Collaborative Location Certification
for Ad-Hoc Sensor Networks

Sol Lederer

Jie Gao

Radu Sion

Computer Science, Stony Brook University
{lederer, jgao, sion}@cs.stonybrook.edu.

Abstract— Location information is of essential importance
in ad-hoc sensor networks deployed for generating location-
specific event reports. When such networks operate in hostile
environments, it becomes imperative to guarantee the correctness
of event location claims. In this paper we address the problem of
assessing location claims of un-trusted (potentially compromised)
nodes. The mechanisms introduced here prevent a compromised
node from generating illicit event reports for locations other
than its own. To achieve this goal, in a process we call location
certification, data routed through the network is “tagged” by par-
ticipating nodes with “belief” ratings, collaboratively assessing
the probability that the claimed source location is indeed correct.
The effectiveness of our solution relies on the joint knowledge of
participating nodes to assess the truthfulness of claimed locations.
By collaboratively generating and propagating a set of “belief”
ratings with transmitted data and event reports, the network
allows authorized parties (e.g. final data sinks) to evaluate a
metric of trust for the claimed location of such reports. Belief
ratings are derived from a data model of observed past routing
activity. The solution is shown to feature a strong ability to
detect false location claims and compromised nodes. For example,
incorrect claims as small as 2 hops (from the actual location) are
detected with over 90% accuracy.

[. INTRODUCTION

Node location information plays a fundamental role in ad-
hoc networks. Specifically, in sensor networks, it is critical that
the reported location of all nodes are accurate, to ensure a point
of reference for location-specific applications. Thus, a robust
network must require such information be uncompromised,
lest a few faulty or malicious nodes will have a deleterious
effect on the entire network.

Existing work investigates secure localization [11], i.e., how
nodes determine their own location in a hostile environment,
and secure location verification [15,16], determining the lo-
cation of a node in the face of liars. Typically these protocols
involve special anchor nodes, or nodes whose location is
not corruptible. Based on the distance to these nodes, the
location of the remaining nodes is determined with certain
assurances by deploying distance-measuring RF or ultrasound-
based mechanisms and performing multi-way handshakes
under synchronized clocks assumptions. These methods are
designed to be used when the network is first deployed, to
establish the location of all nodes during its initial setup.

However, when operating in hostile environments, it is
essential to secure location information claims at runtime, in

Radu Sion is partly supported by the NSF Cybertrust award CNS-0627544
and by the Stony Brook Office of the Vice President for Research.

the presence of compromised nodes, that could falsify location
claims and inject incorrect event reports into the information
stream. False location information may lead the data sink to
take action in a location where none is warranted, and vice
versa, not take action in the area where a response is necessary.

We introduce a protocol that validates the truthfulness
of location information associated with event reports. The
protocol relies on the collaborative interaction of the network
nodes to find compromised parties. Since each node is an
active participant in the network and spends a substantial
amount of time and resources relaying messages for others, it
automatically has some knowledge of the activity within the
network. This knowledge can be put to good use in spotting
anomalous behavior. The workload and detection ability is
thus distributed across the network, to avoid a single point
of failure and gracefully degrade with increasing number of
compromised nodes.

To achieve this goal, at an overview level, nodes in the
network (compactly) record summaries of routing paths taken
by packets through the network. Upon receiving a packet,
nodes examine whether their route matches a historically
expected behavior by packets from the same claimed location.
A belief about the correctness of this location claim of this
packet is then created and propagated to the data sink, either
as part of this packet or later on, in an out of band fashion.
The attached beliefs will be used by the authorized packet
evaluators PEs (sinks or authorized intermediate relay nodes)
to certify the truthfulness of the packets’ location information.

The memory limitations of sensor nodes require light-
weight protocols both in terms of memory and power usage.
Accordingly, we developed a path metric and a compact way
to express path trajectories, by using locality-sensitive hashing
[7]. This metric captures the fact that packets from sources
with incorrectly claimed locations are likely to have path
trajectories deviating from previously observed traffic paths.

