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Abstract

We introduce a novel conditional e-cash protocol allowing future anony-
mous cashing of bank-issued e-money only upon the satisfaction of an agreed-
upon public condition. Payers are able to remunerate payees for services that
depend on future, yet to be determined outcomes of events. Moreover, pay-
ees are able to further transfer payments to third parties. Once payment
complete, any double-spending attempt by the payer will reveal its identity;
no double-spending by any of payees in the payee transfer-chain is possible.
Payers can not be linked to payees or to ongoing or past transactions. The
flow of cash within the system is thus both correct and anonymous. We
discuss several applications of conditional e-cash including online trading of
financial securities, prediction markets, and betting systems.

1. Introduction

Electronic cash (e-cash) instruments allow digital payment for goods and
services. Desirable properties of such protocols include: the ability to effect
anonymous payments, the detection and prevention of malicious behavior
(e.g., double spending), as well as the transactional consistency of the par-
ticipants’ financial state. A multitude of e-cash protocols have been proposed
in the recent past. The main desiderata in such efforts has often been achiev-
ing digitally, levels of similarity and ease of use comparable to physical cash.

There are scenarios however, where basic e-cash properties are not suf-
ficient. Here we consider the case of payments conditional on unknown fu-
ture outcomes. In such settings, payers require the ability to anonymously
remunerate payees for items that depend on future, yet to be determined
outcomes of events. Prominent examples include trading of financial mar-
ket instruments such as futures and securities (K. J. Arrow and G. Debreu,
1954; Balasko, 1986; Samuelson, 1947), and other online protocols involving
deferred conditional payments such as betting.
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Correctness assurances are essential. Payees need to be confident that
payment will occur with certainty for favorable future event outcomes. Pay-
ers should be able to cash back un-cashed issued conditional payments for
events with unfavorable outcomes. Overall monetary consistency needs to
be preserved.

We note that trivial designs for such mechanisms can be envisioned, e.g.,
involving the e-cash issuing institution (i.e., bank) as a trusted arbitrator.
Such assumptions, however, are rarely desirable. Requiring knowledge about
the semantics of each and every considered future event at the bank is not
scalable for even moderate transaction throughputs, considered events, and
number of parties2. Moreover, an important concern in such scenarios is the
privacy of participants. It is important to protect the privacy of interactions
between payer and payee entities. Revealing identities should only be pos-
sible as a counter-incentive for faulty behavior (e.g., double spending) and
specifically not during a correct run of the protocol.

Thus, one of the main challenges of a sound design is assuring partici-
pants’ privacy while guaranteeing the conditional nature of payments. Payers
and payees will naturally know each other, either by knowing each other’s
identity or at least by having access to a pre-authenticated channel through
which to transfer public keys. No other party however should be able to
associate them with each other and the conditional payments. While many
existing e-cash protocols provide for participant anonymity, they cannot be
directly deployed for payments of a conditional nature.

In this paper we introduce a new conditional e-cash protocol featuring
the following properties. A payer can ask her bank to issue an anonymous
payment token that can be cashed by any potential payee, once and if and
only if a trusted publisher3 will publish a specific secret (which only the
publisher can do) in the future. In effect, payers are now able to remunerate
payees (e.g., merchants) anonymously, for services that depend on future,
yet to be determined outcomes of events. Moreover, the payee, can further
transfer the payment to a third party with full assurances. Once payment
complete, any double-spending attempt by the payer will reveal its identity.
Moreover, no double-spending by any of the payees (in the payee-to-payee

2Additionally, arguably, very few banks would enter such an arbitration business.
3The publisher can be considered a “manager” of events – e.g., a stock market admin-

istrator, a race organizer.
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transfer chain) is possible. Payers can not be linked to payees or to ongoing
or past transactions. The flow of cash within the system is thus both correct
and anonymous.

We explore a series of applications for conditional payments, including the
online trading of securities, prediction markets, and online betting protocols.

The paper is organized as follows. We discuss the operational and adver-
sarial models in Section 2 and related work in Section 3. We introduce and
analyze the basic payment protocol in Section 4 and discuss transferrability
in Section 5. We explore applications such as anonymous online betting in
Section 6 and conclude in Section 7.

2. Model

A payer remunerates a payee by providing a payment token that can be
activated and cashed at a specific bank, but only when a secret is published
by a trusted publisher upon the completion of a certain agreed-upon event
with a “favorable” outcome (e.g., stock price below given threshold, horse
won race). Events with two possible outcomes will be considered (“favor-
able” – payment should be honored, and “unfavorable”). No other party
but the publisher can generate the secret (under computational intractabil-
ity assumptions). Without sacrificing generality, we will consider a single
such event/secret combination, but there may be possibly many payees and
payers exchanging conditional payments for a single event. The protocol
guarantees the following:

P1. The bank is not able to associate previously issued conditional pay-
ments (to payers) with identities of principals (payers or payees) cashing
them later.

P2. Double spending by both the payers and the payees is prevented.
Moreover, if a payer re-uses the payment token for a different payee, its
identity is revealed to the bank.

P3. The payer is able to cash back the payment token in the case of an
unfavorable outcome.

P4. Once the payee accepts the conditional payment from the payer,
she will be able to cash it in with high probability in the case of a favorable
outcome, when the publisher publishes the associated enabling secret. In this
case, if the payer attempts to spend the payment token the payer’s identity
will be revealed to the bank (this is discussed in P2).
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P5. The publisher cannot infer any information about the existence of
payer-payee-bank interactions solely through the protocol.

P6. The bank cannot infer any event-specific details (other than its
outcome).

P7. Neither the payer nor the payee should be able to prove to outside
parties that they interacted in a conditional payment protocol (deniability).

2.1. Operational Model

Let A be the payer, C the payee, B the bank and T the trusted publisher.
Factoring large composite numbers is hard. There exists a PKI infrastructure
based on RSA. For any party X, we denote by id(X) its identity, NX its
public RSA modulus, eX its public key and dX its private key.

In our work we use the concept of a network anonymizer, or mix network
(Dingledine et al., 2004). Mix networks consist of serially composed servers,
each transforming a set of input messages into a permuted and re-encrypted
set of output elements. Mix networks ensure that as long as an adversary is
unable to corrupt more than a certain number of servers, they are not able to
link the communicating parties. This includes the fact that the destination
cannot infer the identity of the communication’s source. Chaum (Chaum,
1981) was the first to formalize the concept of mix networks, while numerous
other works (Abe, 1998; Park et al., 1994; Dingledine et al., 2004), have
provided various solutions. We assume such tools can be deployed by both A
and C to communicate with B and with each other. Let Mix be a notation
for such an anonymizer.

Whenever possible point-to-point communication will be encrypted se-
mantically secure 4, including links passing through an anonymizer towards
the bank. These will be encrypted with no forward security by using a session
key generated by the anonymous party (e.g., C, when communicating with
B). The bank B manages client accounts and assists clients by generating
or cashing traditional and conditional e-cash payments.

