
Regulatory Compliant Oblivious RAM

Bogdan Carbunar1 and Radu Sion2

1 Motorola Labs
carbunar@motorola.com

2 Stony Brook Network Security and Applied Cryptography Lab
sion@cs.stonybrook.edu

Abstract. We introduce WORM-ORAM, a first mechanism that com-
bines Oblivious RAM (ORAM) access privacy and data confidentiality
with Write Once Read Many (WORM) regulatory data retention guar-
antees. Clients can outsource their database to a server with full con-
fidentiality and data access privacy, and, for data retention, the server
ensures client access WORM semantics. In general simple confidentiality
and WORM assurances are easily achievable e.g., via an encrypted out-
sourced data repository with server-enforced read-only access to existing
records (albeit encrypted). However, this becomes hard when also access
privacy is to be ensured – when client access patterns are necessarily hid-
den and the server cannot enforce access control directly. WORM-ORAM
overcomes this by deploying a set of zero-knowledge proofs to convince
the server that all stages of the protocol are WORM-compliant.

1 Introduction

Regulatory frameworks impose a wide range of policies in finance, life sciences,
health-care and the government. Examples include the Gramm-Leach-Bliley Act
[1], the Health Insurance Portability and Accountability Act [2] (HIPAA), the
Federal Information Security Management Act [3], the Sarbanes-Oxley Act [4],
the Securities and Exchange Commission rule 17a-4 [5], the DOD Records Man-
agement Program under directive 5015.2 [6], the Food and Drug Administration
21 CFR Part 11 [7], and the Family Educational Rights and Privacy Act [8].
Over 10,000 regulations are believed to govern the management of information
in the US alone [9].

A recurrent theme to be found throughout a large part of this regulatory
body is the need for assured lifecycle storage of records. A main goal there is to
support WORM semantics: once written, data cannot be undetectably altered
or deleted before the end of its regulation-mandated life span. This naturally
stems from the perception that the primary adversaries are powerful insiders
with superuser powers coupled with full access to the storage system. Indeed
much recent corporate malfeasance has been at the behest of CEOs and CFOs,
who also have the power to order the destruction or alteration of incriminating
records [10].

Major storage vendors have responded by offering compliance storage and
WORM products, for on-site deployment, including IBM [11], HP [12], EMC



[13]. Hitachi Data Systems [14], Zantaz [15], StorageTek [16], Sun Microsystem
[17] [18], Network Appliance [19]. and Quantum Inc. [20].

However, as data management is increasingly outsourced to third party “clouds”
providers such as Google, Amazon and Microsoft, existing systems simply do not
work. When outsourced data lies under the incidence of both mandatory data

retention regulation and privacy/confidentiality concerns – as it often does in
outsourced contexts – new enforcement mechanisms are to be designed.

This task is non-trivial and immediately faces an apparent contradiction. On
the one hand, data retention regulation stipulates that, once generated, data
records cannot be erased until their “mandated expiration time”, even by their

rightful creator – history cannot be rewritten. On the other hand, access privacy
and confidentiality in outsourced scenarios mandate non-disclosure of data and
patterns of access thereto to the providers’ servers, and can be achieved through
“Oblivious RAM” (ORAM) based client-server mechanisms [21, 22]. Yet, by their
very nature, existing ORAM mechanisms allow clients unfettered read/write
access to the data, including the full ability to alter or remove previously written
data records – thus directly contradicting data retention requirements.

Basic confidentiality and WORM assurances are achievable e.g., via tradi-
tional systems that could encrypt outsourced data and deploy server-enforced
read-only access to data records once written. Yet, when also access privacy is
to be ensured, client access patterns become necessarily hidden and the server
cannot enforce WORM semantics directly.

In this paper we introduce WORM-ORAM, a first mechanism that combines
the access privacy and data confidentiality assurances of traditional ORAM with
Write Once Read Many (WORM) regulatory data retention guarantees. Clients
can outsource their database to a server with full confidentiality and data access
privacy, and, for data retention, the server ensures client access WORM seman-
tics, i.e., specifically that client access is append-only: – once a data record has
been written it cannot be removed or altered even by its writer.

WORM-ORAM is built around a set of novel efficient zero knowledge (ZK)
proofs. The main insight is to allow the client unfettered ORAM access with full
privacy to the server-hosted encrypted data set while simultaneously proving to
the server in zero-knowledge – at all stages of the ORAM access protocol – that
no existing records are overwritten and WORM semantics are preserved.

Specifically, clients can add encrypted data records to the database (“the
ORAM”) hosted by a service provider. Each record will be associated with a
regulatory mandated expiration time. Once stored, the client can read all data
obliviously, (and add new records) – only leaking that access took place and
nothing else. No access patterns or data records or any other information is
leaked. The server, without having plaintext access to the data or the client
access patterns then ensures – in a client-server interaction – that any client
access is WORM compliant: it is either a read of an existing record, or an
addition of a new record (with a new index – no overwriting permitted).

To achieve the above, at an overview level, the solution outlines as follows.
The server hosts two ORAMs, one storing the actual data items (the W-ORAM)



and one allowing the private retrieval of items expiring at any given time (the E-
ORAM). The E-ORAM is effectively a helper data structure allowing the client
to determine which items to expire at given time intervals. Client access to the
E-ORAM needs to be private, but does not need to be proved correct.

The server exports an access API to the W-ORAM to the client consisting
of four types of operations: write, read, expire and compliance verification. For
access pattern privacy purposes as in the traditional ORAM protocols, the data
set stored at the server contains both “real” and “fake” items – this is discussed
later. Then, during any legitimate access to the W-ORAM the client will prove
in ZK to the server that the item written is real, “well formed” and can be
decrypted later in the case of an audit. Moreover she also proves that the access
does not in fact overwrite any existing database item. Similarly, in the expiration
operation, the client proves in ZK that the element to be removed from the W-
ORAM has indeed expired. Finally, at audit time, the data has to be accessible
to an authorized auditor, even in the case of a non-cooperating client (e.g., that
could refuse to reveal encryption keys).

