chosen for embedding; the solution in [1, 16] is then deployed to encode the
selected bit in the data at the “current” point. The “strength of the robustness”
of the scheme is claimed to be increased with respect to [1, 16] due to the fact
that the watermark now possesses an additional dimension, namely length. This
should guarantee a better upper bound for the probability that a valid watermark
is detected from unmarked data, as well as for the probability that a fictitious
secret key is discovered from pirated data (i.e., invertibility attacks A5). This
upper bound is said to be independent of the size of database relations thus
yielding robustness against attacks that change the size of database relations.

Multi-Bit Distribution Encoding Encoding watermarking information in re-
silient numeric distribution properties of data presents a set of advantages over
direct domain encoding, the most important one being its increased resilience
to various types of numeric attacks. In [27, 29, 30, 32, 33] and [34], Sion et. al.
introduce a multi-bit distribution encoding watermarking scheme for numeric
types. The scheme was designed with both an adversary and a data consumer
in mind. More specifically the main desiderata were: (i) watermarking should
be consumer driven – i.e., desired semantic constraints on the data should be
preserved – this is enforced by a feedback-driven rollback mechanism, and (ii)
the encoding should survive important numeric attacks, such as linear transfor-
mation of the data (A3.a), sampling (A1) and random alterations (A3).
Overview. The solution starts by receiving as user input a reference to the
relational data to be protected, a watermark to be encoded as a copyright proof,
a secret key used to protect the encoding and a set of data quality constraints
to be preserved in the result. It then proceeds to watermark the data while
continuously assessing data quality, potentially backtracking and rolling back
undesirable alterations that do not preserve data quality.

Watermark encoding is composed of two main parts: in the first stage, the
input data set is securely partitioned into (secret) subsets of items; the second



stage then encodes one bit of the watermark into each subset. If more subsets
(than watermark bits) are available, error correction is deployed to result in
an increasingly resilient encoding. Each single bit is encoded/represented by
introducing a slight skew bias in the tails of the numeric distribution of the
corresponding subset. The encoding is proved to be resilient to important classes
of attacks, including subset selection, linear data changes and random item(s)
alterations.

Solution Details. The algorithm proceeds as follows (see Figure 6): (a) User-
defined queries and associated guaranteed query usability metrics and bounds
are specified with respect to the given database (see below). (b) User input
determines a set of attributes in the database considered for watermarking, pos-
sibly all. (c) From the values in each such attribute select a (maximal) number
of (e) unique, non-intersecting, secret subsets. (d) For each considered subset,
(d.1) embed a watermark bit into it using the single-bit encoding convention
described below and then (d.2) check if data constraints are still satisfied. If
data constraints are violated, (d.3) retry different encoding parameter varia-
tions or, if still no success, (d.4) try to mark the subset as invalid (see single-bit
encoding convention below), or if still no success (d.5) ignore the current set3.
Repeat step (d) until no more subsets are available.

wm(attribute, wm key, mark data[],
plugin handler, db primary key, subset size, vfalse, vtrue, c)
sort attribute ← sort on normalized hash(wm key,db primary key,wm key)

for (i=0; i <
length(attribute)

subset size
;i++)

subset bin ← next subset size elements from sort attribute
compute rollback data
encode(mark data[i % mark data.length], subset bin, vfalse, vtrue, c)
propagate changes into attribute
if (not goodness plugin handler.isSatisfied(new data,changes)) then

rollback rollback data
continue

else
commit
map[i] = true
subset boundaries[i] = subset bin[0]

return map, subset boundaries

Fig. 6. Watermark Embedding (version using subset markers and detection
maps shown).

3 This leaves an invalid watermark bit encoded in the data that will be corrected by
the deployed error correcting mechanisms (e.g. majority voting) at extraction time.