Let b denote the public “name” of the considered future event. Let t
be the corresponding secret published by T in the case of a favorable (for
payment) outcome. Without loss of generality we will consider b to be a large
prime number, and t = b−1 mod φ(NT ), where φ() is Euler’s totient (this is
discussed further in Section 4.3). If the event’s outcome is not favorable, T

4With keys being generated using authenticated DH or equivalent.
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is trusted to immediately discard any information that could enable other
parties to reconstruct t or portions thereof. We stress it is important for T
to not collude with the payee to reveal the payer’s identity by publishing t
and allowing C to cause a payer double-spending condition. The publishing
process of T could be as simple as maintaining an authenticated website. For
scalability, outside of the publishing process, no interaction between T and
other participants is required by the protocol.

2.2. Adversary

As discussed above we are concerned with a computationally bounded
adversary. Because the message exchanges are encrypted, and the protocol
only uses anonymizers when no authentication is required, we will consider
here mainly the insider threat. Both the bank and the publisher should not
be able to infer any additional information about ongoing or past conditional
payment transactions. Specifically, without their direct cooperation, A and
C should not be identifiable as conditional payment partners. Additionally,
no subset of participants should be able to collude and violate any of the
properties above.

2.3. Crypto Tools

For completeness, we will briefly discuss blind signature protocols.
Let a party A engage in a blind signature protocol with B (B is the

signing party). At the end of a correct run of the protocol, A will be in
the possession of a “well-formed” (e.g., “$10“) message signed by B, such
that B does not know the message contents but is (sufficiently) confident of
its “well-formed”-ness. It can be considered that B’s signature semantics in
fact speak only about the fact that the message is “well formed”. Thus, the
“blind” signature should not be interpreted to mean anything else. We now
overview an instance, namely the cut-and-choose protocol (Chaum, 1982)
(Chaum, 1985) (Chaum, 1988) (Chaum et al., 1990).

Let SB(M) denote B’s signature on message M . A generates n “well-
formed” messages {M1, . . . , Mn}, such that any of them signed by B (i.e.,
any of {SB(M1), . . . , SB(Mn)}) would satisfy A as an end-result. A “blinds”
all n messages with different blinding factors and sends them to B. A blinded
message cannot be read unless the corresponding blinding factor is known.
B requests n − 1 randomly chosen blinding factors from A. It un-blinds
the corresponding messages and verifies that they are “well formed”. B is
now convinced that with probability 1 − 1/n, the remaining message is also
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well formed. By making n arbitrarily high, this confidence can also be made
sufficiently high. B then signs the remaining blinded message Mj and sends it
back to A, who simply un-blinds it. The blinding mechanism is designed such
that a message first blinded by A, then signed by B, can be transformed into
its simple signed (un-blinded) corresponding message SB(Mj) by A, knowing
the blinding factor. We say that B blindly signed Mj for A.

For illustration purposes, we consider B’s signature to be simple RSA
exponentiation with private key dB. The blinding mechanism of a message
M can then be M × seB . The corresponding un-blinding process is simply
division by the blinding factor s. We note that blind signature protocols
can be run through anonymizers (with simple precautions). Moreover, also
for illustration purposes we use the cut-and-choose and blinding protocol
combination of Chaum et al. (Chaum et al., 1990). However, for real life
implementations, more efficient blind signature protocols (e.g., the work of
Brands (Brands, 1993)) can be used.

3. Related Work

E-cash. The use of blind signatures and of the cut-and-choose protocol for
providing untraceable electronic cash payments was proposed in (Chaum,
1982) (Chaum, 1985) (Chaum, 1988) (Chaum et al., 1990). The problem
of transferable e-cash was analytically studied first by Chaum and Peder-
sen (Chaum and Pedersen, 1992). The work of Brands (Brands, 1993) pro-
poses a primitive called restrictive blind signatures to replace the high cost
of blind signatures that use the cut-and-choose technique. While in our work
we have used the latter technique to illustrate our protocol, for real imple-
mentations, Brands’s solution could also be employed.

Franklin and Yung (Franklin and Yung, 1993) propose the use of a trusted
entity (trustee) that collaborates with the bank during withdrawal and de-
posit to provide a computation efficient on-line cash system. Trustees (either
on-line or off-line) were proposed to provide variable degrees of anonymity for
e-cash (M. et al., 1995) (Davida et al., 1997) (Camenisch et al., 1996) (Frankel
et al., 1996). Stadler et al. (M. et al., 1995) introduced the notion of coin
tracing and introduced several tracing mechanisms, requiring the trustee to
be on-line at withdrawal. Camenisch et al. (Camenisch et al., 1996), Frankel
et al. (Frankel et al., 1996) and Davida et al. (Davida et al., 1997) proposed
payer and coin tracing mechanisms using off-line trustees. In contrast, in
our work the requirement of preserving the payer and payee anonymity is
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essential. Moreover, our work also requires the bank to be unable to link the
payer and payee even when colluding with one of them.

Simon (Simon, 1996) proposes a simple e-cash protocol in a network where
anonymous communication is possible. The payer generates the e-cash by
having the bank sign f(x) where x is the payer’s secret and f is a one-way
function. The e-cash can be transferred by revealing x to the payee. The
payee can then either cash the money with the bank or further transfer it by
providing the bank with x and asking it to sign f(y) for which it knows y. If
the communication between the payee and the bank is anonymous, the payee
remains anonymous and can transfer the money further. The bank can link
the start and end points of a transfer chain, however, for long chains this
information may be meaningless. Moreover, the end point of a transfer chain
may repeat this protocol with itself, to artificially increase the length of the
chain. Even though we also require the use of anonymizers, the solution of
(Simon, 1996) does not provide support for conditional transfers. Even if
conditional transfers would be provided, the payer could easily spend the e-
cash transferred to the payee before the condition is satisfied – as the e-cash
does not encode any information about the payer for anonymity reasons.

Camenish et al. (Camenisch et al., 2005) propose an efficient off-line
anonymous e-cash protocol that prevents linking payers to payees, even when
the bank and all other users collude. In addition, the solution allows a user to
withdraw not one, but 2l coins, where each coin can be spent anonymously.
The result is interesting in that the storage required for the 2l coins is only
O(l + k), where k is a security parameter. Moreover the solution is extended
to allow the traceability of the coins without a trusted third party. That is,
once a user double spends any of its coins, all its spendings, of any of the 2l

coins, can be traced. The coin storage cost of this extension is only O(lk).
Note however that unlike our work, this solution does not allow coins to be
spent conditionally, based on desired events.

Shi et. al (Shi et al., 2007) proposed the initial conditional e-cash so-
lution discussed in this paper. This paper extends our previous work with
(i) an offline solution for the initial problem (see Section 4.6) and with (ii)
a transferability property (see Section 5). For the latter contribution, our
extensions allow a payee to anonymously transfer a received payment, be-
fore the condition’s outcome is published, while still satisfying the properties
discussed in Section 2.

Camenish et al. (Camenisch et al., 2007) proposed the concept of ”En-
dorsed E-Cash”, which is related to our notion of conditional e-cash. The
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proposed endorsed e-coins are composed of a lightweight endorsement x and
the rest of the coin which is meaningless without x. They allow users to
exchange e-cash by exchanging endorsements. The use of endorsed e-cash
is exemplified in two scenarios. First, an optimistic and unlinkable fair ex-
change of e-cash for digital goods and services is proposed and second, onion
routing with incentives and accountability for the routers is provided. We
note that this work considers only a weaker form of anonymity, specifically
not considering payees. In the scenarios considered in our work, e.g. anony-
mous services, online betting etc, payees also need to preserve their privacy.
In our work we provide payer and payee privacy as well as prevent linking
payers to payees.