II. RELATED WORK

Secure localization has been studied by a number of groups.
For example, the SeRLoc protocol [11] tackles secure local-
ization by using specially equipped “locator” nodes that emit
powerful beacon signals through the networks. Depending on
the beacons a node hears, it computes the “center of gravity” of
the overlapping regions to determine its location. The locator
devices are assumed to be tamper proof. Elsewhere [12] robust
statistics are used to improve the resilience of an anchor-

based localization algorithm in a hostile environment where
the nodes may receive false information from the neighbors.

Even though the nodes can obtain their locations correctly
by these secure localization protocols or extra secure location
support such as GPS, they do not prevent a node from lying
about its location and generating event reports with a false
location claim. A few existing protocols have tackled this
problem for inter-node settings, mainly using fine grained
timing analysis of signal travel times, under the assumption
of high accuracy clocks available on sensors.

II1. MODEL

In this section we discuss the considered adversarial and
deployment models.

A. Adversary

Of concern here is a malicious, powerful adversary with
strong incentives to capture and compromise sensors for the
purpose of altering the sensor data flow, e.g., by inserting
false data and event reports and eventually influencing decision
making process at the base station. For such an adversary, pure
denial of service (DOS) attacks that aim to disable sensors and
parts of the network are only of marginal interest and will not
be considered here. For DOS attacks, [3, 17] offer techniques
to address these issues. Multi-path forwarding [9] alleviates the
problem of malicious relay nodes dropping legitimate reports.
Also, by using a cache to store the signatures of recently
forwarded reports we can prevent against the same packet from
being replayed [8, 18].

Through the process of what we call location certification,
data routed through the network will be “tagged” by participat-
ing nodes with “belief” ratings, collaboratively assessing the
probability that the claimed source location is indeed correct.
We call this process

To circumvent location certification (e.g., for the purpose of
injecting fake event reports referencing remote, out of reach
locations) an adversary could attempt to: (i) favorably modify
certificates for its own fake data (e.g., by altering the asso-
ciated belief ratings), or (ii) unfavorably alter certificates of
legitimate traffic. The probability of success of such attempts
is naturally related to the density of compromised nodes in
the network. The ability of success adapts gracefully to the
density of compromised nodes and the solution can operate
even in the presence of a large number of adversarial nodes,
as validated through simulations.

For illustration purposes, we first consider an adversary that
only attempts to maliciously claim a different location in its
event reports (but does not maliciously alter belief ratings of
other packets it routes). We then discuss additional security
issues in section V.

B. Deployment. Routing.

We focus in this paper primarily on monitoring networks
in which the sensors collect information of interest and send
data/event reports to a base station (data sink) for post-
processing and analysis. Immediately after deployment, for
an initial short period, the network is assumed free from any

adversarial presence. Since our location certification procedure
is based on using past history of network routes, we must
assume that the original history is initially “clean”. The better
the history data is in terms of “cleanliness”, the better the
location certification will perform.

IV. COLLABORATIVE LOCATION CERTIFICATION

In this section we detail the main components of the location
certification protocol.

A. Solution Overview

At an overview level, the proposed solution unfolds as
follows. Immediately after deployment, network secure lo-
calization protocols [11] allow sensors to acquire location
information that is to be later used in event reports. Existing
research achieves this by assuming a largely un-compromised
network for a short amount of time after deployment. We
believe this is reasonable, especially if we consider the min-
imal time and resource requirements for corrupting even an
individual sensor. In other words, even in the presence of an
adversary with immediate physical access to a sensor node,
some amount of time (e.g. minutes) will be required to locate
and compromise the sensor internals and software.

Once the network becomes fully operational, sensors will
start generating event reports associated with their respective
location. A compromised sensor could then attempt to generate
illicit event reports for locations other than its own. To defeat
such an adversary, nodes along the path from the source to
destination will attach “belief” ratings to passing data packets,
quantifying the correctness probability of the claimed source
locations. Informally, beliefs are a function of observed past
traffic patterns in conjunction with the claimed source location.
Upon receiving packets with routing information deviating
from expected traffic patterns, nodes will have the opportunity
to propagate negative belief ratings associated with these
packets. The negative beliefs reflect the appearance of an
anomaly in the routing pattern.

