
On Securing Untrusted Clouds with Cryptography

ABSTRACT
In a recent interview, Whitfield Diffie argued that “the wholepoint
of cloud computing is economy” and while it is possible in prin-
ciple for “computation to be done on encrypted data, [...]current
techniques would more than undo the economy gained by the out-
sourcing and show little sign of becoming practical”. Here we ex-
plore whether this is truly the case and quantify justhowexpensive
it is to secure computing in untrusted, potentially curiousclouds.

1. INTRODUCTION
Commoditized outsourced computing has finally arrived, mainly

due to the emergence of fast and cheap networking and efficient
large scale computing. Amazon, Google, Microsoft and Sun are
just a few of the providers starting to offer increasingly complex
storage and computation outsourcing “cloud” services. CPUcycles
have become consumer merchandise.

In [5] we explored the end-to-end cost of a CPU cycle in various
environments and show that its cost lies between 0.45 picocents
in efficient clouds and 27 picocents for small business deployment
scenarios (1 picocent = $1 × 10−14). In terms of pure CPU cycle
costs, current clouds present seemingly cost-effective propositions
for personal and small enterprise clients.

Nevertheless, cloud clients are concerned with theprivacy of
their data and computation – this is often the primary adoption
obstacle, especially for medium and large corporations, who often
fall under strict regulatory compliance requirements.

To address this, existing secure outsourcing research addressed
several issues ranging from guaranteeing integrity, confidentiality
and privacy of outsourced data to secure querying on outsourced
encrypted database. Such assurances will likely require strong cryp-
tography as part of elaborate intra- and client-cloud protocols. Yet,
strong crypto is expensive. Thus, it is important to ask: howmuch
cryptography can we afford in the cloud while maintaining the cost
benefits of outsourcing?

Some believe the answer is simplynone. In a recent interview
[39] Whitfield Diffie argued that “current techniques would more
than undo the economy [of] outsourcing and show little sign of
becoming practical.”

Here we set out to find out whether this holds and if so, by what
margins. One way to look at this is in terms of CPU cycles. For
each desired un-secured client CPU cycle,how many additional
cloud cycles can we spend on cryptography, before its outsourcing
becomes too expensive?

2. COST MODELS
In ongoing research [5] we explore the cost of computing (CPU

cycles, networking, storage) in various environments as well as the
boundary condition that defines when cloud computing becomes
viable, i.e., when the CPU cycle cost savings are enough to offset
the client-cloud distance. Here we summarize.
Computing Environments The cost of computing is a function of
scale and environment of varying complexity: home (H), small (S),
mid-size (M) and large size data centers (L).
Cost factors. A number of cost factors come into play across
all of the above levels These can be divided into inter-dependent
vectors, including: hardware (servers, networking gear),building

(floor space leasing), energy (running hardware and cooling), ser-
vice (administration, staffing, maintenance), and networkservice.
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Figure 1: CPU cycle costs.

CPU CyclesThe amortized
cost of a CPU cycle in
various environments were
computed. This cost (Figure
1) ranges from 0.45 pico-
cents/cycle for large and ef-
ficient enterprise/cloud set-
tings, all the way up to (S),
apparently the costliest en-
vironment, where a cycle
costs up to 27 picocents (1
US picocent =10−14 USD).

These numbers were validated with the pricing points of maincur-
rent cloud providers: Amazon [1], Google [18] and Microsoft.
The prices lie surprisingly close to each other and to our estimates,
ranging from 0.93 to 2.36 picocents/cycle. The difference in cost
is due to the fact that these points include not only CPUs but also
intra-cloud networking, and instance-specific disk storage.

Provider Picocents
Amazon EC2 0.93 - 2.36
Google AppEngine up to 2.31
Microsoft Azure up to 1.96

Figure 2: Today’s pricing.

Storage Cost Simply stor-
ing bits on disks has become
truly cheap. Increased hard-
ware reliability (with mean
time between failures rated
routinely above a million

hours even for consumer markets) and economies of scale re-
sulted in extreme drops in the costs of disks. In [5], we
showed that in terms of amortized acquisition costs, the best
price/hardware/MTBF ratio from our sample set is at 26.06 pic-
ocents/bit/year. The dominant factor is energy, 60-350 pico-
cents/bit/year, at 60-90% of the total cost. The lowest total cost
from our sample set is at about 100 picocents/bit/year.
Network Service Published network service cost numbers place
network service costs for large data centers at around $13/ Mbps/
mo and for mid-size setups at $95/Mbps/mo [20] forguaranteed
bandwidth. Home user and small enterprise pricing benefits from
economies of scale, e.g., Optimum Online provides 15/5 Mbpsin-
ternet connection for small business starting at $44.9/ mo [34]. Yet
we note that the quoted bandwidth is not guaranteed. Figure 3sum-
marizes network service cost in the four environments.