Blanton (Blanton, 2008) uses Camenish and Lysyanskaya (Camenisch
and Lysyanskaya, 2004) type signatures to provide a new conditional e-cash
scheme that improves on the performance of our online solution. However,
the solution proposed does not allows for transferability of e-cash tokens.

Carbunar and Tripunitara (Carbunar and Tripunitara, 2008, 2010) have
extended our work by providing a secure payment component for distributed
computation markets (e.g., cloud and volunteer computing environments).
Existing solutions in this area provided computation outsourcers with the
ability to verify the correctness and completeness of returned computation
results. This work complements such solutions by simultaneously allowing
workers to verify the correctness of received payments, while preventing them
from caching the payments before completing the alloted computation. Thus,
the work from (Carbunar and Tripunitara, 2008, 2010) can be viewed as an
implementation of a conditional payment, where the condition consists of
completing a job.
Time release encryption. Dodis and Yum (Dodis and Yum, 2005) in-
troduce a novel problem called the time capsule signature. It allows for the
construction of a signature that becomes valid at a time in the future when
a trusted third party publishes a trapdoor associated with the current time.
The time capsule signature allows the recipient of the signature to immedi-
ately verify its validity. Moreover, the third party has no interaction with
the generator or recipient of the signature. It may seem possible to use the
time capsule signature to solve the conditional payment problem. The payer
could ask the bank to generate a time capsule signature on a blinded e-cash
such that the capsule can be removed only if a certain event occurs. Be-
sides the technical difficulty of the payer un-blinding the time capsule, this
solution would require the bank’s knowledge of the event, its publishing pro-
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cedure and ultimately the identity of the publishing institution. However,
for privacy reasons, the conditional payment problem requires the decoupling
of the publishing institution from all other participants. In particular, the
bank’s operation should be oblivious of the nature of the event determining
the condition.

Blake and Chan (Blake and Chan, 2005) propose a protocol for trans-
ferring time-encrypted messages between users. A message becomes valid
only after a trusted server publishes a signed piece of information on a spe-
cific time value. Their solution requires no interaction between the trusted
server and the users and also preserves the user’s privacy from the server.
Cathalo et al. (Cathalo et al., 2005) propose a more efficient solution for this
problem, that also improves the user’s anonymity. However, none of these
schemes allows the receiver of a timed release message to verify its validity
before release time, making them unsuitable for conditional e-cash transfers.

4. Conditional Anonymous Payments

The solution is composed of a set of logical sub-components: the genera-
tion of conditional payments, the validated transfer of the payments from the
payer to the payee, and their spending by the payee in the case of a successful
event outcome, or the cashing of the un-spent payments by the payer oth-
erwise (see Figure 1). All the above will also be designed to prevent double
spending by both the payer and the payee.

As mentioned in Section 2.1 for any party X, we denote by id(X) its
identity, NX its public RSA modulus, eX its public key and dX its private
key. Let b denote the public “name” of the considered future event. Let t
be the corresponding secret published by T in the case of a favorable (for
payment) outcome. Without loss of generality we will consider b to be a large
prime number, and t = b−1 mod φ(NT ), where φ() is Euler’s totient (this is
discussed further in Section 4.3).

In the following we detail each of these components.

4.1. Payment Generation (PG)

Let n1 and n2 be security parameters. Assuming the payer A holds an
account with the bank B, to generate the conditional payment, A will contact
the bank B as follows (see Figure 2).

A generates 2n1 random numbers X1, .., Xn1
and R1, .., Rn1

. Using a
standard secret sharing algorithm (Shamir, 1979), A constructs n2 shares
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Payment Generation
1

PDS: Payment Activation
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anonimized

authenticated

Announcing Payment 
3

PDS: Payment Verification
4

Payment Transfer
5

PDS: Initial Payment Claim
8

“Winner
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7

Payment Collection
9Un-spent Payment 

Collection Possible

Event 
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PDS = Preventing Double Spending

Alice
The Better

Bob
The Bank

Carol
The Broker

Trent
Trusted Event
Organizer

Figure 1: Solution Overview. Arrows with boxes indicate protocol steps, with
the direction of the arrow indicating the protocol’s initiator and target par-
ties.

for each of the values Xi ⊕ id(A), for i = 1..n1. We denote the j-th share
corresponding to Xi ⊕ id(A) by shareij for j = 1..n2. For any Xi ⊕ id(A),
all its n2 shares are required for its correct reconstruction.

A then constructs n1 blocks, each of n2 +1 fields. The i-th block consists
of

miL = [Xi, Ri, v, “left”], mijR = [shareij , Ri, v, “right”] (1)

where v represents the value and currency of the payment (i.e. $1). “left”
and “right” are text messages used to differentiate between the miL value
and the mijR shares.

Next, A asks the bank to blindly sign one of the n1 message pairs using
the cut-and-choose protocol discussed in Section 2.3. In this specific case
however, the bank signature consists of a signature on both miL, and all
mijR as well as on each and every shareij in mijR. The bank will do so after
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miL =[“Alice”,X i,Ri,$10,”left”] mijR= [shareij ,Ri,$10,”right”] ⊕ (shareij) = Xi ⊕ ”Alice”

miL

min2R
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mijR

…

…

…mn1L

…m1L

…

…

Bob: verify

PG: Bob will BS
1

MjL = (miL)dB mod NB MjR= (mijR)dB mod NB

Alice: Sj = (MjR)b mod NT

verify
5d

Conti: Cut and Choose5b

reveal n2-1 
MjR values

5c

Main Idea: after 
winner is announced, 

Conti can un-blind 
the remaining value. 

Convention with bank 
is that all mijR

together constitute a 
valid payment.

8a

Sn2

S1

Sj

…

…

5aAlice
The Payer

Bob
The Bank

Carol
The Payee

Figure 2: Overview of Payment Generation and Conditional Transfer steps.

verifying “well formed”-ness of n1−1 random pairs as well as their associated
shares. Specifically, the bank will verify

• that after using each set of n2 shares in the n1 − 1 “right” messages
mijR to reconstruct the corresponding Xi⊕id(A) values, XOR-ing these
reconstructed values Xi⊕ id(A) with the first fields of miL yield indeed
id(A).

• that the second field of miL is equal to the second field of mijR. This
value, Ri associates the messages later on.

• the correctness of the enclosed currency value (v).

If any check fails, B aborts the protocol. Otherwise, A’s account is debited
in an amount of v and A is able to retrieve (after un-blinding) the following
payment document (signed by the bank B):

ML = mdB

lL mod NB, MjR = mdB

ljR mod NB (2)

where j = 1..n2 and l ∈ [1, n1] was randomly chosen by B.
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Figure 3: Double spending prevention using activation tokens.

Intuitively, ML can be later used by A to cash any un-spent payment in
the case of an un-successful event outcome (see Section 4.4), while the n2

bank signed e-cash shares, MjR, can be used by A for payments to potential
payees such as C (see Section 4.3).