Thus this scheme is able to detect both the case in which
the routing pattern is altered by an adversary (a compromised
node lies about its location, or other routing attacks such as
wormhole attacks [6,13,14]) and the case of node failures
— a large fraction of nodes run out of battery power or
get physically destroyed by adversaries causing significant
routing pattern changes. A node which rarely participated
in the data collection operation will get a low confidence,
which is reasonable as the network collectively has little or
no information to decide whether it is a legitimate node.

We re-iterate that this solution assumes the network is
initially free from adversaries for a short period of time. If
a large number of compromised nodes is present at the start
and they are able to generate arbitrary traffic patterns then
collaborative certification will be less effective. In a typical
deployment there is often a short period of time which is
more than enough for our scheme to collect enough history
traffic data. With this limitation in mind, we believe that the
novelty in our scheme lies in the compact and efficient way of
summarizing the history traffic pattern and the ability of using
the history to verify the correctness of future packets.

B. Strawman’s Book-keeping.

Before proceeding, to illustrate, we first discuss an ex-
tremely simple book-keeping mechanism, the understanding
of which will motivate our final solution. As part of the
routing protocol, each sensor will maintain a history and
normalized count of each previously seen source-destination
pair for routed packets. New incoming packets from rarely
seen sources will then be considered more suspicious and
associated with a low rating.

While this scheme is extremely simple and scalable, it
presents certain limitations, in particular in its ability to
detect deviations in full routes (as opposed to endpoints). If a
node does route information between the claimed origin and
destination, then the packet from an adversary claiming to
be from a different location will be considered fair game. To
achieve a better detection accuracy, more information about
information flow is required in the belief rating construction.

C. Inter-Path Distance Metric

Accordingly, we explore first how to compare packet routes
efficiently in a meaningful way. Based on the sequence of
nodes a packet has visited, we derive a trajectory of a packet by
the piece-wise linear curve connecting the intermediate nodes
in their visited order.

We define a distance metric that measures how far two tra-
jectories are. The distance is designed such that fake claimed
locations for packets will result in large distances between
real and expected trajectories. There are many generic ways
to measure the distance between two curves in space, such
as Hausdorff distance and Frechét distance. Here we design a
measure well suited to our problem at hand.

Pk
D1 P

P P’ Ph

Fig. 1. The distance metric between two paths P, P’. In this figure we adopt
a uniform parametrization and the samples are placed uniformly on the paths.

Given a trajectory P (a curve in the plane), we adopt
a parametrization (e.g., uniform, but other parameterizations
may also be used, as will be shown later) and take k samples
{p1,p2, -+ ,pr}, on P. We define the distance between two
paths P, P’ as w(P,P’) = Zle llpi — pi||?, the sum of
squared distance between corresponding sample points. From
a different viewpoint if a path P is considered a point in
2k dimensional Euclidean space p = (p1,p2,- - ,px) (each
point p; is a point on 2D), the distance between two paths
is the squared {2 norm of their corresponding representative
2k-dim points. In the following we will see this observation
become very useful in the design of a succinct data structure
that summarizes the relative distances of a set of paths by a
set of points on a 1-dimensional line.

D. Locality Sensitive Hashing

The memory foot-print of full path history on sensors would
be too large. Consequently, we adopt locality sensitive hashing

Fig. 2. The real path P taken by a packet from s is different from the path
P’ it should have taken if it were generated from the claimed location s’.

[7] a mechanism perfectly suited to compress such data and
represent each path by a single value. The distance between
two paths then becomes the distance between their compressed
values. In general, locality sensitive hashing takes points in
high dimensional space and maps them to 1D such that
the Euclidean distances between them are roughly preserved.
Recall that each path can be considered as a point in 2k-
dimensional space, which is then hashed to a point in 1D
such that the distance between any two paths is correlated to
the distance between their corresponding 1D points.

