On Securing Untrusted Clouds with Cryptography

ABSTRACT

In a recent interview, Whitfield Diffie argued that “the whaleint

of cloud computing is economy” and while it is possible innpri
ciple for “computation to be done on encrypted data, fcutrent
techniques would more than undo the economy gained by the out
sourcing and show little sign of becoming practicalere we ex-
plore whether this is truly the case and quantify justvexpensive

it is to secure computing in untrusted, potentially curicleids.

1. INTRODUCTION

Commoditized outsourced computing has finally arrived niyai
due to the emergence of fast and cheap networking and efficien
large scale computing. Amazon, Google, Microsoft and Sen ar
just a few of the providers starting to offer increasinglynmgex
storage and computation outsourcing “cloud” services. CiRiles
have become consumer merchandise.

In [5] we explored the end-to-end cost of a CPU cycle in vasiou
environments and show that its cost lies between 0.45 pitsce
in efficient clouds and 27 picocents for small business depémt
scenarios (1 picocent =1$« 10~1%). In terms of pure CPU cycle
costs, current clouds present seemingly cost-effectispgmitions
for personal and small enterprise clients.

Nevertheless, cloud clients are concerned with ghgacy of
their data and computation — this is often the primary adoption
obstacle, especially for medium and large corporationsy often
fall under strict regulatory compliance requirements.

To address this, existing secure outsourcing researclessieh
several issues ranging from guaranteeing integrity, cenfidlity
and privacy of outsourced data to secure querying on outedur
encrypted database. Such assurances will likely requisagtryp-
tography as part of elaborate intra- and client-cloud prots Yet,
strong crypto is expensive. Thus, it is important to ask: mouch
cryptography can we afford in the cloud while maintaining tost
benefits of outsourcing?

Some believe the answer is simpigne In a recent interview
[39] Whitfield Diffie argued that €urrent techniques would more
than undo the economy [of] outsourcing and show little sign D
becoming practical”

Here we set out to find out whether this holds and if so, by what
margins. One way to look at this is in terms of CPU cycles. For
each desired un-secured client CPU cydleyw many additional
cloud cycles can we spend on cryptograpbgfore its outsourcing
becomes too expensive?

2. COST MODELS

In ongoing research [5] we explore the cost of computing (CPU
cycles, networking, storage) in various environments dbagghe
boundary condition that defines when cloud computing besome
viable, i.e., when the CPU cycle cost savings are enoughfsetof
the client-cloud distance. Here we summarize.

Computing Environments The cost of computing is a function of
scale and environment of varying complexity: home (H), $&),
mid-size (M) and large size data centers (L).

Cost factors. A number of cost factors come into play across
all of the above levels These can be divided into inter-ddpeh
vectors, including: hardware (servers, networking gelau)lding

(floor space leasing), energy (running hardware and coplsey-
vice (administration, staffing, maintenance), and netveenkice.
CPU CyclesThe amortized
cost of a CPU cycle in
various environments were
computed. This cost (Figure
1) ranges from 0.45 pico-
cents/cycle for large and ef-
ficient enterprise/cloud set-
tings, all the way up to (S),
apparently the costliest en-
vironment, where a cycle
. costs up to 27 picocentd (
Figure 1: CPU cycle costs. US picocent =10~ USD).
These numbers were validated with the pricing points of ncairn
rent cloud providers: Amazon [1], Google [18] and Microsoft
The prices lie surprisingly close to each other and to oumeges,
ranging from 0.93 to 2.36 picocents/cycle. The differenteost
is due to the fact that these points include not only CPUs Isat a
intra-cloud networking, and instance-specific disk sterag

Storage CostSimply stor-
Provider Picocents . . ;
Amazon EC2 093-736 N9 bits on disks has become

Google AppEngine up 10 2.31 truly cheap. Increased hard-

Microsoft Azure upto 1.96 Ware reliability (with mean
time between failures rated

Figure 2: Today'’s pricing. routinely above a million
hours even for consumer markets) and economies of scale re-
sulted in extreme drops in the costs of disks. In [5], we
showed that in terms of amortized acquisition costs, the bes
price/hardware/MTBF ratio from our sample set is at 26.06 pi
ocents/bit/year. The dominant factor is energy, 60-350-pic
cents/bit/year, at 60-90% of the total cost. The lowestl todat
from our sample set is at about 100 picocents/bit/year.