We show that our solution does not change the computational complexity
of existing ORAM implementations. However, we warn that the constants in-
volved are non-negligible and render this result of theoretical interest only for
now. Future work focuses on reducing these overheads towards true practical
efficiency.

2 Related Work

2.1 Oblivious RAM

Oblivious RAM [21] provides access pattern privacy to clients (or software pro-
cesses) accessing a remote database (or RAM), requiring only logarithmic stor-
age at the client. The amortized communication and computational complexities
are O(log3n). Due to a large hidden constant factor, the ORAM authors offer
an alternate solution with computational complexity of O(log4n), that is more
efficient for all currently plausible database sizes.

In ORAM, the database is considered a set of n encrypted blocks and sup-
ported operations are read(id), and write(id, newvalue). The data is organized
into log4(n) levels, as a pyramid. Level i consists of up to 4i blocks; each block is
assigned to one of the 4i buckets at this level as determined by a hash function.
Due to hash collisions each bucket may contain from 0 to log n blocks.
ORAM Reads. To obtain the value of block id, the client must perform
a read query in a manner that maintains two invariants: (i) it never reveals
which level the desired block is at, and (ii) it never looks twice in the same spot
for the same block. To maintain (i), the client always scans a single bucket in
every level, starting at the top (Level 0, 1 bucket) and working down. The hash
function informs the client of the candidate bucket at each level, which the client
then scans. Once the client has found the desired block, the client still proceeds

to each lower level, scanning random buckets instead of those indicated by their



hash function. For (ii), once all levels have been queried, the client re-encrypts
the query result with a different nonce and places it in the top level. This ensures
that when it repeats a search for this block, it will locate the block immediately
(in a different location), and the rest of the search pattern will be randomized.
The top level quickly fills up; how to dump the top level into the one below is
described later.
ORAM Writes. Writes are performed identically to reads in terms of the data
traversal pattern, with the exception that the new value is inserted into the top
level at the end. Inserts are performed identically to writes, since no old value
will be discovered in the query phase. Note that semantic security properties
of the re-encryption function ensure the server is unable to distinguish between
reads, writes, and inserts, since the access patterns are indistinguishable.
Level Overflow. Once a level is full, it is emptied into the level below. This
second level is then re-encrypted and re-ordered, according to a new hash func-
tion. Thus, accesses to this new generation of the second level will hence-forth
be completely independent of any previous accesses. Each level overflows once
the level above it has been emptied 4 times. Any re-ordering must be performed
obliviously: once complete, the adversary must be unable to make any correla-
tion between the old block locations and the new locations. A sorting network
is used to re-order the blocks.

To enforce invariant (i), note also that all buckets must contain the same
number of blocks. For example, if the bucket scanned at a particular level has no
blocks in it, then the adversary would be able to determine that the desired block
was not at that level. Therefore, each re-order process fills all partially empty
buckets to the top with fake blocks. Recall that since every block is encrypted
with a semantically secure encryption function, the adversary cannot distinguish
between fake and real blocks.
Oblivious Scramble. In [22] Williams et al.introduced an algorithm that
performs an oblivious scramble on a array of size n, with c

√
n local storage, in

O(n log log n) time with high probability. Informally, the algorithm is a merge
sort, except a random number generator is used in place of a comparison, and
multiple sub-arrays are merged simultaneously. The array is recursively divided
into segments, which are then scrambled together in groups. The time complexity
of the algorithm is better than merge sort since multiple segments are merged
together simultaneously. Randomly selecting from the remaining arrays avoids
comparisons among the leading items in each array, so it is not a comparison
sort.

2.2 Oblivious Transfer with Access Control

Camenish et al. [23] study the problem of performing k sequential oblivious
transfers (OT) between a client and a server storing N values. The work makes
the case that previous solutions tolerate selective failures. A selective failure
occurs when the server may force the following behavior in the ith round (for
any i=1..k): the round should fail if the client requests item j (of the N items)
and succeed otherwise. The paper introduces security definitions to include the



selective failure problem and then propose two protocols to solve the problem
under the new definitions.

Coull et al. [24] propose an access control oblivious transfer problem. Specif-
ically, the server wants to enforce access control policies on oblivious transfers
performed on the data stored: The client should only access fields for which it
has the credentials. However, the server should not learn which credentials the
client has used and which items it accesses.

Note that the above oblivious transfer flavors do not consider by definition
the problem of obliviously enforcing WORM semantics as well as writing to the
data. Our regulatory compliant problem is complicated by the fact that we also
allow clients to add to the database while proving that operations performed on
the data do not overwrite old records. One can trivially extend OT with an add
call, by imposing O(N) communication and computation overheads. However,
by building our solution on ORAM we can perform both read and add operations
with only poly-logarithmic complexity and traffic overheads.

3 Model and Preliminaries

3.1 Deployment and Threat Model

In the deployment model for networked compliance storage, a legitimate client
creates and stores records with a (potentially untrusted) remote WORM storage
service. These records are to be available later to both the client for read as well
as to auditors for audits. Network layer confidentiality is assured by mechanisms
such as SSL/IPSec. Without sacrificing generality, we will assume that the data
is composed of equal-sized blocks (e.g., disk blocks, or database rows).

At a later time, a previously stored record’s existence is regretted and the
client will do everything in her power – e.g., attempt to convince the server to
remove the record – to prevent auditors from discovering the record. The main
purpose of a traditional WORM storage service is to defend against such an
adversary.