Locality-sensitive hashing makes use of the properties of
stable distributions. A stable distribution [4] is a distribution
where the random variable > ; Vi X; has the same distribution
as the variable (3°,[v;|")Y/PX, where X;...X, are iid.
variables from that distribution. It is known that Gaussian dis-
tribution is stable for {5 norm. This means that if we represent
a path P in our network by a vector in 2k-dimensional space
v = (p1,p2, -+ ,px) and generate a random vector a (with
each element chosen uniformly randomly from a Gaussian
distribution ¢(0,1)), of the same dimension, then taking the
dot product of the two vectors, a - v, results in a scalar
distributed as ||v||2X, where || - ||2 is the ¢5 norm, and X
is a random variable with Gaussian distribution o(0,1). It
follows that for two vectors (v, v2) the distance between their
hash values |a - v1 — a - vo| is distributed as ||v; — va||2 X
where X is a random variable of a Gaussian distribution.
Therefore, if we have a vector v;, which represents a path in
our network, we can generate a scalar value from it (by taking
the dot product with a) that still maintains the property that its
distance from another scalar generated by another vector v is
correlated to the original “distance” between v, and ve as we
previously defined. A hash function that uses random variables
of a stable distribution to map high-dimensional vectors to 1D
points satisfies the above definition of locality sensitivity.

Upon receiving a packet with observed trajectory vector v,
each sensor will use locality sensitive hashing to store only
the hashed value h(v) = a- v together with the location where
this packet was generated. For a new packet that claims to
be from the same region, the hashed value of the new packet
is compared with the hashed values in the past history. A
belief rating directly proportional to the difference of these
two values is then generated.

In practice, to reduce overhead, a packet will only carry the
position of the last node visited and the hash value computed
by that node. A new node will update the packet with its own
location and the new hash which is computed as the sum of the
old hash plus this node’s h(v) value. This yields similar results

to the method described above, while significantly reducing
communication overhead.

E. Belief Generation

By the property of locality sensitive hashing, packets taking
paths similar or identical to each other tend to cluster together
on the real line, while packets coming from unknown regions
or following a highly irregular path map to different points.
To express a correctness belief about the claimed location
of incoming packets, their associated hash values are thus
compared with the expected value ranges of nodes originating
from the same region.

V. SECURITY

We now describe the additional measures that must be
taken to ensure that an adversary, or a group of adversaries
working together, does not tamper with the belief ratings or
hash values of packets passing through it. We want to ensure
that (i) individual belief values are not tampered with in
transit, (ii) packets containing incriminating ratings cannot be
distinguished from other traffic, (iii) new fake belief values
are not added to bad-mouth a packet or improve its rating,
and (iv) existing belief ratings are not removed from packets.

A. Semantic Security

To ensure the above, we first require that each sensor be
associated with a unique, public identifier (e.g., MAC) and
with a secret, unique symmetric encryption key, known only
to a very small set of authorized, un-compromised parties such
as the data sink or a few intermediary relays, called packet
evaluators, PEs. This is a reasonable, practical assumption to
be found in existing research [2].

This key can then be used for communication between the
sensor and the PEs. Such communication however, we require
to be deployed using any semantically secure encryption cipher
[5] (e.g., any cipher running in CTR mode). Semantic security
is necessary to prevent an adversary of correlating encrypted
fields in the current packet with fields of previously seen ones
(e.g., if they represent the same value). Our solution does not
depend on the deployed encryption mechanism. Symmetric
key cryptography has been chosen over public key crypto, due
to the computation-limited platform assumed. While details are
out of scope here, we note that more powerful mechanisms can
be devised using asymmetric key primitives. Such mechanisms
would allow optimized, in-network location claim evaluation
and packet filtering, effectively reducing overhead induced by
compromised traffic.