Network Service Published network service cost numbers place
network service costs for large data centers at around $1/'sm
mo and for mid-size setups at $95/Mbps/mo [20] fparanteed
bandwidth. Home user and small enterprise pricing benebis f
economies of scale, e.g., Optimum Online provides 15/5 Mibps
ternet connection for small business starting at $44.9/344 [Yet

we note that the quoted bandwidth is not guaranteed. Figsue3
marizes network service cost in the four environments.
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Figure 3: Summarized network service costs [5].

The end-to-end cost of network transfer includes the cobiotim
communicating parties and the CPU overheads of transferipig
from one application layer to another. Moreover, for reliiabet-
working (e.g., TCP/IP) we need to also factor in the adddldraf-
fic and spent CPU cycles (e.g., SYN, SYN/ACK, ACK, for con-
nection establishment, ACKs for sent data, window manageme
routing, packet parsing, re-transmissions). In¢he» L scenario,
it costs more than 900 picocents to transfer one bit reliably

3. CRYPTOGRAPHY

So far we know that a CPU cycle will set us back 0.45-27 pico-
cents, transferring a bit costs at least 900 picocents, tomohg it



costs under 100 picocents/year. We now explore the costasif b
crypto and modular arithmetic. All values are in picoceftste

—TAESTZS AEST07 AEST5s | nat CPU cycles
S 142E+03 1.48E+03 L52E+03 needed in crypto-

L | 2.37E+01 2.47E+01 2.53E+01 9raphic operations of-
ten vary with opti-

mization algorithms
and types of hard-
ware used (e.g., spe-
cialized secure CPUs and crypto accelerators with hardR&a
engines [2] are cheaper per cycle than general-purpose CPUs
Symmetric Key Crypto. We first evaluate the per-bit costs of
AES-128, AES-192, AES-256 and illustrate in Figure 4. Thalgv
ation is based on results from the ECRYPT Benchmarking opCry
tographic Systems (eBACS) [7].

RSA. Numerous algorithms aim to improve the speed of RSA,
mainly by reducing the time to do modular multiplications.Rig-
ure 5, we illustrate the costs of RSA encryption/decryptising
benchmark results from [7].

Figure 4: AES-128, AES-192, AES-
256 costs (per byte) on 64-byte input.

1024 bit | 2048 bit
Encrypt Decrypt Encrypt Decrypt
S | 3.74E+06 1.03E+08 8.99E+06 6.44E+08
L | 6.24E+04 1.72E+06 1.50E+05 1.07E+07

Figure 5: Cost of RSA on 59-byte messages. (picocents)

PK Signatures. We illustrate costs of DSA, and ECDSA signa-
tures based on NIST elliptic curves [7] in Figures 6, 7.

1024 bit [ 2048 bit
Sign Verify Sign Verify
S | 5.73E+07 6.94E+07 1.89E+08 2.30E+08
L | 9.55E+05 1.16E+06 3.15E+06 3.84E+06

Figure 6: DSA on 59-byte messages. The 1024-bit DSA uses
148-byte secret key and 128-byte public key. The 2048-bit @S
uses 276-byte secret key and 256-byte public key.

ECDSA571

KG/SGN ___Verity
2.00E+00  4.1BE+09
3.48E+07  6.96E+07

ECDSA-163 T
KGISGN ___ Veriy
S | 1.36E+08
L | 2.27E+06

ECDSA-409 I
KGISGN __ Verity
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1.91E+09
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Figure 7. ECDSA signatures on 59-byte messages (curve over
afield of size2'53, 2109 257! respectively). (picocents)

Cryptographic HashesWe also show per byte cost of MD5 and
SHAL with varied input sizes.