4.2. Preventing Double Spending (PDS)

Before we proceed with describing the actual transfer of these shares to
payees, we will first discuss a simple token attribution mechanism designed
as one of the tools we will use to prevent the payer from double spending (see
Figure 3). Specifically, A will be prevented from transferring the payment to
more than one payee. Moreover, at the completion of this step, at most two
participants, one being A, will be able to cash the payment.

To achieve this, B will issue two unique “use tokens” for each signed
payment (identified so anonymously by its unique Rl value). Each of these
tokens will be issued on-demand, in an online interactive protocol, through
an anonymizer. Specifically, before interacting with C but after retrieving
the signed payment document {ML, MjR} from B, A will use the anonymizer
Mix to send B the currency amount v and the Rl value occurring both in
ML and MjR, j = 1..n2. B will respond with a fresh random token tokenL.
B will also store an association between Rl and this token Rl : {tokenL} for
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future reference. We call the payment “activated” once this happens. If B
has already seen Rl it ignores the message.

Before transferring the actual payment document, A sends Rl and v to
C. C then forwards Rl anonymously to B who proceeds as follows:

• if B does not find any record of Rl it notifies C and then simply ignores
the message as the payment has not been activated yet.

• otherwise, if Rl is associated with a single token tokenL, B generates a
new random token tokenR (payment cashing token), associates it also
with Rl (Rl : {tokenL, tokenR}), and sends it to C. We now call the
payment “cash-able”. It is important to note that only C and B know
tokenR. C will use tokenR later to cash the payment upon a successful
event outcome, as will be discussed later.

• if B already stores two tokens associated with Rl, it notifies C, who
in turn then aborts the protocol, knowing that A attempts to double
spend.

4.3. Conditional Transfer (CT)

The PDS protocol above allows C to assert the fact that the payment
that will follow from A has been activated and has not yet been spent. In
this section we discuss achieving the “conditional” properties of the protocol.
We introduce here a randomized probabilistic solution (see Figure 2).

The main idea is for A to generate a quantity that can both (i) convince
C to accept this payment because it is indeed valid cash-able money signed
by B, (ii) allow its cashing only if t is published by T . A uses event b and T ’s
modulus NT (see Section 2) to blind each MjR = mdB

ljR mod NB, j = 1..n2,
separately, by computing

Sj = M b
jR mod NT .

A and C then engage in a cut-and-choose protocol (see Section 2.3) through
which C becomes convinced that with 1 − 1/n2 probability, all of the Sj

values are indeed well formed and signed by B, as follows.
A sends all such Sj values to C, along with the Rl value and currency

amount v. C selects a random one of them (e.g., Su) and asks A to prove
that all the remaining ones are indeed valid MjR messages. To do so, A sends
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C all MjR = mdB

ljR mod NB values for all j ∈ [1, n2] \ {u} and C can verify

that indeed Sj = M b
jR mod NT for these values.

At this point, C will verify the “well-formed”-ness of all revealed MjR

values. After removing B’s signature from MjR, C verifies that the fourth
field of mljR equals the constant string “right” and that the second and
third fields equal the Rl and v values previously sent by A for the present
transaction. This verification prevents A from re-using shares from different
protocol instances. C also verifies that there are no duplicates among the
first fields (sharelj) of the n2 − 1 mljR values recovered. As a reminder, all
n2 shares are required for the reconstruction of the corresponding Xi⊕ id(A)
value later on. If any of these checks fails, C aborts the protocol.

Later, for a successful event outcome, T will publish

t = b−1 mod φ(NT )

Since b is prime (see Section 2), it has an inverse mod φ(NT ). Only T can
compute this inverse, knowing the factorization of NT . Using t, C can retrieve
the missing MuR value as

MuR = St
u mod NT

By removing B’s signature from MuR, C obtains the last unknown share,
sharelu, allowing it to construct the secret Xl ⊕ id(A).

Note that given b, once t = b−1 mod φ(NT ) is published, NT can be
factored. Thus, a new modulus NT needs to be created for each event. To
avoid this, instead of RSA, an identity based encryption scheme (Boneh and
Franklin, 2001) can be used. Then, the condition b is the identity (public)
and t is the private key corresponding to b. t can then safely published by T
in case of a favorable outcome.

4.4. Spending The Money (SM)

In the case of a favorable event outcome, C should be able to interact with
B and get her account credited appropriately. To achieve this, we propose
a three-stage protocol. In the first stage C contacts B anonymously and
provides proof of credit. The proof of credit consists of the secret Xl⊕ id(A),
the value Rl and credit value v, along with all the values MjR, j = 1..n2. As
mentioned before, each value MjR is signed by the bank and contains one
share of Xl ⊕ id(A).
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In the second stage, also performed over the anonymous channel, C and
B engage in a blind signature protocol (see Section 2.3) in which B blindly
signs an un-traceable piece of currency of equivalent value to the credit that
was proved in the first stage. This is performed as follows. C first generates
n1 pairs of random values Ui, SNi, for i = 1..n1. C then sends to B n1

obfuscated values of format UeB

i (SNi, v) mod NB. Note that the value of v
needs to coincide with the value of v from the first step. B chooses randomly
u ∈ [1..n1] and asks C to reveal all pairs Ui, SNi, i ∈ [0.., n1] − u. B then
verifies that the revealed pairs indeed reconstruct the previously received
obfuscated values. Then, B signs the uth value, producing

S = Uu(SNu, v)dB mod NB

C uses S to retrieve the un-traceable piece of currency, (SNu, v)dB mod NB.
In the final stage, the payee C directly contacts the bank B through an

authenticated channel and exchanges this piece of currency for credit to her
account. For an unfavorable event outcome, to cash an un-spent payment,
A proceeds identically.

Note that B is unable to link the user that has performed the first two
steps over the anonymous channel to C. This is because B blindly produces
the value S = Uu(SNu, v)dB mod NB, without seeing the underlying cur-
rency (SNu, v)dB mod NB. This in effect disconnects the user involved in a
conditional transfer from the user that deposits the cash in its account.

We note that, technically, the three-stage anonymous protocol is appar-
ently superfluous here for purposes of providing anonymity, as this has al-
ready been ensured by previous anonymization and the lack of any infor-
mation about A’s identity in the proof of credit. Nevertheless, we chose to
discuss it here for ease of presentation. Its purpose will become apparent
later when we discuss specific applications of conditional payments such as
online betting.

We now detail the above. C uses the anonymizer Mix to send to B the
message

tokenR, MjR, j = 1..n2,

containing the n2 shares recovered from A and T . Similar to C (see Section
4.3), B immediately verifies the validity of each share MjR. If at least one
share does not verify, B aborts the protocol. Otherwise, it uses the shares to
recover Xl⊕id(A). B then verifies that tokenR is the second token associated
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with the Rl value contained in all MjR shares. If the check fails, B aborts
the protocol.

Next, B investigates potential double spending. If the MjR shares have
been previously spent, it simply drops the message, knowing that C double
spends. If the left part of the payment, ML has been spent (by A), B can
immediately recover A’s identity by computing the XOR of the first field of
the corresponding mlL, Xl with Xl ⊕ id(A).