Several methods for subset selection (c) are discussed. In one version, it
proceeds as follows. The input data tuples are sorted (lexicographically) on a
secret keyed cryptographic hash H of the primary key attribute (K). Based on
this value, compose a criteria (e.g., H(K, key)) mod e = 0) for selecting a set
of “special” tuples such that they are uniformly distributed and average a total
number of e = length(attribute)/ subset size. These special tuples are going to
be used as subset “markers”. Each subset is defined as the elements between two
adjacent markers, having on average subset size elements. The detection phase
will then rely on this construction criteria to re-discover the subset markers. This
process is illustrated in Figure 6.

Encoding the individual mark bits in different subsets increases the ability to
defeat different types of transformations including sampling (A1) and/or random
data addition (A2), by “dispersing” their effect throughout the data, as a result
of the secret ordering. Thus, if an attack removes 5% of the items, this will
result in each subset Si being roughly 5% smaller. If Si is small enough and/or
if the primitive watermarking method used to encode parts of the watermark
(i.e., 1 bit) in Si is made resilient to these kind of minor transformations then
the probability of survival of most of the embedded watermarks is accordingly
higher. Additionally, in order to provide resilience to massive “cut” attacks, the
subsets are made to be of sizes equal to a given percent of the overall data set,
i.e., not of fixed absolute sizes.

Note: If enough additional storage is available, these subsets can be in fact
constructed differently: given a secretly keyed cryptographic hash function with
discrete output values in the interval [1, e], apply it, for each tuple, to the pri-
mary key attribute value and let its output determine which subset the tuple
belongs to. This would both alleviate the need to deploy subset markers as well
as likely offering more resilience to attacks. This simple and nice improvement
was suggested to one of the authors during a discussion with a Purdue graduate
student (whose identity he cannot remember but whom he invites forward for
credit) attending the 2005 Symposium on Security and Privacy.

Si

avg(Si)

distribution(Si)

Vc(Si)

c x stdev(S i)

Fig. 7. In the single-bit mark encoding convention, the encoding of the watermark bit
relies on altering the size of the “positive violators” set, vc(Si).



Once constructed, each separate subset Si will be marked separately with a
single bit, in the order it appears in the actual watermark string. The result will
be a e-bit (i.e., i = 1, . . . , e) overall watermark bandwidth in which each bit is
“hidden” in each of the marked Si. If the watermark is of size less than e, error
correction can be deployed to make use of the additional bandwidth to increase
the encoding resilience.

The single-bit distribution encoding proceeds as follows. Let b be a water-
mark bit that is to be encoded into Si and G represent a set of user specified
change tolerance, or usability metrics. The set G will be used to implement the
consumer-driven awareness in the watermark encoding.

Let vfalse, vtrue, c ∈ (0, 1), vfalse < vtrue be real numbers (e.g., c =
90%, vtrue = 10%, vfalse = 7%). c is called confidence factor and the inter-
val (vfalse, vtrue) confidence violators hysteresis. These are values to be remem-
bered also for watermark detection time. They can be considered as part of the
encoding key. Let avg(Si) and δ(Si) be the average and standard deviation, re-
spectively, of Si. Given Si and the real number c ∈ (0, 1) as above, vc(Si) is
defined as the number of items of Si that are greater than avg(Si) + c × δ(Si).
vc(Si) is called the number of positive “violators” of the c confidence over Si,
see Figure 7.

The single-bit mark encoding convention is then formulated: given Si,
c, vfalse and vtrue as above, mark(Si) ∈ {true, false, invalid} is defined to be
true if vc(Si) > (vtrue × |Si|), false if vc(Si) < vfalse × |Si| and invalid if
vc(Si) ∈ (vfalse × |Si|, vtrue × |Si|).

In other words, the watermark is modeled by the percentage of positive con-
fidence violators present in Si for a given confidence factor c and confidence
violators hysteresis (vfalse, vtrue). Encoding the single bit (see Figure 8), b, into
Si is therefore achieved by minor alterations to some of the data values in Si such
that the number of positive violators (vc(Si)) is either (a) less than vfalse × |Si|
if b = 0, or (b) more than vtrue × |Si| if b = 1. The alterations are then checked
against the change tolerances, G, specified by the user.