Moreover, numerous data regulations feature requirements of “secure dele-
tion” of records at the end of their mandated retention periods. Then, in the
WORM adversarial model the focus is mainly on preventing clients from “rewrit-
ing” history, rather than “remembering” it. Additionally, we prevent the rushed
removal of records before their retention periods. Thus, the traditional Write-
Once Read-Many (WORM) systems have the following properties:

– Data records may be written by clients to the server once, read many times
and not altered for the duration of their life-cycle.

– Records have associated mandatory expiration times. After expiration, they
should not be accessible for either audit or read purposes.

– In the case of audits, stored data should be accessible to auditors even in
the presence of a non-cooperating client refusing to reveal encryption keys.
Compliant record expiration of inaccessible records should be easily proved
to auditors.



Additionally, when records and their associated access patterns are sensitive
they need to be concealed from a curious server. The main purpose of WORM-
ORAM is to enable WORM semantics while preserving data confidentiality and
access pattern privacy. This inability of the server to “see” data and associ-
ated access patterns prevents the deployment of conventional file/storage system
access control mechanisms or data outsourcing techniques. Thus, we have the
following additional requirements:

– Data records are encrypted from the server (confidentiality).
– The server cannot distinguish between different read operations targeting

the same or different data records (access privacy).
– During a read, in the ORAM protocol, to enforce WORM semantics, clients

will need to prove to the server that any access did not remove data records.
Specifically, when re-inserting one of the read elements back into the root of
the ORAM pyramid, the client needs to prove to the server in ZK that the
inserted element is a correct re-encryption of the previously removed “real”
element (see Section 2.1 for details).

– During a re-shuffle, in the ORAM protocol, clients can prove that no “real”
elements were converted into “fake” ones.

Additionally, in the WORM-ORAM scenario, we assume the following:

– The server is allowed to distinguish between record expiration, read and
write operations.

– Clients participate correctly in any record expiration protocol. This is rea-
sonable to assume because the regulatory compliance scenario allows clients
always to by-pass the server-enforced storage service and store select records
elsewhere.

Several participants are of concern. First, clients have incentives to rewrite

history and alter or completely remove previously written records. We note that in
the regulatory scenario, there exists an apparent imbalance – clients are assume
to correctly store records at the time of their creation – only later does regretting
the past becoming a concern. Thus the main focus of WORM assurances is not to
prevent history but rather just its rewriting. In reality, the “regret” time interval
between the creation/storage and regretting of a record is non-zero, application-
specific, and often quite large. To remove any application dependency, here we
consider the strongest WORM guarantees, in which records are not to be altered
as soon as they are written.

Second, the storage provider (server) is curious and has incentives to illicitly
gain information about the stored data and access patterns thereto. As the
regulatory storage provider, the server is the main enforcer of WORM semantics
and record expiration. Naturally, the server is assumed to not collude with clients
illicitly desiring to alter their data. In summary, the server is trusted to run
protocols correctly yet it may try to use information obtained from correct runs
to obtain undesired information. This assumption is natural and practical as
otherwise one can easily imagine a server simply deleting stored records in a



denial of service attack. Basic denial of service on the client or server side is not
of interest here.

We consider a server S with O(N) storage and a client C with O(
√

N log N)
local storage. The client stores O(N) items on the server. We denote the regu-
latory compliance auditor by A.

3.2 Cryptography

We require several cryptographic primitives with all the associated semantic se-
curity [25] properties including: a secure, collision-free hash function which builds
a distribution from its input that is indistinguishable from a uniform random
distribution, a semantically secure cryptosystem (Gen, Enck, Deck), where the
encryption function Enc generates unique ciphertexts over multiple encryptions
of the same item, such that a computationally bounded adversary has no non-
negligible advantage at determining whether a pair of encrypted items of the
same length represent the same or unique items, and a pseudo random number
generator whose output is indistinguishable from a uniform random distribution
over the output space.

The Decisional Diffie-Hellman (DDH) assumption over a cyclic group G of or-
der q and a generator g states that no efficient algorithm can distinguish between
two distributions (ga, gb, gab) and (ga, gb, gc), where a, b and c are randomly cho-
sen from Zq.

An integer v is said to be a quadratic residue modulo an integer n if there
exists an integer x such that x2 = v mod n. Let QRA be the quadratic residuosity
predicate modulo n. That is, QR(v, n) = 1 if v is a residue mod n and QR(v, n) =
0 if v is a quadratic non-residue.

Given an odd integer n = pq, where p and q are odd primes, the quadratic
residuosity (QR) assumption states that given n but not its factorization and
an integer v whose Jacobi symbol (v|n) = 1 it is difficult to determine whether
QR(v, n) is 1 or 0.

The Goldwasser, Micali and Rackoff [26] zero knowledge proof of quadratic

non-residuosity proceeds roughly as follows. Given two parties A and B, A claims
knowledge of QR(v, n) = 0, for (v|n) = 1. A proves this in zero knowledge to
B, that is, without revealing n’s factorization. To achieve this, B selects m
random values r1, .., rm and flips m coins. For each coin ci, if ci = 0 B computes
xi = r2

i mod n to A, otherwise it computes xi = vr2
i mod n. B sends all computed

xi values to A. A needs to send back the square roots of the quadratic residues it
detects in the list x1, ..xm. If QR(v, n) = 0, then A correctly detects the residues.
If QR(v, n) = 1, all the values received by A will be quadratic residues. A can
then cheat only with probability 1/2m.

Notations: Let n = pq be a large composite, where p and q are primes. Let
φ(n) denote the Euler totient of n. We will use x ∈R A to denote the random
uniform choice of x from the set A. Given a value m, let P(m) denote the group
of permutations over the set {0, 1}m. Let k < |n| be a security parameter. Let



N denote the set of elements stored in the ORAM. Let Wm be the universe of
all sets of m quadratic residues.