MD5 | SHAL
4096 64 4096 64
S 1I52E+02 375E+02 2.I4E+02 6.44E+02
L | 253E+00 6.25E+00 3.56E+00 1.07E+01

Figure 8: Per-byte cost of MD5 and SHA1 (varying inputs).

4. SECURE OUTSOURCING

Thus armed with an understanding of computation, storagje, n
work and crypto costs, we now ask whether securing cloud com-
puting against insiders is a viable endeavor.

We start by exploring what security means in this contextt-Na
urally, the traditional usual suspects need to be handledyrout-
sourcing environment: (mutual) authentication, logictifieation,
inter-client isolation , network security as well as geh@taysical
security. Yet, all of these issues are addressed extendivekist-
ing infrastructures and are not the subject of this work.

Similarly, for conciseness, within this scope, we will ista the
analysis from the additional costs of software patchingkpero-
visioning for reliability, network defenses etc.

4.1 Trust

We are concerned cloud clients being often reluctant toeplac
sensitive data and logic onto remote servers without gueesnof
compliance to their security policies [15,23]. This is asply
important in view of recent sub-poenas and other securdigents
involving cloud-hosted data [11, 12, 29]. The viability bktcloud
computing paradigm thus hinges directly on the issue ohtdie
trust and of major concern are cloud insiders. Yet how “gdsare
today’s clouds from this perspective? We identify a set ehseios.
Trusted clouds. In atrustedcloud, in the absence of unpredictable
failures, clients are served correctly, in accordance tagreed
upon service contract and its (security) policies. No iassdact
maliciously.

Untrusted clouds. For untrustedclouds, we distinguish several
cases depending on the types of illicit incentives exisforgthe
cloud and the client policies with which these will directignflict.
We call a clouddata-curiousif insiders thereof have incentives to
violate confidentiality policies (mainly) for (sensitivelient data.
Similarly, in anaccess-curiougzloud, insiders will aim to infer
client access patterns to data or reverse-engineer andstaade
outsourced computation logic. rhaliciouscloud will focus mainly
on (data and computation) integrity policies and alter dmtper-
form incorrect computation.

Reasonable cloud insiders are likely to factor in the paaéiit
licit gains (the incentives to violate the policy), the pkynéor get-
ting caught, as well as the probability of detection. Thusnimst
practical scenarios, insiders will engage in such behaoridy if
they can get away undetected with high probability, e.gemvho
(cryptographic?) safeguards are in place to enable thetitate

4.2 Secure Outsourcing

Yet, millions of users embrace free web appsamuntrusted
provider model. This shows that today’s (mostly personal) cloud
clients are willing to trade their privacy for (free) sergicThis is
not necessarily a bad thing, especially at this criticabsnbuild-
ing stage, yet raises questions of clouds’ viability for coen-
cial, regulatory-compliant deployment, involving seivatdata and
logic. And, from a bottom-line cost-perspective, is it wogven
trying? This is what we aim to understand here.

In the following we will assess whether clouds are econom-
ically tenable if their users do not trust them and therefore
must employ cryptography and other mechanisms to protect
their data. A number of experimental systems and research ef-
forts address the problem of outsourcidatato untrusted service
providers including issues ranging from searching in remote en-
crypted data to guaranteeing integrity and confidentiadityuery-
ing of outsourced data. In favor of cloud computing, we wét s
our analysis in the most favorable — L scenario, which yields
most CPU cycle savings.

4.2.1 The Case for Basic Outsourcing

Before we tackle cloud security, let us look at the simpleshe
putation outsourcing scenario (where clients outsourde ttathe
cloud, expect the cloud to process it, and send the resudtg.bim
existing work [5], we show that, to make (basic, unsecurad) o
sourcing cost effective, the cost savings (mainly from geePU
cycles) need to outweigh the clowias distance from clients. In
S — L, outsourced tasks should perform at least 1,000 CPU cycles
per every 32 bit data, otherwise it is not worth outsourcimgn.