At detection time the secret subsets are reconstructed and the individual
bits are recovered according to the single-bit mark encoding convention. This
yields the original e-bit string. If e is larger than the size of the watermark, error
correction was deployed to increase the encoding resilience. The watermark string
can be then recovered by applying error correction decoding to this string, e.g.,
majority voting for each watermark bit. This process is illustrated in Figure 9.

In [27,33] and [34] the authors discuss a proof of concept implementation. It
is worth mentioning here due to its consumer-driven design (see Figure 10). In
addition to a watermark to be embedded, a secret key to be used for embedding,
and a set of relations/attributes to watermark, the software receives as input
also a set of external usability plugin modules. The role of these plugins is to
allow user defined query metrics to be deployed and queried at run-time without
recompilation and/or software restart. The software uses those metrics to re-
evaluate data usability after each atomic watermarking step.



encode(bit, set, vfalse, vtrue, c)
compute avg(set), δ(set)
compute vc(set)
if vc(set) satisfies desired bit value return true
if (bit)

compute v∗ ← vtrue − vc(set)
alter v∗ items close to the stddev boundary so that they become > vtrue

else
(!bit) case is similar

compute vc(set)
if vc(set) satisfies desired bit value return true
else rollback alterations (distribution shifted too much?)
return false

Fig. 8. Single Bit Encoding Algorithm (illustrative overview).

Constraint metrics can be specified either as SQL queries, stored procedures
or simple Java code inside the plug-in modules. Constraints that arise from the
schema (e.g., key constraints), can easily be specified in a form similar to (or
derived from) SQL create table statements. In addition, integrity constraints
(e.g., such as end time being greater than begin time) can be expressed. A
tolerance is specified for each constraint. The tolerance is the amount of change
or violation of the constraint that is acceptable. This is an important parameter
since it can be used to tailor the quality of the watermark at the expense of
greater change in the data. As mentioned earlier, if the tolerances are too low,
it may not be possible to insert a watermark in the data. Various forms of
expression are accommodated, e.g., in terms of arbitrary SQL queries over the
relations, with associated requirements (usability metric functions). For example,
the requirement that the result of the join (natural or otherwise) of two relations
does not change by more than 3% can be specified.

Once usability metrics are defined and all other parameters are in place, the
watermarking module (see Figure 10) initiates the process of watermarking. An
undo/rollback log is kept for each atomic step performed (i.e., 1-bit encoding)
until data usability is assessed and confirmed by querying the currently active
usability plugins. This allows for rollbacks in the case when data quality is not
preserved by the current atomic operation.

To validate this consumer driven design the authors perform a set of experi-
ments showing how, for example, watermarking with classification preservation
can be enforced through the usability metric plugin mechanisms. Moreover, the
solution is proved experimentally on real data to be extremely resilient to random
alterations and uninformed alteration attacks. This is due to its distribution-
based encoding which can naturally survive such alterations. For example, alter-



det(attribute, wm key, db primary key, subset sz, vfalse, vtrue, c, map[], subset boundaries[])
sorted attribute ← sort on normalized crypto hash(wm key,db primary key,wm key)
read pipe ← null
do { tuple ← next tuple(sorted attribute) }
until (exists idx such that (subset boundaries[idx] == tuple))
current subset ← idx
while (not(sorted attribute.empty())) do

do {
tuple ← next tuple(sorted attribute)
read pipe = read pipe.append(tuple)

} until (exists idx such that (subset boundaries[idx] == tuple))
subset bin ← (at most subset sz elements from read pipe, excluding last read)
read pipe.remove all remaining elements but last read()
if (map[current subset]) then

mark data[current subset] ← decode (subset bin, vfalse, vtrue, confidence)
if (mark data[current subset] != DECODING ERROR)

then map[current subset] ← true
current subset ← idx

return mark data, map

Fig. 9. Watermark Detection (version using subset markers shown).

ing the entire watermarked data set within 1% of its original values only yields
a distortion of less than 5% in the detected watermark.