At this point, B has proof to believe that C is entitled to a credit equal to
the v value stored in the third field of MjR. Now C and B can anonymously
engage in a blind signature protocol in which B blindly signs an un-traceable
temporary piece of uniquely identifiable currency of equivalent value to this
credit.

Finally, the payee C directly contacts the bank B through an authenti-
cated channel and exchanges this piece of currency for credit to her account.
B will first verify if this currency has been already spent, credit C’s account,
and store the unique identifier of the currency for future double spending
detection.

4.5. Analysis

In this section we informally discuss the security properties of the above
protocol.

Double spending (P2). The payer could try to double spend during the
PDS step by registering with the bank the same e-cash under different Rl

values and transferring each value to a different payee. This is prevented
during the CT step, by having the payee verify that the Rl value encoded in
the e-cash matches the Rl value received during the PDS step.

Alternately, during the SM step, the payer could try to spend her e-cash
(using ML) even in the case of a favorable outcome published by T . However,
once the payee performs her SM step, the payer’s identity will be immediately
revealed. The payer could also try to recover the e-cash she sends to the payee
and then attempt to spend it before the payee has a chance to do it. This
would be a good strategy since in case of double spending the payer’s identity
would not be revealed. To succeed in this attack, the payer has to obtain
the tokenR value associated with the unique Rl of the e-cash, that is being
shared only between the payee and the bank. Since the interaction between
the payee and the bank is encrypted, this is impossible. If the payer, before
transferring the e-cash to the payee, impersonates a possible payee and goes
to the bank to obtain a tokenR value, during its initial interaction with the
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bank the payee will know that the payer has tried to double spend and abort
the protocol. This is because the bank will report to the payee the fact that
two values, tokenL and tokenR have already been generated for the Rl value
the payee has received from the payer (see Section 4.2).

The payee cannot double spend, since both her shares (MjR) and the
unique identifier generated at the end of the SM step (see Section 4.4) are
recorded by the bank. The payer and the payee could try to collaborate in
order to double spend e-cash without having their identities revealed. This is
prevented by the fact that the e-cash generated during the PG step ensures
w.h.p. (1−1/n1) the fact that spending both ML and the MjR shares reveals
the payer’s identity. Moreover, both ML and the MjR shares can only be
spent once.

Probabilistic Payment or Rollback (P3,P4). During the cut-and-
choose sequence of the CT step, the payee receives n2 −1 shares of its choice
of the payee’s e-cash. If event b occurs and the corresponding t value is
published by T , the payee can recover the missing share and spend the e-
cash. If event b does not occur, the payer is certain that the payee is unable
to recover the e-cash. The payer can then safely cash back its payment,
without fear of double spending. At this point T is trusted to never reveal
the factoring of the current NT value. We stressed before the existence of
a collusion vulnerability: T can collude with the payee to reveal the payer’s
identity by publishing t and allowing C to cause a payer double-spending
condition.

Note that due to the use of a cut-and-choose protocol to generate a pay-
ment, A has probability 1/n1 to make the payment unusable. A system-wide
n1 parameter may not work well, as transactions may have different risk
levels. We address this issue by proposing the use of different levels of assur-
ance. For instance, for high-risk transactions (e.g., involving larger sums of
money), the value of n1 could be also set to a sufficiently large value to ensure
sufficiently small cheating probabilities. We also propose to use only a small,
fixed number of mappings of risk levels to n1 values, since otherwise the bank
can link transactions (a payment of $19.37 with n1 = 171 can easily link the
user performing a deposit to the user that earlier withdrew the money). This
extension can be implemented by requiring the payer A to choose a risk level
and value of n1 during the payment generation step. Then, if during the
conditional transfer step the payee C is not comfortable with the assurance
level provided by the value of n1, it can abort the protocol.
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Un-linkability and deniability (P1,P5,P7). The payer obtains the
payment signed by the bank, containing a Rl value that is unknown to the
bank. Moreover, the payee cannot prove payment origin to other parties as
no non-repudiable identification tokens are revealed in any steps outside of
double spending. This prevents the bank from colluding with payees to trace
payments to their payer.

The payer could collaborate with the bank and attempt to reveal the
identity of the payee. To achieve this, the payer could spend her e-cash (ML)
or the payee’s e-cash (the MjR shares) in order to signal the bank the moment
when her e-cash will be spent by the payee. However, before spending the
e-cash in person, the payee performs two additional stages, both through
an anonymizer (see Section 4.4). The second additional stage generates the
anonymous e-cash the payee will spend then in person.

Since the publisher does not directly interact with any participants, ex-
cept possibly for publishing event outcomes, property P5 is trivially satisfied.

Event Privacy (P6). P6 is satisfied by construction. None of the public
tokens issued by T are linked to any event-specific details other than its
outcome. This ensures that events can be kept and run privately if so desired.
By only observing the published tokens and transaction transcripts third
parties are not offered additional information about any event details (e.g.,
such as “Horse X won race Z.”).

The Use of Anonymizers. Note that our solution employs a mix network
twice. First, this occurs during the prevention of double spending step, when
the payer registers a unique random number with a payment and the payee
uses the random number to verify the absence of double spending. Then, by
using an anonymizer, the payer and payee effectively prevent the bank from
linking them to the payment and to each other. Second, the payee uses an
anonymizer when it deposits a payment with the bank. The deposit operation
requires the payee to present a payment and an account number to the bank.
In order to prevent the bank from trivially learning an association between
the payee and the payment, the deposit operation takes place in two steps.
First, the payee uses the anonymizer to present the payment and exchange it
for a blindly signed (using cut-and-choose) equivalent new payment. Then,
the payee contacts the bank over an authenticated channel and deposits the
new payment into its account. Thus, the anonymizer disconnects the payee
from the original payment.
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4.6. Offline Version

The previously described PDS module requires the existence of an online
entity, the bank B for instance, to prevent A from spending a payment with
multiple payees. To understand this issue, assume a malicious user A that
spends the same currency – signed by B but using different conditions – with
users C and D simultaneously. If later, both conditions come up favorably
for C and D, they are able to retrieve the e-cash. When both go to the
bank, with the same e-cash instance, we would like to be able to retrieve
A’s identity. Note that the previous, online solution detects double spending
and allows the bank to retrieve A’s identity after sending e-cash to C, only
if both A and C try to spend the money.

We now briefly describe an offline solution to this problem, using a con-
struct borrowed from the work of Chaum et al. (Chaum et al., 1990). The
solution works in the following manner. During the payment generation
stage, A generates n1 payment strings (SNi, v), i = 1..n1. A uses then a
(2n2,n2) threshold splitting scheme to split each payment into 2n2 shares,
such that any but not less than n2 of them are sufficient to re-construct the
original payment. For each such payment string (SNi, v), A produces the
following n2 blocks, each having a “left” and a “right” part,

mijL = [j, Xij , shareijL, SNi, v, “left”],

mijR = [j, Xij ⊕ id(A), shareijR, SNi, v, “right”],

where j = 1..n2 is also used to index the blocks. Using the blinding
and cut-and-choose processes previously described, A convinces B to blindly
sign the 2n2 blocks corresponding to one of the payment strings. Let that
be the lth payment string, l ∈ {1..n1} and let MljL and MljR denote the
corresponding signed messages, j = 1..n2. The semantics of these shares is
that if any participant can present to B n2 shares of the same payment string,
each validly signed by B, the bank will convert the shares into v currency.