4 Solution Overview

A WORM-ORAM system, consists of two ORAMs (W-ORAM,E-ORAM) and
a set of operations (Gen, Enc, Dec, RE, Write, Read, Expire, Shuffle, Audit)
that can be used to access the ORAMs. The client needs to store elements at
the server while preserving the privacy of its accesses and allowing the server to
preserve the data’s WORM semantics. W-ORAM serves this purpose: it is used
by the client to store (label, element) pairs.

We organize time into epochs: each element stored at the server expires in
an integer number of epochs, as determined by the client. The client needs to
remember the expiration time of each element stored in the W-ORAM. The
client uses the E-ORAM to achieve this, to store expiration times of labels used
to index elements stored in W-ORAM. When queried with a time epoch, E-
ORAM provides a list of labels expiring in that epoch. The labels are then used
to retrieve the expiring elements from the W-ORAM.

The E-ORAM is stored and accessed as a regular ORAM [27]. It is used as an
auxiliary storage structure by the client and it needs not be WORM compliant.
The W-ORAM on the other hand stores actual elements and needs to be made
WORM compliant. The W-ORAM stores two types of elements: ”reals” and
”fakes”. A real element has a quadratic non-residue component, whereas a fake
has a quadratic residue. Each time the ORAM is accessed, elements are re-
encrypted to ensure access privacy. The client has then to prove in ZK that
(i) an element is real or fake and (ii) a re-encrypted element decrypts to the
same cleartext as the original element. We now provide a brief overview of each
operation described above and follow with a detailed description in the next
section.

Gen. Operation executed initially, to generate system parameters for each par-
ticipant: client, server, auditor.

Enc, Dec, RE. Enc and Dec provide the basic encryption and decryption
operations for elements to be stored in the W-ORAM. RE is the W-ORAM
element re-encryption operation. RE is needed to ensure that the server cannot
distinguish the same W-ORAM element accessed multiple times, while allowing
the server to prove in zero knowledge the element’s correctness.

Write. Operation used by the client to store an element on the server. The
client needs to label the element and determine its expiration time. The client
stores the element indexed by the label on the W-ORAM and the label indexed
by the element’s expiration time in the E-ORAM.



Read. Allows the client to retrieve from the W-ORAM an element indexed by
an input label. The operation is based on existing ORAM reading techniques.
In addition, it obliviously ensures that the client cannot remove or alter any real
element from the W-ORAM.

Shuffle. Re-shuffles a level (provided as input) in the W-ORAM. Based on
existing ORAM shuffling techniques, it needs to ensure that the client cannot
remove or alter existing W-ORAM elements.

Expire. This operation makes use of both the E-ORAM and W-ORAM to
remove all elements from the W-ORAM whose expiration time equals an input
expiration time epoch. The operation needs to obliviously convince the server
that only expiring elements are removed and no other W-ORAM elements are
altered.

Audit. Enables an auditor to access the entire W-ORAM and search for key-
words of interest.

5 Solution

Gen(k). Generate p = 2p′ + 1, q = 2q′ + 1 such that p, p′, q, q′ are primes. Let
n = pq. Let G be the cyclic subgroup of order (p− 1)(q− 1). DDH is believed to
be intractable in G [28]. Let g be a generator of G. Let a be a random value and
let d = a−1 mod φ(n). Let k be a random key in a semantically secure symmetric
cryptosystem. Gen gives k, n, g, h = ga ∈ G, p, q, a and d to the client and n,
g, h to the server. Gen also gives k, p, q, a and d to the auditor.

Enc((x,Texp),k,g,h,G,f). Encrypt an element of value x with expiration time
Texp, using the client’s view of Gen’s output as input parameters. The output
of the operation is a tuple (A, B) ∈ G×G that can be stored on the W-ORAM.
If f = 0, Enc generates a “real” W-ORAM element: the first field of such
elements is a quadratic non residue, QR(A, n) = 0. The tuple is computed as
follows. First, generate a random r ∈ {0, 1}k and use it to compute M(x) =
{Ek(x), Texp, “real′′, r} where Ek(x) denotes the semantically secure encryption
of item x with symmetric key k and “real” is a pre-defined string. The random
r is chosen (using trial and failure) such that QR(M(x), n) = 0 (quadratic non
residue mod n) whose Jacobi symbol is 1. Second, generate a random odd value
b ∈R {0, 1}k and output the tuple S(x) ∈ G × G as

S(x) = (A, B) = (M(x)g2b, h2b)).

S(x) is said to be an “W-ORAM element”, whose first field is the “encrypted
element” and second field is called the “recovery key”. Notice that since M(x)
is a QNR, QR(M(x)g2b, n) = 0 with (Jacobi symbol) (M(x)g2b|n) = 1.

If f = 1, Enc generates a “fake” W-ORAM element: the first field of fake
elements is a quadratic residue, QR(A, n) = 1. To compute a fake element, Enc
generates random s, k ∈R {0, 1}k and outputs the tuple (s2 mod n, k).



Dec((A,B),d,k). Decrypt a real W-ORAM element, given the secret key d =
a−1. Compute M = AB−d. M has format {E, Texp, “real′′, r}. The operation
outputs the tuple Deck(E), Texp.

RE(A,B). Re-encrypt element (A, B). Choose u ∈R {0, 1}k, called re-encryption
factor. Output pair (A′, B′) = (Ag2u, Bh2u). Note that knowledge of the mes-
sage M encoded in (A, B) is not required. Alternatively, if M is known such that
A = Mg2b and B = h2b, then output (A′, B′) = (Mg2u, h2u). Note that u may
also be used as an input parameter by RE((A, B), u).