B. Secure Belief Propagation

Upon generating a belief b (composed of a rating and
confidence, see section IV-E) and hash for the current packet,
a sensor ¢ will encrypt it using its shared symmetric key
with the sink k; and append the result Ej, (b) to the packet.
Requirements (i) and (ii) above are naturally handled. To

ensure (iii) and (iv) we propose to use a cryptographic digest!
chain constructs. Specifically, upon propagating a new belief b
with the current packet, a sensor ¢ will perform two operations.
First it will encrypt the belief as above E, (b). Second, it will
update the packet’s digest chain value ¢ as follows:

Cnew < H(Cold|H(b))7

where H is a cryptographic digest, and ‘|’ denotes con-
catenation. At the PEs end, each packet’s digest chain can
be reconstructed and verified upon decrypting all beliefs.
To selectively remove a rating from the packet, a malicious
adversary is faced with having to correctly reconstruct a new
digest chain for the remaining beliefs. This, however, will
require the decryption of those beliefs (using secrets not in the
possession of the adversary). Thus (iii) and (iv) are handled.
An adversary can still attach a bad belief rating, i.e., bad-
mouth a packet. But this is essentially denial of service attack
in which the relay adversary can simply drop the packet from
the data stream. As message digests over small amounts of
data are extremely fast, the induced overhead is minimal.

To summarize, a node receiving a packet will append an
encrypted belief rating, update the digest chain as mentioned
above and deliver the packet to the next hop. The way that
nodes attach belief ratings can be adaptive to the network
scenario and desired detection ability. We now introduce two
belief generation and propagation methods.

VI. OVERHEAD ANALYSIS

Communication. The number of belief ratings that is
propagated with packets is network specific, but in usual
scenarios we estimate 5-6 such values (5-6 bytes total). Other
protocol-related information each packet carries is the location
of the previous node on the path (2 bytes), the cryptographic
digest used to protect the belief ratings (6 bytes) and the hash
value computed by the previous node on the path (2 bytes).
This would yield a total of about 15 bytes. Given that TinyOS
packets in modern applications range anywhere from 36 to
100 bytes [1], this is certainly acceptable, especially in hostile
deployment scenarios where such assurances are required.

In practice we further reduce the overhead by attaching
beliefs in a probabilistic way. Only an adaptively small fraction
of packets are randomly selected to carry beliefs. Alternately,
only a small fraction of relay nodes attach belief ratings. More-
over, in a streaming application scenario, spanning multiple
packets, only the first (header) packet in a data stream will
need to carry this additional information—thus amortizing the
overhead over the entire sequence.

Storage. The storage overhead is determined by the granu-
larity of history traffic patterns. As we do not explicitly store
all the hashed values of packets that visit a node, but rather

'We use “cryptographic digest” to denote a cryptographic hash function,
so as to avoid any confusion with the locality sensitive hash constructs. We
note that the collision resistance of such a hash function is not paramount
here, given that the adversary would have a hard time finding meaningful
collisions within a few minutes (and for a large enough number of packets
to become meaningful), before the packet is due at the sink. We assume the
hash function outputs 6 bytes.

only the mean and standard deviation of the values inside each
quad, this results in a limited overhead. The amount of data
a particular node stores is dependent on a its location within
the network. A node near the center might be involved with
messages passing through from multiple directions, while a
node on the periphery will see data originating from only a
few directions. This impacts the degree to which a node is
able to group hashes of similar areas together.

For example, a maximum depth of the quadtree of 4 proved
sufficient in our simulations to provide a partition of 1/256th
of the network, a very detailed division of the sensor field. For
a node at the center of the network potentially a full quadtree
of depth 4 will be needed, with 4* = 256 leaf nodes. A node
on the periphery with only detailed information on half of
the network, and no detail on the other half may have only
2 % 43 = 128 leaf nodes. Similarly when nodes only route
data to and from a few (1 or 2) sinks, the quadtrees of all
nodes won’t have more than 128 partitions. Each leaf node
requires 3 bytes to store the mean (1 byte), standard deviation
(1 byte), and the number of hashed values (1 byte). For a
quadtree with 128 leaves, this requires 386 bytes of memory.
Moreover, we can further reduce this overhead by adaptively
considering lower depths in (un-interesting sub-branches of)
the quadtrees, depending on available memory.

VII. EXPERIMENTAL RESULTS

We validated our model by simulation with networks of
various sizes, ranging from 50 to 1000 nodes. We considered
geographic routing (GPSR [10]) to route messages between
nodes and data sinks. We note however that our solution is not
hard-coded to GPSR and works with other routing protocols.
To model link and node failures, links and nodes are set to
go offline at various times — links were active only 85% of
the time and nodes 95% on average. Unless where otherwise
noted, we used a single sink located at the center of the
network, at (., /2, % /2), Where w is the width of the network.