The authors also propose a set of improvements and discuss several properties
of the solutions.

– Embedding Optimizations: As the encoding resilience is dependent on a set
of parameters (e.g., c, subset size, vfalse, vtrue), an automatic fine-tuning
mechanism for searching a near-optimum in this parameter space is pro-
posed. Additionally, the watermarking process could be trained to be re-
silient to a set of transformations expected from any potential attacker.

– Blind Watermarking: The method does not require the availability of the
un-watermarked data at detection time.

– On-the-Fly Updatability: The authors also discuss mechanisms for handling
dynamic data updates. Several scenarios of interest are: (i) updates that add
fresh tuples to the already watermarked data set, (ii) updates that remove
tuples from the already watermarked data and (iii) updates that alter exist-
ing tuples.

4 Categorical Types

So far we have explored the issue of watermarking numeric relational content.
Another important relational data type to be considered is categorical data.
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Fig. 10. Overview of the wmdb.* package.

Categorical data is data drawn from a discrete distribution, often with a finite
domain. By definition, it is either non-ordered (nominal) such as gender or city,
or ordered (ordinal) such as high, medium, or low temperatures. There are a
multitude of applications that would benefit from a method of rights protection
for such data. In this section we propose and analyze watermarking relational
data with categorical types.

Additional challenges in this domain derive from the fact that one cannot
rely on arbitrary small (e.g., numeric) alterations to the data in the embedding
process. Any alteration has the potential to be significant, e.g., changing DE-
PARTURE CITY from “Chicago” to “Bucharest” is likely to affect the data
quality of the result more than a simple change in a numeric domain. There
are no “epsilon” changes in this domain. This completely discrete characteristic
of the data requires discovery of fundamentally new bandwidth channels and
associated encoding algorithms.

4.1 The Adversary Revisited

We outlined above a set of generic attacks in a relational data framework. Here
we discuss additional challenges associated with categorical data types.

A3. Alteration. In the categorical data framework, subset alteration is in-
tuitively quite expensive from a data-value preservation perspective. One has
also to take into account semantic consistency issues that become immediately
visible because of the discrete nature of the data.

A6. Attribute Remapping. If data semantics allow it, re-mapping of relation
attributes can amount to a powerful attack that should be carefully considered.
In other words, if Mallory can find an even partial value-preserving mapping (the
resulting mapped data set is still valuable for illicit purposes) from the original
attribute data domain to a new domain, a watermark should hopefully survive



such a transformation. The difficulty of this challenge is increased by the fact
that there likely are many transformations available for a specific data domain.
This is thus a hard task for the generic case. One special case is primary key
re-mapping.

4.2 A Solution

In [25], [36] Sion et. al. introduce a novel method of watermarking relational
data with categorical types, based on a set of new encoding channels and al-
gorithms. More specifically, two domain-specific watermark embedding chan-
nels are used, namely (i) inter-attribute associations and (ii) value occurrence

frequency-transforms of values.
Overview. The solution starts with an initial user-level assessment step in which
a set of attributes to be watermarked are selected. In its basic version, water-
mark encoding in the inter-attribute association channel is deployed for each
attribute pair (K, A) in the considered attribute set. A subset of “fit” tuples
is selected, as determined by the association between A and K. These tuples
are then considered for mark encoding. Mark encoding alters the tuple’s value
according to secret criteria that induces a statistical bias in the distribution for
that tuple’s altered value. The detection process then relies on discovering this
induced statistical bias.