4.2.2 Encrypted Data Storage with Integrity

With an understanding of the basic boundary condition dagini
the viability of outsourcing we now turn our attention to ool
the most basic outsourcing scenarios in which a single degatc
places data remotely for simple storage purposes. Isthe L



scenario, the amortized cost of storing a bit reliably eitheally or

remotelyis under 9 picocents/month (including power). Network

transfer however, is of at least 900 picocents per accesised b
cost that is not amortized and two orders of magnitude higher
From a technological cost-centric point of view it is simpigt
effective to store data remotelputsourced storage costs can be
upwards of 2+ orders of magnitude higher than local storage

fortheS — L scenariceven in the absence of security assurances

tive and its results are a very small subset of the outsoutataiset
— thus amortizing the initial transfer cost over multiplesshes.

We note that existing work does not support any complex searc
predicates outside of simple keyword matching search. Thes
only hope there is that the search-related CPU load (eungst
comparison) will be enough cheaper in the cloud to offsetritial
and result transfer costs.

Keyword searching can be done in asymptotically constar,ti

Cost of Security. Yet, outsourced storage providers exist and 9\V€n enough storage or logarithmic if B-trees are used.Is\the
thrive. This is likely due to factors outside of our scopegtsas the ~ client could maintain indexes and only deploy the cloud asea fi
convenience of being able to have access to the data frong-ever SE€rver, we already discovered that this is not going to bétphde.
where or collaborative application scenarios in which iplétdata 1 huS if we are to have any chance to benefit here, the indes-stru
users share single data stores (multi-client settingsjwittostand- tures need to also be stored on the server. ,
ing the reason, since consumers have decided it is wortmgagt _ Inthis case, the search cost includes the CPU cycle costadh r
outsourced storage, the next question we ask is, how muchk mor Nd the B-tree and performing binary searches within B-tredes.
would security cost in this context? As an example, consider 32 bit search keys (e.g., as theyecazal
Several existing systems encrypt data before storing itatarp in one cycle from RAM), and a 1 TB database. 1-3 CPU cycles are
tially data-curious servers [8,10,30]. File systems susH*ES needed to initiate the disk DMA per reading, and each compari

[22], GFS [17], and Checksummed NCryptfs [37] perform oglin SN in the_ binary se_a_rch re_quires another 1-3 cycles (fou_:L&img
real-time integrity verification. a comparison conditional jump operation). A B-tree with BK

It can be seen that two main assurances are of concern here: in "0des will have approximately a 1000 fanout and a height 5f 4-
tegrity and confidentiality. The cheapest integrity consts de- so performing a search on this B-tree index requires aboi3D
ployed in most of the above revolve around the use of haskebas CPY cycles. Thus in this simple remote searghy- L outsourc-
MACs. As discussed above, SHA-1 based keyed MAC constructs I"d Would resultin CPU-related savings of around 2,50®8 fic-
with 4096-byte blocks would cost around 4 picocent/byte fu t ocents per access. Transferring 32 bI.tS fr8m- L costs upwards
server and 200 picocents/byte on the client side, leadirmyttsal of 900 picocents. Outsourced searching becomes thus mpegrex
cost of about 25 picocents/bit. This is at least 4 times Idivan the sive for any results upwards of 36 bytes per query. In redlity
cost of storing the bit for a year and at least one order of ritade is much worse because of TCP overheads and potential nead for
lower than the costs incurred by transferring the same b@ga+ full 3 way handshake.
picocents/bit). Thudpr outsourced storage, integrity assurance
overheads are negligible.

For publicly verifiable constructs, crypto-hash chains baip
amortize their costs over multiple blocks. In the extremseca
single signature could authenticate an entire file systérieaex-
pense of increased 1/0 overheads for verification. Usualthain
only includes a set of blocks.