RE(L). Generalization of RE((A, B)), where L = {(A1, B1), .., (Am, Bm)} is a
list of W-ORAM elements. Choose ū = {u1, .., um}, such that ui ∈R {0, 1}k. ū is
called the re-encryption vector. Output L′ = {RE((Ai, Bi), ui)}i=1..m. We also
use the notation L′ = Lū and call L′ a “correct re-shuffle” of L.

We now prove the semantic security of Enc.

Theorem 1 Enc is IND-CPA secure.

Proof. Let Q be an adversary that can break the semantic security of Enc with
advantage ǫ. We then build an adversary Q∗ that can break the DDH assumption
in G without knowing n’s factors, with probability ǫ. Let CH be a challenger.
CH interacts with Q∗ by sending the triple (A = ga, B = gb, C = gc). Q∗ needs
to decide whether c = ab or is randomly distributed.

Q∗ sends A to Q as the public key (h in our protocol). A then sends to Q∗

two messages M0 and M1. Q∗ picks a bit α ∈R {0, 1} randomly and sends back
to Q the tuple (MαB2, C2). Q sends back its guess for α. If Q guesses correctly,
Q∗ sends to CH the value 1 (c = ab) or 0 (c is random).

When c = ab, the tuple (MαB2, C2) is a correct ciphertext of Mα. Then, the
interaction between Q∗ and Q is correct and the probability of Q∗ to output 1 is
1/2 + ǫ. When c is distributed randomly, the tuple (MαB2, C2) is independent
of α. The probability of Q∗ outputting 1 is then 1/2. Thus, Q∗ has advantage ǫ
in the DDH game.

Note that we can similarly prove that RE is IND-CPA. That is, given two
encryptions (A0, B0) and (A1, B1) of any two messages and a re-encryption
RE(Ab, Bb), b ∈R {0, 1} of one of the two encryptions, an attacker cannot guess
b with non-negligible probability over 1/2. In the following, we describe first the
main E-ORAM operations and then the W-ORAM accessing operations.

5.1 Accessing E-ORAM

The E-ORAM is a standard ORAM, storing labels indexed under expiration
time epochs. The E-ORAM needs to provide C with the means to determine
how many and which labels expire at a given time epoch and also to insert a
new (epoch, label) pair. This is achieved in the following manner. For each Texp

value used to index labels in E-ORAM, a head value is used to store the number



of labels expiring at Texp: (Texp, (label, counter)). label is the first label that
was indexed under Texp. Each of the remaining c − 1 labels is stored under a
unique index: The ith label’s index is (Texp, i), that is, the label’s expiration
time concatenated with the label’s counter at its insertion time.

Algorithm 1 E-ORAM: Write a
new label under an expiration time
and enumerate all labels indexed un-
der an expiration time.

1.Write(E− ORAM : ORAM, Texp : int, lbl : id)
2. (e, A) := ReadORAM(E− ORAM, Texp);
3. if (e = null) then
4. e′ := Ek(lbl, 1);
5. WriteORAM(Texp, e

′);
6. else
7. (l, c) := Dk(e);
8. WriteORAM(Texp, Ek(l, c + 1));
9. WriteORAM((Texp, c + 1), Ek(lbl));
10. fi
11.end

12.Enumerate(E− ORAM : ORAM, Texp : int)
13. L : id[]; #store result labels
14. L := ∅;
15. (e, A) := ReadORAM(E− ORAM, Texp);
16. if (e! = null) then
17. (l, c) := Dk(e);
18. L := L ∪ l;
19. for (i := 2; i ≤ c; i + +) do
20. (e, A) := ReadORAM(E− ORAM, (Texp, i));
21. l := Dk(e);
22. L := L ∪ l;
23. od
24. fi
25. return L;
26.end

As mentioned in Section 2, ReadORAM denotes the standard ORAM read
operation, taking as input the ORAM and a label and returns an element stored
under that label along with the list of all elements removed from the ORAM
(including the one of interest). WriteORAM is the standard ORAM write opera-
tion, which takes as input a label and an element and stores the element indexed
under the label. Note that in the standard ORAM implementation, both oper-
ations are performed in the same manner. Their operation is only different for
the client. Let ObliviousScramble be the standard ORAM re-shuffle operation
(see Section 2), which takes as input a level id and generates a pseudo-random
permutation of the re-encrypted elements at that level. We now present the most
important operations for accessing the E-ORAM, Write and Enumerate.

Write(E-ORAM,Texp,label). The pseudo-code of this operation is shown in
Algorithm 1, lines 1-11. It allows the client to record the fact that label expires
at time Texp. It first reads the element currently stored under Texp (line 2). If no
such element exists (line 3), it generates an element encoding the fact that this
label is the first to be stored under Texp (line 4) and writes it on the E-ORAM
(line 5). If however a label is already stored under Texp (line 6), retrieve that label
l along with the counter c that specifies how many labels are currently expiring
(stored in E-ORAM) at Texp (line 7). Note that the read operation performed
on line 2 removes this element from the E-ORAM. Then, since now c + 1 labels
expire at Texp, store label l and the incremented counter in the E-ORAM under
Texp (line 8). Finally, store the input label under an index consisting of a unique
value: Texp concatenated with c+1. This will allow the client to later enumerate
all labels expiring at Texp (see next).

Enumerate(E-ORAM,Texp). This operation enables C to retrieve all the la-
bels in E-ORAM that expire at Texp. Its pseudo-code is shown in Algorithm 1,



lines 12-26. First, initialize the result label list (line 13). Then, read the head
label stored under Texp along with the counter of labels expiring at Texp (lines
14,16). If such an element exists (line 15), record the head label (line 17). Then,
for each of the c − 1 (i = 2, .., c) remaining labels, retrieve their actual value by
reading from E-ORAM the element stored under a unique index consisting of
Texp concatenated with i. Note that Enumerate removes all labels expiring at
Texp from E-ORAM (ReadORAM removes accessed elements).