The authors validate the solution both theoretically and experimentally on
real data (Wal-Mart sales). They demonstrate resilience to both alteration and
data loss attacks, for example being able to recover over 75% of the watermark
from under 20% of the data.
Solution Details. For illustration purposes, let there be a set of discrete at-
tributes {A, B} and a primary data key K, not necessarily discrete. Any at-
tribute X ∈ {A, B} can yield a value out of nX possibilities (e.g., city names,
airline names). Let the number of tuples in the database be N . Let b(x) be the
number of bits required for the accurate representation of value x and msb(x, b)
its most significant b bits. If b(x) < b, x is left-padded with (b − b(x)) zeroes to
form a b-bit result. Similarly, lsb(x, b) is used to denote the least significant b bits
of x. If by wm denotes a watermark to be embedded, of length |wm|, wm[i] will
then be the i-th bit of wm. Let set bit(d, a, b) be a function that returns value d
with the bit position a set to the truth-value of b. In any following mathematical
expression let the symbol “&” signify a bit-AND operation. Let Tj(X) be the
value of attribute X in tuple j. Let {a1, ..., anA

} be the discrete potential values
of attribute A. These are distinct and can be sorted (e.g., by ASCII value). Let
fA(aj) be the normalized (to 1.0) occurrence frequency of value aj in attribute
A. fA(aj) models the de-facto occurrence probability of value aj in attribute A.

The encoding algorithm (see Figure 11) starts by discovering a set of “fit”
tuples determined directly by the association between A and the primary relation
key K. These tuples are then considered for mark encoding.
Step One. A tuple Ti is said to be “fit” for encoding iff H(Ti(K), k1) mod
e = 0, where e is an adjustable encoding parameter determining the percentage
of considered tuples and k1 is a secret max(b(N), b(A))-bit key. In other words, a



wm embed alt(K,A,wm,k1,e,ECC)
wm data← ECC.encode(wm,wm.len)
idx← 0
for (j ← 1; j < N ; j ← j + 1)

if (H(Tj(K), k1) mod e = 0) then
t← set bit(H(Tj(K), k1), 0, wm data[idx])
Tj(A)← at

embedding map[Tj(K)]← idx

idx← idx + 1
return embedding map

Fig. 11. Encoding Algorithm (alternative using embedding map shown)

tuple is considered “fit” if its primary key value satisfies a certain secret criteria
(similar criteria are found in various frameworks, e.g., [16]). The fit tuples set
will then contain roughly N

e
elements.

The “fitness” selection step provides several advantages. On the one hand
this ensures secrecy and resilience and, on the other hand, it effectively “mod-
ulates” the watermark encoding process to the actual attribute-primary key
association. Additionally, this is the place where the cryptographic safety of the
hash one-wayness is leveraged to defeat invertibility attacks (A5). If the avail-
able embedding bandwidth N

e
is greater than the watermark bit-size |wm|, error

correcting codes (ECC) are deployed that take as input a desired watermark
wm and produce as output a string of bits wm data of length N

e
containing a

redundant encoding of the watermark, tolerating a certain amount of bit-loss,
wm data = ECC.encode(wm, N

e
).

Step Two. For each “fit” tuple Ti, we encode one bit by altering Ti(A) to become
Ti(A) = at where

t = set bit(msb(H(Ti(K), k1), b(nA)), 0, wm data[msb(H(Ti(K), k2), b(
N

e
))])

and k2 is a secret key k2 6= k1. In other words, a secret value of b(nA) bits is
generated – depending on the primary key and k1 – and then its least significant
bit is forced to a value according to a corresponding position in wm data (ran-
dom, depending on the primary key and k2). The new attribute value is thus
selected by the secret key k1, the associated relational primary key value and a
corresponding bit from the watermark data wm data.

In the decoding phase (see Figure 13), the first aim is to discover the embed-
ded wm data bit string. The same criteria for discovering “fit” tuples is used.
For each “fit” tuple Ti, with Ti(A) = at, its corresponding entry in the result bit
string is set to (t&1)

wm data[msb(H(Tj(K), k2), b(
N

e
))]← (t&1)
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Fig. 12. Overview of multi-bit watermark encoding.

Once wm data (possibly altered) is available, the error correcting mechanism is
invoked to generate the “closest”, most likely, corresponding watermark wm =
ECC.decode(wm data, |wm|).