For an average of twenty 4096 byte blotlkecured by a single
hash-chain signed using 1024-bit RSA, would yield an arpedti
cost approximately 1M picocents per 4096-byte block (30e~ pi
ocents/bit) for client read verification and 180+ picocé#itsfor
write/signatures. This is up t® times more expensive than the
MAC based case

4.2.4 Insights into Secure Query Processing

By now we start to suspect that similar insights hold also for
outsourced query processing. This is because we now kndw tha
(i) the tasks to be outsourced should be CPU-intensive éntaug
offset the network overhead — in other words, outsourcirgnpe
counting will never be profitable, and (ii) existing confidiatity
(e.g., homomorphisms) and integrity (e.g., hash treesreagged
signatures, hash chains) mechanisms can “secure” onlysiery
ple basic arithmetic (addition, multiplication) or datarreval (se-
lection, projection) which would cost under a few of cyclesr p
word if done in an unsecured manner. In other wosds,do not
know yet how to secure anything more complex than peanut-coun
ing. And outsourcing of peanut counting is counter productive i
the first place. Ergo our suspicion.

X ) : We start by surveying existing mechanisms. Hacigumus et al.
content before outsourcmg to potentlally.access-curmers. [19] propose a method to execute SQL queries over partlyssbfu
Once encrypted however, it cannot be easily processed bgrser cated outsourced data to protect degafidentiality against a data-

One of the first processing primitives that has been explored rjoys server. The main functionality relies on (i) paxlyfuscat-
allows clients to search directly in remote encrypted daite5] ing the outsourced data by dividing it into a set of partisiptii)

13]. In these efforts, c!lents elthernllnearly process theadising query rewriting of original queries into querying referémg par-
symmetric key encryption mechanisms, or, more often, aut® itions instead of individual tuples, and (iii) client-gigoruning of
additional secure (meta)data mostly of size linear in theoof (necessarily coarse grained) results. The informatiokeedo the

the original data set. This meta-data aids the server ircheay server is balancing a trade-off between client-side andeseside
through the encrypted data set while revealing as littlecssiple. processing, as a function of the data segment size. [21peel
But is remote searching worth it vs. local storage? We con- optimal bucket sizes for certain range queries.

cluded above that simply using a cloud as a remote file sesver i
extremely non-profitable, up to several orders of magnit@isuld
the searching application possibly make a difference? Whisld
hold if either (i) the task of searching would be extremelyOR-
tensive allowing the cloud savings to kick in and offset tamgé
losses due to network transfer, or (ii) the search is exthesalec-

4.2.3 Searches on Encrypted Data
Confidentiality alone can be achieved by encrypting theaurted

Ge et al. [38] discuss executing aggregation queries with co
fidentiality on an untrusted server. Unfortunately, duete use
of extremely expensive homomorphisms this scheme leadsde |
processing times for any reasonably security parameténgeie.g.,
for 1024 bit fields, 12+ dayper queryare required).

Other researchers have explored the issueoofectnessin set-

1 T : tings with potentially malicious servers. In a publishebscriber
Io%?rggfrlnjeraleéigtl'ri&?i]ér? hg\_’é_t,hf?)}bgli %?4665, g?n:b; 4m ;ndde Izegl oug,(l)ng & model, Devanbu et al. deployed Merkle trees to authentidate
files, the median file size would be 4KB, mean 80KB, along with a Published at a third party’s site [14], and then explored aegel
small number of files with sizes exceeding 1GB [3, 16]. model for authenticating data structures [26, 27]. In [2],& well




as in [25], mechanisms for efficient integrity and origintaetica-
tion for selection predicate query results are introdudeifferent
signature schemes (DSA, RSA, Merkle trees [28] and BGLS [9])
are explored as potential alternatives for data authetditgrim-
itives. In [24, 36]verification object3/O are deployed to authen-
ticate data retrieval in “edge computing” In [33, 35] Merklee
and cryptographic hashing constructs are deployed to atitia¢e not lost however. We found borderline cases where outsogii
range query results. simple range queries can break even when compared withéseal

To summarize, existing secure outsourced query mechanismsecution. These scenarios involve large amounts of outsduilata
deploy (i) partitioning-based schemes and symmetric keyygna (e.g.,10° tuples) and extremely selective queries which return only
tion for (“statistical” only) confidentiality, (ii) homonmphisms for an infinitesimal fraction of the original data (e.g., 0.0003.
oblivious aggregation (SUM, COUNT) queries (simply toossko
be practical), (iii) hash trees/chains and (iv) signatdraicing and 6. REFERENCES
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