5.2 Generating Labels

Elements in the standard ORAM model are stored as a pair (label, value),
where label may denote a memory location or the subject of an e-mail. In our
case to prevent the server from launching a dictionary attack, we use the a
Label(label, lkey) operation to generate labels. Besides the input label, Label also
uses a (random) labeling key, which is used to define a pseudo-random function
Flkey . The output of Label coincides then with the output of Flkey(label).

In the following we describe the main W-ORAM accessing operations.

5.3 Writing on the Server

Algorithm 2 W-ORAM: Write
value v expiring at Texp.

1.Write(W− ORAM : ORAM, E− ORAM : ORAM,
v : string, l : id, Texp : int)

2. label := newLabel(l, lkey);
3. (A, B) := Enc(label, v, Texp, params);
4. ZKP := getQNRProof(A, n);
5. if (verify(ZKP, A) = 1) then
6. T0 := getLevel(W − ORAM, 1);
7. insert(T0, (A, B));
8. Write(E− ORAM, Texp, label);
9. else
10. return error;
11. fi
12.end

Algorithm 3 W-ORAM: Read
label.
1.Read(W− ORAM : ORAM, label : id)
2. (R, L) := ReadORAM(W− ORAM, label);
3. U := (Au, Bu) := RE(R);
4. Proof := ZK− POR(L, U);
5. if (verifyQNR(Au , n)

& verify(Proof, L, U)) then
6. T0 := getLevel(W − ORAM, 1);
7. insert(T0 , U);
8. return Dec(R, d, k);
9. else
10. undo(W − ORAM);
11. return error;
12. fi end

Write((W-ORAM,E-ORAM,v,l,Texp,params). Insert a value v under a la-
bel l, with expiration time Texp on the server (on the W-ORAM and E-ORAM).
It takes as input also C’s view of Gen’s output, params = k, g, h, G. Algorithm 2
shows the pseudo-code of this operation. It first generates a new label (line 2)
and calls Enc to produce a W-ORAM tuple (A, B) (line 3). It then generates
a non-interactive zero knowledge proof of QR(A, n) = 0 (A’s quadratic non-
residuosity). If the proof verifies (line 5) the server inserts the tuple (A, B) in
the top level of the W-ORAM (line 6) and stores label under the tuple’s expira-
tion time Texp in E-ORAM (see Section 5.1).



5.4 Reading from the Server

Read(W-ORAM,label). Read takes as input the W-ORAM and a label and
returns an element of format (label, x, Texp). Algorithm 3 shows the pseudo-code
for this operation. Read first performs on W-ORAM a standard ORAM read
on the desired label (line 2). This returns both the W-ORAM element R of
interest and the list L of elements (containing R) removed from the W-ORAM.
C computes U = (Au, Bu), a re-encryption of R (line 3) and calls ZK-POR to
prove in zero knowledge that U is a re-encryption of the only real element in
L (line 4). ZK-POR is described in detail in Section 5.4. S verifies in ZK that
QR(Au, n) = 0 and also the validity of the ZK-POR proof. If the proofs are valid
(line 5), S inserts U in the first level of the W-ORAM (lines 6-7). C decrypts
the desired element R and returns the result (line 8). If any proof fails (line 9)
S restores the W-ORAM to the state before the start of Read and returns error
(lines 10-11).

Zero Knowledge Proof of ORAM Read. We now present ZK-POR, the
zero-knowledge proof of WORM compliance of the read operation performed on
the W-ORAM. ZK-POR takes as argument the list L of elements removed from
W-ORAM in line 2 of Algorithm 3 and U , the re-encryption of the real element
from L. ZK-POR is executed by the client C and the server S. Let m denote
the number of levels in the W-ORAM, m = log N .

Let L = {(s2
1, k1),...,(s

2
r−1, kr−1),S(xr),(s

2
r+1, kr+1),.., (s2

m, km)} where the
elements are listed in the order in which they were removed from the W-ORAM.
C is interested in the item from the rth ORAM layer, R = S(xr). Let S(xr) =
(M(xr)g

2tr , h2tr ) = (Ar, Br). Its first field is a quadratic non-residue. All other
elements from L are fakes – their first field is a quadratic residue. Let U =
RE(R) = (M(xr)g

2u, h2u) = (Au, Bu) be the re-encryption of S(xr). The fol-
lowing steps are executed s times by C and S.

Step 1: Proof Generation. C selects a random permutation π ∈R P(m). C
generates w̄ = {w1, ..wm}, where each wi ∈R {0, 1}m is odd and generates the
proof list P = π(Lw̄). That is, P = π{(s2

1g
2w1 , k1h

2w1),..,(Arg
2wr , Brh

2wr ),
..,(s2

mg2wm , kmh2wm)}, where, (Arg
2wr , Brh

2wr) is a re-encryption of S(xr). C
sends P to S. The client locally stores wi, i = 1..m. As assumed in the model,
C has O(

√
N log N) storage which is sufficient to store m = O(log N) values.

Step 2: Proof Validation. S flips a coin b. If b is 0, C reveals w1, .., wm. S
verifies that all wi are odd and ∀(Ai, Bi) ∈ L, (Aig

2wi , Bih
2wi) ∈ P . If b is 1, C

sends to S the values sig
wi , i = 1..m, i 6= r along with the value Γ = (tr+wr−u).

Note that given s2
i mod n and n’s factorization, C can easily recover si. S

verifies first that (sig
wi)2, i = 1..m, i 6= r occurs in the first field of all but one

tuple in P . That is, m − 1 of the elements of P are fakes. S then verifies that
(Arg

2wr , Brh
2wr ) = RE((Au, Bu), Γ ). If any verification fails, S outputs “error”

and stops.