Similar to the initial solution, A uses the event b to encrypt each of the 2n2

retrieved shares signed by B, producing messages SljL and SljR, j = 1..n2.
A then sends to C only n2 of the SljL and SljR values, in the following way.
First, C sends to A n2 challenge bits. If the jth bit is 0, A sends to C
the value SljL, otherwise it sends the value SljR, j = 1..n2. C then asks
A to reveal n2-1 of these shares, randomly chosen. That is, C reveals the
corresponding MljL or MljR value, j = 1..n2.

19



When C receives these values, it first verifies that the S values where
produced from the corresponding M values using the pre-agreed upon event
b. It then verifies B’s signature on all the revealed M values, producing the
corresponding m values. C then verifies that each revealed m value is indeed
the “left” or “right” half, according to the challenge bits. C then verifies
that each m value has the correct index, j, and that all m values have the
same serial number SNi and are for the same currency value v.

At this stage C is confident that if the event b occurs, it will be able to
retrieve the last unrevealed share and be able to cash them using a protocol
similar to the one presented in Section 4.4. However, when C brings the
payment shares to the bank, B stores them, under the serial number SNl.

In case the event b does not occur, A can go to the bank and cash its
payment using a procedure similar to the one used by C. That is, B generates
n2 challenge bits, for which A has to produce either the left MljL or the right
MljR halves of the payment blocks. B verifies its signature on each of them
and verifies the well-formedness of each (the index j, the serial number SNl

and the currency amount). Then, B looks to see if the serial number SNl

was already spent. If this is the case, B looks at the values stored with it.
For each index j = 1..n2 it looks to see if it has both a “left” and a “right”
half. If it does, it uses the Xlj and Xlj ⊕ id(A) fields to reveal A’s identity.
Since the challenge bits of B and C are very likely to differ in at least one
bit, A’s identity will very likely be revealed. This is correct, since if C has
already cached its copy of the payment it means that the event b occurred.
Thus, A should not have tried to spend its own payment copy.

Note that in this solution, after spending a payment with C, A could
impersonate C with the bank and try to redeem the payment before the
event b comes up. This is easy to do since the redemption step is done over
an anonymous channel and A already knows which shares it has revealed to
C. Then, it can redeem the payment by revealing to B exactly the shares
it has revealed to C. If later event b occurs, C will try to reveal the same
shares to B. Thus A’s identity will not be discovered even though double
spending is detected.

We prevent this by extending the above protocol with an oblivious trans-
fer step. That is, A produces 2n2 pairs of format [(SljL, Ekj

(mljL)),(SljR, Ekj
(mljR))],

j = 1..n2, where kj is a symmetric encryption key. Using the above solution,
A sends these pairs to C, then A and C engage in a 1-out-of-2 oblivious
transfer for each of the n2 pairs. This allows C to retrieve exactly one half
of each pair, that is, either the left half, (SljL, Ekj

(mljL)), or the right half,
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(SljR, Ekj
(mljR), without A knowing which. Then, C specifies which n2 − 1

shares it wants revealed and A sends the corresponding keys kj. Thus, A will
not know which shares C has. If A wants to impersonate C and redeem its
payment early, it will have to guess the shares C has and its guess will be
correct with probability at most 1/2n2.

5. E-Cash Transferability

We discussed above a solution providing single-hop e-cash payments. We
now turn to the issue of multi-hop transfers. This is important in a multitude
of scenarios, e.g., in financial securities/options trading where securities and
options are subject to multiple sell-buy cycles before maturation.

We introduce a mechanism that allows C to anonymously transfer the e-
cash payment from A 5 to a participant D, while still satisfying the properties
discussed in section 2. In particular, according to property P4 described in
Section 2, our solution allows C to convince D that in the event of a favorable
outcome, the shares will construct w.h.p. valid e-cash.

To this end, we extend the operational model of section 2.1 as follows.
Let k be a security parameter. Its purpose will become apparent in section
5.5 when we discuss A-with-C collusion attacks. The bank B is assumed to
possess an RSA key pair in addition to the K = (eB, dB, NB) key-pair used
to authenticate e-cash. Let this key pair be K̄ = (ēB,d̄B,N̄B). Intuitively, B
will use this key-pair to sign “having seen” a set of blinded payment shares
– this will then convince D of the fairness of transfer.

The new protocol modules are discussed below, extending the previous
online solution. For brevity of exposition, only the differences in functionality
are outlined.

5.1. Payment Generation

In the payment generation (PG) phase (see equation (1) in section 4.1)
A deploys a (n2 + k,n2) secret splitting algorithm to construct n2 + k shares
shareij for each of the n1 values Xi ⊕ id(A), i = 1..n1, j = 1, .., n2, such
that no less than n2 of the shares can reconstruct Xi ⊕ id(A). Next, for each
Xi ⊕ id(A), A generates n2 + k values

mijR = [shareij , Ri, v, “right′′], j = 1..(n2 + k).

5Before the condition’s outcome is published.
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The payment generation protocol then continues briefly as in section 4.1,
allowing B to verify the well-formedness of n1 − 1 of the n1 Xi ⊕ id(A)
values. Eventually, B will blindly sign the remaining value and return ML

and MjR (see equation (2)), where each mljR value is signed by B with key
K:

MjR = mdB

ljR mod NB, j = 1..(n2 + k)

A then encrypts each MjR with b, yielding values Sj = M b
jR mod NT . Now

however, instead of sending the Sj ’s to the payee C, A sends all the Sj values
in clear to B, through the Mix anonymizer. Since B has blindly signed the
mljR values, it was never able to see the resulting MjRs. Thus, even if B
would know all possible events b it cannot link the Sj values to the identity
of A. B generates a new random number RB and uses the received n2 + k
values and the private exponent of the key pair K̄ to produce the following
certification message

Cert = H(S1, S2.., Sn2+k, RB)d̄B mod N̄B.

That is, B signs a hash of a sequenced concatenation of the shares Sj received.
The intuition behind this step is that B certifies of having seen all the Sj

values at the same time and in a certain order, while at the same time not
revealing or learning anything more. As we will show later, this construct
is essential in preventing adversaries from re-using Sj values from multiple
un-related protocol runs illicitly, or changing the order of these values before
transferring them. Finally, B sends the Cert value to A.

Note that even though B is required to blindly sign random looking values
received from A, this constitutes no security vulnerability, as it does so using
solely the key-pair K̄. The only semantics of this signature is that B certifies
having seen the values Sj at the same time and in a certain order. This
assurance is required in the conditional transfer as described below.

5.2. Initial Conditional Transfer

To perform the initial conditional transfer to C, A sends RB, all Sj

values, j = 1..n2 + k and their associated Cert value to C. When C re-
ceives these values, it first verifies the order of the Sj values, by computing
H(S1, S2.., Sn2+k, RB) and comparing it with the value CertēB mod N̄B. C
continues the protocol only if the verification succeeds.