H, S M L
monthly $44.90 $95 $13
bandwidth (d/u) 15/5 Mbps per 1Mbps per 1Mbps
dedicated No Yes Yes
picocent/bit 115/345 3665 500

Figure 3: Summarized network service costs [5].
The end-to-end cost of network transfer includes the cost onboth

communicating parties and the CPU overheads of transferinga bit
from one application layer to another. Moreover, for reliable net-
working (e.g., TCP/IP) we need to also factor in the additional traf-
fic and spent CPU cycles (e.g., SYN, SYN/ACK, ACK, for con-
nection establishment, ACKs for sent data, window management,
routing, packet parsing, re-transmissions). In theS → L scenario,
it costs more than 900 picocents to transfer one bit reliably.

3. CRYPTOGRAPHY
So far we know that a CPU cycle will set us back 0.45-27 pico-

cents, transferring a bit costs at least 900 picocents, and storing it
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costs under 100 picocents/year. We now explore the costs of basic
crypto and modular arithmetic. All values are in picocents.Note

AES-128 AES-192 AES-256
S 1.42E+03 1.48E+03 1.52E+03
L 2.37E+01 2.47E+01 2.53E+01

Figure 4: AES-128, AES-192, AES-
256 costs (per byte) on 64-byte input.

that CPU cycles
needed in crypto-
graphic operations of-
ten vary with opti-
mization algorithms
and types of hard-
ware used (e.g., spe-

cialized secure CPUs and crypto accelerators with hardwareRSA
engines [2] are cheaper per cycle than general-purpose CPUs).
Symmetric Key Crypto. We first evaluate the per-bit costs of
AES-128, AES-192, AES-256 and illustrate in Figure 4. The evalu-
ation is based on results from the ECRYPT Benchmarking of Cryp-
tographic Systems (eBACS) [7].
RSA. Numerous algorithms aim to improve the speed of RSA,
mainly by reducing the time to do modular multiplications. In Fig-
ure 5, we illustrate the costs of RSA encryption/decryptionusing
benchmark results from [7].

1024 bit 2048 bit
Encrypt Decrypt Encrypt Decrypt

S 3.74E+06 1.03E+08 8.99E+06 6.44E+08
L 6.24E+04 1.72E+06 1.50E+05 1.07E+07

Figure 5: Cost of RSA on 59-byte messages. (picocents)

PK Signatures. We illustrate costs of DSA, and ECDSA signa-
tures based on NIST elliptic curves [7] in Figures 6, 7.

1024 bit 2048 bit
Sign Verify Sign Verify

S 5.73E+07 6.94E+07 1.89E+08 2.30E+08
L 9.55E+05 1.16E+06 3.15E+06 3.84E+06

Figure 6: DSA on 59-byte messages. The 1024-bit DSA uses
148-byte secret key and 128-byte public key. The 2048-bit DSA
uses 276-byte secret key and 256-byte public key.

ECDSA-163 ECDSA-409 ECDSA-571
KG/SGN Verify KG/SGN Verify KG/SGN Verify

S 1.36E+08 2.65E+08 9.60E+08 1.91E+09 2.09E+09 4.18E+09
L 2.27E+06 4.41E+06 1.60E+07 3.19E+07 3.48E+07 6.96E+07

Figure 7: ECDSA signatures on 59-byte messages (curve over
a field of size2163, 2409, 2571 respectively). (picocents)

Cryptographic HashesWe also show per byte cost of MD5 and
SHA1 with varied input sizes.

MD5 SHA1
4096 64 4096 64

S 1.52E+02 3.75E+02 2.14E+02 6.44E+02
L 2.53E+00 6.25E+00 3.56E+00 1.07E+01

Figure 8: Per-byte cost of MD5 and SHA1 (varying inputs).

4. SECURE OUTSOURCING
Thus armed with an understanding of computation, storage, net-

work and crypto costs, we now ask whether securing cloud com-
puting against insiders is a viable endeavor.