The authors propose a natural extension to the above solution aimed at de-
feating vertical partitioning attacks (A1.b). Instead of relying on the association
between the primary key and A, the extended algorithm considers all pairs of
attributes and embeds a watermark separately in each of these associations. Ad-
ditionally, if data constraints allow, the authors propose watermarking each and
every attribute pair by first building a closure for the set of attribute pairs over
the entire schema that minimizes the number of encoding interferences while
maximizing the number of pairs watermarked. To solve the issue of interference,
maintaining a mark “interference graph” is proposed.

The proposed extension features a particular issue of concern in certain cases
of multi-attribute embeddings where two non-key attributes are used in the en-
coding, i.e., mark(A,B). Because of the correlation between the watermarking
alteration (the newly selected value Ti(B) = bt) and its actual location (de-
termined by the fitness selection, H(Ti(A), k1) and e), sometimes Mallory can
mount a special attack with the undesirable result of revealing some of the mark
bit embedding locations. This occurs if the fitness criteria decides that a partic-
ular value of A yields a tuple fit and that value of A appears then in multiple
(statistically significant number of) different tuples. This is possible only if A
is not a primary key but rather another categorical attribute, with repeating
duplicate values.



wm dec alt(K,A,k1,e,ECC,embed map)
for (j ← 1; j < N ; j ← j + 1)

if (H(Tj(K), msb(k, b(K))) mod e = 0) then
determine t such that Tj(A) = at

wm data[embed map[Tj(K)]] = t&1
wm← ECC.decode(wm data,wm.length)
return wm

Fig. 13. Decoding Algorithm (alternative using embedding map shown)

The authors propose a set of solutions to this issue, including composing
the actual watermark encoding out of a combination of several different sub-
encodings, each in turn using a different k1 value. Each such sub-encoding will
ignore all tuples with previously seen values of the attribute A (in the fitness
criteria). While each of these “low impact” encodings would be weaker than
the original solution, their combined “sum” can be made arbitrarily strong, by
increasing their number. At the same time correlation attacks would be defeated,
as each of the encodings would use a different key thus making such attacks
impossible “across” the encodings.

The authors further discuss additional extensions and properties of the solu-
tion, including the following.

– Consumer-Driven Design: The solution features a consumer-driven design.
Each property of the database that needs to be preserved is written as a
constraint on the allowable change to the dataset. The watermarking algo-
rithm is then applied with these constraints as input and re-evaluates them
continuously for each alteration. A backtrack log is kept to allow undo oper-
ations in case certain constraints are violated by the current watermarking
step.

– Incremental Updatability: The solution supports incremental updates nat-
urally. As updates occur to the data, the resulting tuples can be evaluated
on the fly for “fitness” and watermarked accordingly.

– Blind Watermarking: The method does not require the availability of the
un-watermarked data at detection time.

– Minimizing Alteration Distance: An interesting problem to consider is the
case when, for a given “fit” tuple, certain alterations would be preferred to
others (e.g., changing “Chicago, O’Hare” into “Chicago” is preferred to “Las
Vegas”). The authors propose to handle this scenario by a modified encoding
procedure that naturally accommodates and minimizes such an “alteration
distance” metric.

– Extreme Vertical Partitioning: To counter extreme vertical partitioning at-
tacks in which only a single attribute A is preserved in the result, the authors



propose to encode a watermark in one of the only remaining characteristic
properties, namely the value occurrence frequency distribution for each pos-
sible value of A. To do so a scheme of watermarking for numeric sets [30]
can be applied in this “frequency” domain.

– Multi-Layer Self-Reinforcing Watermarks: To counter the scenario where
Mallory gains knowledge, e.g., during a court hearing, of a multiply-used
encoding key, the authors propose to embed multiple (i) weak watermarks
with different secret keys and reveal in court only a certain subset of these,
or (ii) self-re-enforcing pairs of watermarks (w1, w2)i with different keys
(k1

1
, k1

2
, k2

1
, k2

2
)i such that, for example, altering w2 will result in enforcing

w1.
– Multiple Data Sources: The paper also points out that the solution handles

recovering watermarks from data derived from multiple data sources. This
scenario is of particular interest for example in the case of an equiJOIN
performed between two data sets. Because watermarks rely on a bias in the
association between attributes, they can be naturally retrieved from such
JOIN result under certain reasonable assumptions.