In the next step, A and C both generate and exchange random values,
RA and RC . This step could be preceded by a pre-commit (to RA and RC)
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phase. Using RA, RB and RC , they both compute n2−1 distinct and random
values (“indexes”) in the space [0..(n2 + k − 1)], e.g., as follows (where H()
is a one-way crypto hash): I1 = H(RA, RB, RC) mod (n2 + k); remove I1

from the set, compute I2 = H(H(RA, RB, RC)) mod (n2 + k − 1) and so on,
until n2 − 1 distinct index values are computed. The intuition behind these
values is that they are both agreed upon and no one party can control or
a-priori predict them (thus ensuring fairness of the cut and choose protocol
below. This is similar to certain Non-Interactive Zero Knowledge (NIZK)
proof protocols where the verifier’s challenges are simulated using one-way
crypto hashes of inputs generated by the prover.

Then, similar to the CT module of section 4.3, A proves to C that n2 − 1
of the shares are well-formed (signed shares of the same e-cash instance).
This time however, the n2 − 1 shares to be revealed are chosen according
to the n2 − 1 indexes previously computed. That is, n2 − 1 out of a total
of n2 + k shares are revealed. The randomness of the computed indexes
ensures fairness of the cut and choose. Also, n2 − 1 shares are not enough to
reconstruct the e-cash.

To later construct the complete e-cash payment, C will proceed as in
section 4.4, this time however, only being required to recover exactly one
more out of the remaining k + 1 unrevealed shares. This is so because of the
(n2 + k,n2) secret-splitting (discussed in section 5.1) specifying that n2 out
of (n2 + k) shares are sufficient for full reconstruction.

5.3. Subsequent Conditional Transfers

The above mechanisms set up the stage for further conditional transfers,
e.g., from C to D, once C is convinced of the validity of the shares, before
the publication of the condition’s outcome. The transfer protocol discussed
here can then be deployed unaltered by D for further transfers.

The transfer proceeds exactly as in the previous section, except for the
exchange of the RA and RC values. That is, instead of C and D generating
new random numbers, C transfers RA and RC to D. As before, D verifies
the authenticity of the Sj shares, the well-formedness of the n2 − 1 shares
revealed by A to C, and finally the correct generation of their respective
indexes, I1, .., In2−1 by one-way hashing from RA, RB and RC , as described
in Section 5.2.

Observation. When the payment was generated by A, the value Cert cer-
tifies the fact that B has seen the values Sj in a certain order and at the

23



same time. This, together with the fact that the generation of the indexes
I1 ensures that they are both random and (a-priori) unpredictable (due to
the use of B’s RB value) constitutes proof of fair cut and choose (thus not
requiring a separate cut and choose interaction between C and D). A and
C are unable to cheat D by re-arranging the Sj values so that only specific
shares should be revealed. This is because B has already tied each Sj value
with a certain index, in the Cert value. Moreover, A and C are unable to
cheat D by replacing some or all the unrevealed Sjs with shares generated
during older protocol runs. This is because the Cert value certifies the fact
that all the Sjs were seen at the same time. The cut-and-choose protocol
between A and C ensures that the randomly revealed Sjs correspond to mljR

values that have the same sequence number Rl, thus, w.h.p. the remaining
unrevealed shares also encode the same number Rl.

5.4. Preventing Double Spending (PDS)

This module remains unchanged in spirit as described in section 4.2. How-
ever, now, once conditional e-cash is transferred to multiple participants, we
need to ensure that only a single participant, i.e., the last in the chain of
transactions, should be able to spend in the case of a favorable outcome.
The bank can prevent double spending by validating only the first use of
the e-cash (as discussed in section 4.2). Then, since all intermediaries are
able to construct the e-cash when the condition’s outcome is published by
T , all intermediaries could race to the bank, potentially preventing the (last)
rightful participant from spending its copy of the e-cash.

To avoid this situation and accommodate multi-hop transfers we propose
the following. Let tokenC

R denote the payment cashing token held by C for
the e-cash identified by Rl. This token was denoted by tokenR in section
4.2. Before transferring the e-cash to D, C contacts B with a transfer ac-
tivation message containing {Rl, v, tokenC

R}. B verifies that an association
(Rl : {tokenL, tokenC

R}) already exists. If it does, it invalidates tokenC
R, by

replacing the association with a new one, (Rl : {tokenL, [tokenC
R]}). The se-

mantics of the [tokenC
R] construct is that the tokenC

R is invalid, but still stored
for authentication purposes. Once this happens, we call the payment “trans-
ferable”. In the process, the tokens kept by the bank effectively implement
a “barrier” or mediator between different payees.

To transfer the e-cash to D, C now sends {Rl, v, tokenC
R}. D then for-

wards these values anonymously to B. If B stores an association (Rl :
{tokenL, [tokenC

R]}), it generates and replies with a new token tokenD
R . It
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then also replaces the association with (Rl : {tokenL, tokenD
R}). Otherwise,

it refuses to issue a new token and D should not accept the transfer and
abort.

If D decides to abort the protocol after the payment was made “trans-
ferable” but before the actual transfer takes place, C can perform the same
protocol as above to recover ownership of the cash-able payment.

5.5. Collusion Analysis

In addition to the basic properties defined in section 2 which are explored
in section 4.5, the transfer protocol requires an additional assurance of non-
collusion. Specifically, A and C should be prevented from colluding in an
attempt to cheat D, e.g., by deciding a priori which shares not to reveal. Let
AI1, .., AIk+1 denote the indexes of these shares. Then, during the payment
generation step, A can replace each of these shares with e.g., a random
number. B then signs all shares, including the now useless ones. However,
the success probability of this can be upper bound; since B’s own random
input RB is used to generate the indexes of the actual shares to be revealed,
after the AI1, .., AIk+1 indexes have been agreed upon, the chance of A and
C to cheat by computing random RA and RC values is small and can be
upper bound by a choice of k:

n2 − 1

n2 + k

n2 − 2

n2 + k − 1
...

1

k + 2
=

(n2 − 1)!

(n2 + k)!/(k + 1)!
=

1
(

n2+k

k+1

) ≤
1

(n2+k
k+1

)k+1
= (

k + 1

n2 + k
)k+1,

where the inequality is derived from
(

n

k

)

≥ (n
k
)k (Motwani and Raghavan,

1995). For n2 = k this is approximately 2−(k+1). If n2 = k = 100, this
is ≈ 2−101. In effect this reduces the problem from a full hash length to a
100 bit space, arguably still strong enough (otherwise the value of k can be
increased to a desired value).

5.6. Off-line Transferability?

In Section 4.6 we have proposed an offline solution for the conditional
e-cash problem without transferability. The natural question is then if we
can similarly have the transferable conditional e-cash solution work offline.
The following result shows that if C receives the payment from A, before
transferring it to D, it has to contact the bank.
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In the following, we call a conditional e-cash scheme fair if the payee is
able to cash the payment in the event of a favorable outcome.

Claim 1. An offline transferable conditional e-cash solution cannot be fair,
preserve the anonymity of well-behaved participants and prevent double spend-
ing simultaneously.