The network was first trained to understand the traffic
pattern, by assuming a short interval of uncompromised traffic.
In this interval, nodes normally pass messages to the sink,
while observing routed traffic and building the hash history.
We were then able to test the effect of moving one node to
another location, and compare how the distance moved relates
to our ability to detect it.

A. Model Validation

Figure 3 illustrates that the further away the claimed loca-
tion of a node is, the greater the change to its hash value.
The figure plots the change in hash value with respect to the
change in path “distance”. The x-axis shows the difference
between the honest path and dishonest path by computing their
“distance” as previously defined — by summing the distances
between all the sample points of the 2 paths. For this simu-
lation a network of 50 x 50 was used with a communication
radius of 10 and a sampling rate of 100. A node was randomly
selected at distance at least d from the sink, d being the width
of the network. False locations were acquired by randomly
choosing a direction and calculating the coordinates of the

600 T T T T T T T T

500 - .

400 | .

300 - b

200 9

distance between hash

100 8

D 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
distance between paths

Fig. 3. As the distance between claimed and true location increases so does
the difference between resulting hash values.

belief value
0.7
0.

L0000
o—=NwhOI®

o
m\"
i
/
/
/
[o7]

10 e
S 20 3555

claimed distance 43 L

Fig. 4. The beliefs generated by each node along the path, as the adversary
claimed distance increases.

new claimed location, based on the magnitude of the claim.
The strong linear correlation shows that our distance measure
between paths truthfully captures the severity of the wrong
location claim.

Figure 4 shows the actual belief ratings formed by each node
along a 6 hop path from source to sink. Values are shown for
when the adversary claims to be at positions from 0 to 35
units away away from its real location (or 0 to 4 hops as the
nodes have a radius of 10) in a network of 50 x 50. As can
be seen, the belief quickly drops once the adversary makes a
claim more than 1 hop away.

B. Parameter Fine-tuning

We mentioned how the hash function requires a random
vector of size 2k where k is the degree of parametrization
of the path (“sampling parameter”). Figure 5 shows that even
a low sampling parameter will result in quite accurate belief
ratings. There is no clear distinction between a value k ranging
from 20 to 2000, only the sampling parameter of 10 appears
insufficient. This is important, because, by using a lower
parametrization we reduce the overhead of the hash function
computation. This graph only gives a snapshot of what one

10 samples —+—
20 samples ===d=== 7
50 samples i
100 samples ---Et--
500 samples - |
2 2000 samples ===
=
|
2
o
o
0 05 1 15 2 25 3 35 4
hops
Fig. 5. Belief values (as a function of hop-distance of claimed vs. true

location) using various samplings of the paths. This shows that we can reduce
the overheads of hash function computation by using a lower parametrization.

node “believes”. A node on the path from source to sink
was arbitrarily selected (in this case the node at hop 4) and
it’s beliefs were plotted, this being the reason for the routing
irregularities seen in the figure.

C. Detection of malicious claims

Figure 6 illustrates the percentage of packets accepted by
the data sink after examining their belief values and comparing
them with a “threshold value” for acceptance. Specifically,
the sink will require the average of the lowest 3 beliefs
on the path to be above the threshold to be accepted. The
graph also shows the percentage of honest nodes accepted (the
distance between claimed location and the true location is 0).
Having a high threshold of 80% is too strict, and some honest
packets are therefore incorrectly dropped. For this simulation
we incorporated variability into the routing pattern by having
only 85% of the links be active at any given time (thus the
routes taken by the packets from the same source vary).

The results show that having only a small percentage of
nodes attach beliefs is sufficient for a surprisingly strong de-
tection ability. For example, by just having 5 beliefs attached,
the detection accuracy is 95%.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have introduced a collaborative location
certification scheme that determines whether nodes are falsely
claiming incorrect locations in their event reports to the sink.
Experiments have shown that with low overhead this scheme
can detect incorrect location claims as close as one hop away
from the node’s true location.