Theorem 2 A correct execution of Read from W-ORAM has O(log N) com-

plexity.

Theorem 3 ZK-POR is a zero knowledge proof system of Read ∈ WORM. That

is, Read is WORM compliant.

Due to lack of space, the proofs will be included in the journal version of the
paper.

Note that the soundness property of ZK-POR ensures that a cheating client
can remove an element from the ORAM during the Read operation without
being detected with probability at most 1/2s.

5.5 Shuffling the W-ORAM

Algorithm 4 Shuffle of level l.

1.Shuffle(W− ORAM : ORAM, l : int)
2. Tnew[l] : string[]#new level l array

#spill T[l− 1] into T[l]
3. T[l− 1] := getLevel(W − ORAM, l− 1);
4. T[l] := getLevel(W − ORAM, l);
5. T[l] := T[l− 1] ∪ T[l];
6. T[l− 1] := ∅;

#re− encrypt elements from T[l]
7. for (i := 1; i ≤ |T[l]|; i + +) do
8. e := T[l][i];
9. u[i] := genRandom();
10. Tnew[l][i] := Ek(RE(e, u[i]));
11. for (j := 1; j ≤ s; j + +) do
12. w[i] := genRandom();
13. Pj[i] := Ek(RE(e, w[i]),

”mv”, u[i], u[i] − w[i]);
#add fakes
14. f := fakeCount(T[l]);
15. for (i := 1; i ≤ f; i + +) do
16. (s[i], k[i]) := genRandom();
17. e := (s[i]2, k[i]);
18. append(Tnew [l], Ek(e));

19. for (j := 1; j ≤ s; j + +) do
20. w[i] := genRandom();
21. re := RE(e, w[i]),

”add”, s[i]gw[i], u[i] − w[i]);
22. append(Pj[i], Ek(re));

#Shuffle Tnew[l] and proofs
23. Tnew[l] := ObliviousScramble(Tnew [l]);
24. for (j := 1; j ≤ s; j + +) do
25. Pj := ObliviousScramble(Pj);
#decrypt shuffled elements
26. for (i := 1; i ≤ |Tnew[l]|; i + +) do
27. e := Tnew[l][i];
28. Tnew[l][i] := Dk(e);
29. for (j := 1; j ≤ s; j + +) do
30. e := Pj[i];
31. (A, B, str, C, D) := Dk(e);
32. Pj[i] := (A, B, Ek(str, C, D));
#proof verification step
34. for (j := 1; i ≤ s; i + +) do
35. if (!verify(T[l], Tnew[l], Pj)) then
36. undo(W− ORAM, l− 1, l);
37. return error;

#commit new level
38. T[l] := Tnew[l];

When the l − 1th level of W-ORAM stores more than 4l−1, due to element
insertions occurring during Read operation, the level needs to be spilled over
into level l. Let T [l] denote the list of elements stored in the W-ORAM at the
l-th level. The l-th level then needs to be filled with fakes. The fakes are needed
to ensure that subsequent Read accesses will not run out of fakes (see [27] for
more details). The l-th level then needs to be obliviously permuted, using only
O(

√
N log N) client space. Let T new[l] denote the re-shuffled l-th level elements.

Due to the WORM semantics, the client also needs to prove that the reshuffle is
correct: (i) T new[l] is a re-encryption of the old T [l] and (ii) |T new[l]| − |T [l]| −
|T [l − 1]| elements from T new[l] are fakes. Shuffle performs this operation.



Shuffle(W-ORAM,l). This operation takes as input the W-ORAM and the
index of its level that needs to be reshuffled. Algorithm 4 shows the pseudo-code
of this operation. It first spills the content of level l − 1 into level l (lines 3-6).
Then, it needs to compute the oblivious permutation and build its ZK proof
of correctness. We call this procedure ZK-PRS and describe it in detail in the
following.

Zero Knowledge Proof of Re-Shuffle. The pseudo-code of ZK-PRS is in
Algorithm 4, lines 7-38. Similar to ZK-POR (see Section 5.4), ZK-PRS consists
of s rounds executed by the client C and the server S. During each round, a
proof list Pj is built by C (line 14 of Algorithm 4). Pj has the same number of
elements as T new[l], O(N). The client builds the list T new[l] and each of the s
proofs P in the following steps. Initially, T new[l] and each proof list Pj is stored
as an empty list at the server S. The client C generates a symmetric key k for
the (G, E, D) cryptosystem.

Step 1: Element Re-Encryption. First, C takes each element from T [l] and
stores a re-encrypted version in T new[l] and in each proof Pj (lines 7-13). That
is, for each element Si = (Ai, Bi) ∈ T [l] (stored at S), C generates fresh random
odd values ui, wi ∈ {0, 1}k (lines 9 and 12) and produces one element S′

i to
be inserted in T new[l] (line 10) S′

i = Ek(Aig
2ui , Bih

2ui) and one element P
to be inserted in Pj (line 13) P = Ek(Aig

2wi , Bih
2wi , ”mv”, Γ1[i], Γ2[i]) where

Γ1[i] = −wi and Γ2[i] = (ui − wi). The string ”mv” denotes that this proof
element corresponds to an element from T [l] moved to T new[l].

Step 2: Fake Insertion. C adds f fake elements (lines 14-22). For each of the
f fakes to be inserted in T new[l], C generates two random values si, ki ∈R {0, 1}k

(line 16), i = 1..f , where wi is odd. C then adds an element Ek(s2
i , ki) in T new[l]

(lines 17-18). It then generates a random value wi ∈R {0, 1}k (line 20) for each
proof list Pj and appends an element Ek(s2

i g
2wi , kih

2wi , ”add”, Γ1[i], Γ2[i]) to Pj

(lines 21-22). Γ1[i] = sig
wi , Γ2[i] = (ui − wi) mod φ(N) and the string ”add”

denotes that this proof element is a fake added to level l.
Note that Γ1[i] and Γ2[i] are used to keep track of the correspondence between

the ith element of each Pj and its re-encryptions in T [l] and T new[l] after the
list reshuffle step (see next).