Proof. Let us consider the previous example, where A generates the payment,
sends it to C who then in turn transfers it to D. The first observation is
that at the time when it generates the payment, A cannot predict the its
trajectory. Thus, the initial payment message cannot include any information
about C’s identity.

Furthermore, assume that after receiving the payment, but before trans-
ferring it to D, C is not contacting B (we want off-line behaviour). Then,
after the transfer takes place, assume C double-spends by further transfering
the same payment to other payees or using it itself (in the event of a favorable
outcome). If the bank only satisfies the first valid payment request, D may
be cheated out of its money by C performing a “race” attack (see Section 5.4)
or by other honest payees that have received the same payment from C.

The above double-spending scenario cannot be prevented by revealing
the identity of C. This is first because as shown above, the initial payment
message (generated by A) cannot contain C’s identity. Second, since any
information can added to the payment message by C only offline, no one can
force C to include its identity in the payment transfered to D (e.g., as in the
previous on-line version where this was enforced by B). Any protocol that
would allow D to verify the fact that C’s identity is included in the payment
transferred, would be equivalent to allowing D to prove to outside parties
C’s involvement in this protocol. This would however violate property P7
described in Section 2).

Moreover, A or D cannot provide trusted, world-verifiable payment cor-
rectness assurances (e.g., through a signature scheme, acting as B, to certify
the payment’s properties, as in the online version of the protocol, shown at
the beginning of this section) without being trusted not to collude, which is
an un-desirable arbitrarily (as A and D could be any parties in the space of
participants) strong assumption that would render the protocol un-usable in
real scenarios.
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6. Applications

In this section we briefly overview just a few of the application scenarios
requiring conditional e-cash payments: financial securities, prediction mar-
kets, and anonymous online betting.

6.1. Securities Trading

A particularly relevant application scenario for conditional payments can
be found in trade systems involving (atomic) securities. Securities are finan-
cial instruments that deliver future value as a function of event outcomes. A
simple illustrative instance is the following contract:

“The Smart Financial Group will pay the bearer of this
certificate $50 at the end of the financial year of 2006-
2007, if and only if the DOW Jones will increase by 5%
since the end of financial year 2005-2006.”

Financial institutions can now sell such securities online with full privacy and
assurances of payment for their clients.

6.2. Prediction Markets

Yet another application for conditional payments is in prediction mar-
kets (IEM, 2007)(New, 2007)(Int, 2007)(Tra, 2007) (Str, 2007). Prediction
markets generate assets whose value is conditioned by specific events. For in-
stance, IEM is an educational prediction market of University of Iowa, based
on real money, where payoffs are based on real-world events such as polit-
ical or economic outcomes. Intrade and TradeSports allow their members
to speculate for real money on the outcome of a multitude of future events,
ranging from politics to sports and pop culture.

Companies such as Hewlett-Packard, Eli Lilly, Microsoft and Google use
internal prediction markets, where employees trade futures contracts on sales
and profits, success of products or supplier behavior (Kiviat, 2004) (Saporito,
2005). The Iowa Health Prediction Market (IHP, 2007) attempts to forecast
the future activity of a wide variety of infectious diseases and related phe-
nomena, by using the unique and fresh knowledge of health-care workers.
University of Miami released a Hurricane Futures Market in an attempt to
better understand the information that people rely on when forecasting hur-
ricanes.
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Conditional payments can enable novel applications for prediction makers
and companies with an interest in future outcomes of events. Prediction
makers can receive rewards for accurate predictions, while allowing companies
to purchase safety for important decisions. For example, manufacturers may
use futures markets to direct investments. Additionally, a sense of confidence
can be gained if conditional monetary transactions are involved. A prediction
maker can express its confidence in a prediction by associating a payment
to the manufacturer that is to take place if the outcome of the prediction
is unfavorable. In return, the manufacturer agrees to reward the prediction
maker if the outcome of the prediction is favorable.

For instance, the Smart Motors Company (SM) may propose the following
trade to any willing prediction maker:

“If crude oil is traded at under $60 a barrel until the end
of 2007, the Smart Motors Company will pay $6. If the
price goes above $60, SM will be paid $10. No money
changes hands now.”

SM and a prediction maker may sign as many of such contracts as they desire.
Manufacturers and prediction makers signing such contracts online are

now able to preserve their interactions private, even from the financial insti-
tution handling the money. This is important in cases where manufacturers
want to hide certain decisions from the competition and where prediction
makers may posses insider information.

6.3. Online Betting

Interestingly, the conditional payment mechanisms discussed here can be
deployed in the design of anonymous online betting protocols. We briefly
outline how.

Without loss of generality, we will consider A as being the betting party
and C the “bookie” (the party taking bets). Then, a simple online betting
protocol can be constructed as a symmetrical conditional payment scenario.
For example, A will provide a conditional (on a certain race outcome) $1 to
C, while C will reciprocate with $10 conditional on the negated outcome.
The race organizer T will publish different t values twin and tlose for a win or
a loss respectively.

Even though the payments sent are conditional, either C or A may choose
not to reciprocate if the other party sends its payment first. One simple (yet
more costly) solution to address this issue is to break each payment into
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multiple smaller payments. For instance, for a 2:1 bet for $100, A may
initiate a 10 step protocol, by sending C a $10 conditional payment. A then
waits to receive a $20 conditional payment from C before sending the next
payment. While imposing a larger communication overhead, this ensures that
no participant may loose more than 1/10th of the expected value. We also
designed a few lower-overhead solutions (of increased exposition complexity)
we will not discuss here.

Full Anonymity. The above solution provides a simple betting protocol
geared toward achieving anonymity of both C and A with respect to B or T .
Often however, online betting protocols would benefit from one additional
property, namely full anonymity:

P8. The payer and payee should not be required to
know each other’s identities nor should they be able to
infer these identities from the betting protocol.

This is particularly important in hostile environments with concerns of
collusion (of either C or A) with outside parties with incentives to reveal
participation in the protocol of either the better or the bookie.

To achieve full anonymity we will require the interaction between A and
C to be performed either through a special anonymous IP rendez-vous point,
similar to the ones in Tor (Dingledine et al., 2004) or through IRC channels
as follows.

C anonymously advertises its public key as well as the service it provides.
C also registers its public key along with several introduction points in a
lookup service (built to be censorship resilient (Waldman et al., 2000)).

A finds the advertisements and then uses the lookup service to retrieve
the introduction points of the bookie. It then chooses an anonymous rendez-
vous point as the place where the transaction is to take place and registers its
coordinates (encrypted with the public key of the bookie) on one or several
of the introduction points. If the bookie decides to accept the better, it re-
trieves the bet anonymously from the rendez-vous point while it reciprocates
with its own conditional payment or engages in a more complex multi-step
simultaneous payment protocol as above.

A simpler idea is to use IRC channels and messages steganographed into
posted media files to also achieve plausible deniability of participation claims
in the case of compromised rendez-vous points.

29



7. Conclusions

In this paper we introduce a novel conditional payment protocol that
allows future anonymous cashing of bank-issued e-money only upon the sat-
isfaction of an agreed-upon public condition. Moreover, such payments can
be anonymously transferred further by any payee, before their respective con-
dition outcome is known. Application scenarios including online trading of
financial securities, prediction markets, and betting systems.
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