REFERENCES

[1] K. Aberer, M. Hauswirth, and A. Salehi. Infrastructure for data
processing in large-scale interconnected sensor networks. Mobile Data
Management (MDM), 2007.

[2] S. A. Camtepe and B. Yener. Key distribution mechanisms for wireless
sensor networks: a survey. Technical Report TR-05-07, Rensselaer
Polytechnic Institute, March 2005.

[3] S. Cheung, B. Dutertre, and U. Lindqvist. Detecting denial-of-service
attacks against wireless sensor networks. Technical Report Technical Re-
port SRI-CSL-05-01, Computer Science Laboratory, SRI International,
May 2005.

10% threshold —+—
50% threshold ===X===
80% threshold «-m-- |

% of packets accepted by sink
o
o
T

0 Bl LT
0 1 2 3 4 L5

claimed hop distance

Fig. 6. The percentage of the number of packets accepted by the sink node
with respect to distance claim of node in terms of the number of hops away
it is from true location. The beliefs received at the sink must be above the
given threshold value to be accepted.

[4] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In SCG
"04: Proceedings of the twentieth annual symposium on Computational
geometry, pages 253-262, New York, NY, USA, 2004. ACM Press.

[5] O. Goldreich. Foundations of Cryptography. Cambridge University
Press, 2001.

[6] Y. C. Hu, A. Perrig, and D. Johnson. Packet leashes: a defense against
wormbhole attacks in wireless networks. In INFOCOM, 2003.

[7]1 P. Indyk and R. Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. In STOC '98: Proceedings of
the thirtieth annual ACM symposium on Theory of computing, pages
604-613, New York, NY, USA, 1998. ACM Press.

[8] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a
scalable and robust communication paradigm for sensor networks. pages
56-67, 2000.

[9] C. Karlof and D. Wagner. Secure routing in wireless sensor networks:

Attacks and countermeasures. Elsevier’s AdHoc Networks Journal,

Special Issue on Sensor Network Applications and Protocols, 1(2—

3):293-315, September 2003.

B. Karp and H. T. Kung. GPSR: greedy perimeter stateless routing for

wireless networks. In MobiCom ’00: Proceedings of the 6th annual

international conference on Mobile computing and networking, pages

243-254, New York, NY, USA, 2000. ACM Press.

L. Lazos and R. Poovendran. SeRLoc: secure range-independent

localization for wireless sensor networks. In WiSe '04: Proceedings

of the 2004 ACM workshop on Wireless security, pages 21-30, New

York, NY, USA, 2004. ACM Press.

Z. Li, W. Trappe, Y. Zhang, and B. Nath. Robust statistical methods for

securing wireless localization in sensor networks. In Proceedings of the

Fourth International Symposium on Information Processing in Sensor

Networks, pages 91-98, 2005.

P. Papadimitratos and Z. J. Haas. Secure routing for mobile ad hoc

networks. In SCS Communication Networks and Distributed Systems

Modeling and Simulation Conference (CNDS 2002), 2002.

K. Sanzgiri, B. Dahill, B. Levine, and E. Belding-Royer. A secure

routing protocol for ad hoc networks. In International Conference on

Network Protocols (ICNP), November 2002.

N. Sastry, U. Shankar, and D. Wagner. Secure verification of location

claims. In In Proc. of WISE 2003, 2003.

B. Waters and E. Felten. Secure, private proofs of location. Technical

Report TR-667-03, Princeton University, January 2003.

A. D. Wood and J. A. Stankovic. Denial of service in sensor networks.

IEEE Computer, 35(10):54-62, 2002.

F. Ye, G. Zhong, J. Cheng, S. Lu, and L. Zhang. PEAS: A robust

energy conserving protocol for long-lived sensor networks. In ICDCS

'03: Proceedings of the 23rd International Conference on Distributed

Computing Systems, page 28, Washington, DC, USA, 2003. IEEE

Computer Society.

[10]

(1]

[12]

[13]

[14]

[15]
[16]
[17]

(18]