– Categorical and Numerical Data Types: Watermarking at the intersection
of categorical and numerical types is also explored. It is of interest to provide
a rights assessment mechanism that could not only prove rights but also that
the associated data sets were actually produced “together”; this is relevant
for example if the intrinsic value of the data lies in the actual combination

of the two data types. The authors introduce initial ideas.
– Bijective Attribute Re-mapping: To handle a scenario in which categorical

attributes are re-mapped through a bijective function to a new data domain,
the authors propose to discover the inverse mapping. This is possible if the
initial data domain features distinguishing properties (e.g., value occurrence
frequency histogram) that are likely to be preserved in the mapped result.

5 Related Work

So far we have discussed a set of relational data types and associated watermark-
ing methods enabling future rights assessment proofs. We now survey a number
of related research efforts that explore Information Hiding and Watermarking
for relational data in other security contexts such as privacy enforcement and
license violators tracing.

5.1 Privacy and Rights Protection

In [4] Bertino et. al. explore issues at the intersection of two important dimen-
sions in data-centric assurance, namely rights assessment and privacy, in the
broader context of medical data. A unified framework is introduced that com-
bines binning and watermarking techniques for the purpose of achieving both
data privacy and the ability to assert rights.

The system design borrows components from existing work. More specifi-
cally, the binning method (for k-anonymity) is built upon an earlier approach



of generalization and suppression by allowing a broader concept of generaliza-
tion. Similar to the consumer-driven paradigm discussed earlier in this chapter,
to ensure data usefulness, binning is constrained by usage metrics that define
maximal allowable information loss. An initial binning stage is followed then by
watermarking. The framework then deploys a version of the encoding for cat-
egorical types [36] by Sion et. al. in a hierarchical fashion, for the purpose of
defeating a data generalization attack of concern in this framework. The pa-
per then explores whether watermarking can adversely interfere with binning
and conclude that the interaction is safe. Experiments were conducted aimed at
validating the robustness of the proposed framework.

5.2 Fingerprinting

Another example application of Resilient Information Hiding as a tool aiding
rights management, is its deployment to “track” license violators by hiding a spe-
cific mark inside the Work, uniquely identifying the party it was sold/outsourced
to. This application is commonly referred to as fingerprinting. If the Work would
then be found in the public domain, that mark could be used to assess the source
of the leak.

One significant matter of concern in fingerprinting are collusion attacks. In
a collusion attack, multiple attackers “collude” by obtaining multiple copies
of the same Work (e.g., by purchasing it separately under different identities)
watermarked with different marks, in the hope of “combining” the different
copies into a single un-watermarked version. Defending against this attack is
not possible in the general case when the number of colluding partners cannot
be upper bounded. If this upper bound can be determined however, several
results provide appropriate coding techniques that allow tracing even in the case
of collusion under minimal assumptions [5] [6] [13].

For relational data, the issue of fingerprinting has been discussed by Li et. al.
in [21] where they propose to deploy their multi-bit watermarking method [19]
for this very purpose. To handle collusion attacks the authors defer to research
in [5] [6] [13]. This work is discussed in more detail elsewhere in this book.

5.3 Tamper Detection through Fragile Watermarking

In [17] Li et. al. explore the issue of detecting malicious alterations to data by
embedding a “fragile” watermark in the data. While in this chapter we presented
watermarking as a technique deploying Information Hiding for the purpose of
rights assessment, in this context, “watermark” is attached to a different se-
mantics. Whereas in rights assessment, a watermark features resilience to value-
preserving data alterations, for the purposes of tamper detection, the “water-
mark” will be “fragile” so as to become a detector for exactly such alterations.
The authors also propose to allow this watermark to point at the locations where
alterations have occurred in the data.