Step 3: List Reshuffle. At the end of the set generation step, C (and S) have
a one-to-one correspondence between each element in T new[l], each element in
each Pj and each element in T [l]. C then calls the ObliviousScramble procedure
using T new[l] and each Pj as inputs (lines 23-25). During the ObliviousScramble
call, elements read from T new[l] and P are decrypted (using k) and re-encrypted
before being written back. Due to the semantic security properties of the encryp-
tion scheme employed, at the end of the ObliviousScramble, S can no longer map
elements from T [l] to elements in the reshuffled T new[l] and Pj sets.

Step 4 - Decryption. C reads each element from the reshuffled T new[l] list,
decrypts the element and writes it back in-place (lines 26-28). C reads each
element from each proof list Pj , decrypts it and writes back (Aig

2wi , Bih
2wi ,

Ek(str, Γ1[i], Γ2[i])), where str is either ”mv” or ”add” – moved or added fake
(lines 29-32).



Step 5 - Proof Verification. S verifies each proof list Pj (lines 34-37). If
any verification fails, restore the W-ORAM to the state at the beginning of the
operation and return error (lines 36-37). Each verification, for a proof list P ,
works as follows.

S flips a coin b. If b = 0, S asks C to prove that P is a valid reshuffle of T [l]
and all the remaining elements in P are fakes. For this, C reads each element of
P , (Aig

2wi , Bih
2wi , Ek(str, Γ1[i], Γ2[i])), retrieves Γ1[i] and sends to S, Aig

2wi ,
Bih

2wi , str and Γ1[i]. If str = ”mv”, S first verifies that indeed Γ1[i] is an odd
number, then verifies that RE((Aig

2wi , Bih
2wi), Γ1[i]) appears in T [l] exactly

once. If str = ”add”, S verifies that Γ1[i]
2 is the first field of exactly one tuple in

T new[l]. If b = 1, C needs to prove that P is a valid reshuffle of T new[l]. For this,
C reads each element from P , recovers Γ2[i] and sends to S the values Aig

2wi ,
Bih

wi and Γ2[i]. S verifies that RE((Aig
2wi , Bih

2wi), Γ2[i]) occurs in T new[l]
exactly once.

Algorithm 5 Operation that re-
moves all W-ORAM elements that
expire at time T .

1.Expire(E− ORAM, W− ORAM : ORAM, T : int
2. L : id[]; #expiring labels
3. E : string[]; #removed from W− ORAM
4. L := Enumerate(E − ORAM, T);
5. for each label in L do
6. (R, E) := ReadORAM(W− ORAM, label);
7. Proof := ZK− PEE(R, E);
8. if (verify(Proof, E) = 0) then
9. undo(W− ORAM);
10. return error;
11. fi od
12.end

The following result holds. Due to
lack of space we omit the proof, which
will be included in the journal version
of the paper.

Theorem 4 A correct execution of

ZK-PRS has O(log N log log N) amor-

tized complexity.

Due to lack of space we omit the
proof, which will be included in the
journal version of the paper. The jour-
nal version also includes the proof
that ZK-PRS is a zero knowledge
proof system of Shuffle ∈ WORM.

5.6 Element Expiration

Expire(T). The operation takes as input a time epoch T and removes all the
elements from the W-ORAM that expire in that epoch. The pseudo-code of the
operation is shown in Algorithm 5. It first uses the E-ORAM to enumerate all
the labels that expire at T (line 4). Then, for each such label (line 5) it reads
(and removes) from the W-ORAM the corresponding element (line 6). Note
that the ReadORAM operation also returns the entire list E of elements removed
from the W-ORAM – containing log N elements. It then builds a zero knowledge
proof of the fact that E contains one real element that expires at T and the rest
(log N − 1 elements) are fakes (line 7). If the proof verifies, the server accepts
the expiration, otherwise restores the W-ORAM to the state before the Read of
line 6 (line 9) and returns error (line 10).

Zero Knowledge Proof of Element Expiration. We present a sketch of
ZK-PEE, which is called in Algorithm 5, line 7. ZK-PEE takes as input the
element to be expired, R and the list of all elements that were removed from
W-ORAM when R was read (line 6). Let m = log N be the number of elements



in E. ZK-PEE consists of s rounds run between C and S. During each round C
generates w̄ = {w1, .., wm}, where wi ∈R {0, 1}k are odd. C computes a proof
list P = π(Ew̄), where π ∈R Pm is a random permutation. S then flips a bit
b. If b = 0, C needs to provide w̄. S verifies that all wi ∈ w̄ are odd and that
P = π(Ew̄).

If b = 1, C reveals Dec(R, d, k) = M(x) = (Ek(x), Texp, ”real”, r) to S along
with the encryption factor u and the square roots of all the other log N − 1 ele-
ments in P . S verifies the revealed element: (i) its correctness, (M(x)g2u, h2u) =
R and (ii) its format, that is, Texp = T and the third field is ”real”. It also
verifies that the remaining (log N − 1) elements of P are fakes.

5.7 Audit

Audit(d,k). The basic auditing operation takes as input the decryption keys d
and k. It calls Dec((A, B), d, k), for all elements (A, B) in the ORAM. Once all
the elements are recovered, they can be searched for desired keywords.

6 Conclusions
In this paper we introduce WORM-ORAM, a solution that provides WORM
compliant Oblivious RAMs. Our solution is based on a set of zero knowledge
proofs that ensure that all ORAM operations are WORM compliant. The pro-
tocol features the same asymptotic computational complexity as ORAM.
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