At an overview level, the method proceeds as follows. The data is partitioned
into secret subsets; a keyed cryptographic hash of each such subset (in effect the



traditional message authentication code MAC) is then embedded in the group
by re-ordering its items with respect to a canonical ordering, based on a cryp-
tographic hash of their primary key attribute. The encoding is claimed fragile
enough to be impacted by even minor alterations to the data with reasonable
probabilities. Additionally, the encoding can pinpoint at the exact location of
the alteration with the granularity of a subset.

Compared with traditional authentication techniques (e.g., appending sig-
natures of MACs) such a technique can become of relevance, e.g., when the
overhead of storing and managing the signatures or MACs for a large number
of entities is not negligible. This is why it is important to further explore and
understand fragile watermarking scenarios. This work is discussed in more detail
elsewhere in this book.

5.4 Query Learnability and Consumer-Driven Watermarking

In [12] Gross-Amblard introduce interesting theoretical results investigating al-
terations to relational data (or associated XML) in a consumer-driven framework
in which a set of parametric queries are to be preserved up to an acceptable level
of distortion.

The author first shows that the main difficulty preserving such queries “is
linked to the informational complexity of sets defined by queries, rather than
their computational complexity” [12]. Roughly speaking, if the family of sets
defined by the queries is not learnable [37], no query-preserving data alteration
scheme can be designed.

In a second result, the author shows that under certain assumptions (i.e.,
query sets defined by first-order logic and monadic second order logic on re-
stricted classes of structures – with a bounded degree for the Gaifman graph
or the tree-width of the structure) a query-preserving data alteration scheme
exists.

This research is important as it has the potential to enable a better under-
standing of consumer-driven watermarking designs. For example, as database
instances are often having a bounded degree Gaifman graph (or a bounded tree-
width), these can now be measured and the information capacity of a query-
preserving alteration channel can be computed. This is of interest in the case of
extremely restrictive constraints, e.g., when it is not clear if watermarking can
yield enough resilience.

6 State of The Art and the Future

Watermarking in relational frameworks is a relatively young technology that
has begun its maturity cycle towards full deployment in industry-level applica-
tions. Many of the solutions discussed above have been prototyped and validated
on real data. Patents have been filed for several of them, including Agrawal
et.al. [1, 16] and Sion et.al. [29, 30, 32, 33] [34] [25, 27, 36]. In the next few years
we expect these solutions to become available commercially, tightly integrated



within existing DBMS (e.g., DB2 [10]) or as stand-alone packages that can be
deployed simultaneously on top of multiple data types and sources. Ultimately,
we believe the process of resilient information hiding will become available as
a secure mechanism for not only rights protection but also data tracing and
authentication in a multitude of discrete data frameworks.

7 Conclusions

In this chapter we explored how Information Hiding can be successfully deployed
as a tool for Rights Assessment for discrete digital Works. We analyzed solutions
for resilient Information Hiding for relational data, including numeric and cate-
gorical types.

A multitude of associated future research avenues present themselves in a
relational framework, including: the design of alternative primary or pseudo-
primary key independent encoding methods, a deeper theoretical understanding
of limits of watermarking for a broader class of algorithms, the ability to better
defeat additive watermark attacks, an exploration of zero-knowledge watermark-
ing etc.

Moreover, while the concept of on-the-fly quality assessment for a consumer-
driven design has the potential to function well, another interesting avenue for
further research would be to augment the encoding method with direct awareness
of semantic consistency (e.g., classification and association rules). This would
likely result in an increase in available encoding bandwidth, thus in a higher
encoding resilience. One idea would be to define a generic language (possibly
subset of SQL) able to naturally express such constraints and their propagation
at embedding time.

Additionally, of particular interest for future research exploration, we en-
vision cross-domain applications of Information Hiding in distributed environ-
ments such as sensor networks, with applications ranging from resilient content
annotation to runtime authentication and data integrity proofs.
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