We start by exploring what security means in this context. Nat-
urally, the traditional usual suspects need to be handled inany out-
sourcing environment: (mutual) authentication, logic certification,
inter-client isolation , network security as well as general physical
security. Yet, all of these issues are addressed extensively in exist-
ing infrastructures and are not the subject of this work.

Similarly, for conciseness, within this scope, we will isolate the
analysis from the additional costs of software patching, peak pro-
visioning for reliability, network defenses etc.

4.1 Trust
We are concerned cloud clients being often reluctant to place

sensitive data and logic onto remote servers without guarantees of
compliance to their security policies [15, 23]. This is especially
important in view of recent sub-poenas and other security incidents
involving cloud-hosted data [11, 12, 29]. The viability of the cloud
computing paradigm thus hinges directly on the issue of clients’
trust and of major concern are cloud insiders. Yet how “trusted” are
today’s clouds from this perspective? We identify a set of scenarios.
Trusted clouds. In atrustedcloud, in the absence of unpredictable
failures, clients are served correctly, in accordance to anagreed
upon service contract and its (security) policies. No insiders act
maliciously.
Untrusted clouds. For untrustedclouds, we distinguish several
cases depending on the types of illicit incentives existingfor the
cloud and the client policies with which these will directlyconflict.
We call a clouddata-curiousif insiders thereof have incentives to
violate confidentiality policies (mainly) for (sensitive)client data.
Similarly, in an access-curiouscloud, insiders will aim to infer
client access patterns to data or reverse-engineer and understand
outsourced computation logic. Amaliciouscloud will focus mainly
on (data and computation) integrity policies and alter dataor per-
form incorrect computation.

Reasonable cloud insiders are likely to factor in the potential il-
licit gains (the incentives to violate the policy), the penalty for get-
ting caught, as well as the probability of detection. Thus for most
practical scenarios, insiders will engage in such behavioronly if
they can get away undetected with high probability, e.g., when no
(cryptographic?) safeguards are in place to enable the detection.

4.2 Secure Outsourcing
Yet, millions of users embrace free web apps inan untrusted

provider model. This shows that today’s (mostly personal) cloud
clients are willing to trade their privacy for (free) service. This is
not necessarily a bad thing, especially at this critical-mass build-
ing stage, yet raises questions of clouds’ viability for commer-
cial, regulatory-compliant deployment, involving sensitive data and
logic. And, from a bottom-line cost-perspective, is it worth even
trying? This is what we aim to understand here.

In the following we will assess whether clouds are econom-
ically tenable if their users do not trust them and therefore
must employ cryptography and other mechanisms to protect
their data. A number of experimental systems and research ef-
forts address the problem of outsourcingdata to untrusted service
providers, including issues ranging from searching in remote en-
crypted data to guaranteeing integrity and confidentialityto query-
ing of outsourced data. In favor of cloud computing, we will set
our analysis in the most favorableS → L scenario, which yields
most CPU cycle savings.

4.2.1 The Case for Basic Outsourcing
Before we tackle cloud security, let us look at the simplest com-

putation outsourcing scenario (where clients outsource data to the
cloud, expect the cloud to process it, and send the results back). In
existing work [5], we show that, to make (basic, unsecured) out-
sourcing cost effective, the cost savings (mainly from cheaper CPU
cycles) need to outweigh the cloudâĂŹs distance from clients. In
S → L, outsourced tasks should perform at least 1,000 CPU cycles
per every 32 bit data, otherwise it is not worth outsourcing them.

4.2.2 Encrypted Data Storage with Integrity
With an understanding of the basic boundary condition defining

the viability of outsourcing we now turn our attention to oneof
the most basic outsourcing scenarios in which a single data client
places data remotely for simple storage purposes. In theS → L
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scenario, the amortized cost of storing a bit reliably either locally or
remotelyis under 9 picocents/month (including power). Network
transfer however, is of at least 900 picocents per accessed bit, a
cost that is not amortized and two orders of magnitude higher.

From a technological cost-centric point of view it is simplynot
effective to store data remotely:outsourced storage costs can be
upwards of 2+ orders of magnitude higher than local storage
for theS → L scenarioeven in the absence of security assurances.

Cost of Security. Yet, outsourced storage providers exist and
thrive. This is likely due to factors outside of our scope, such as the
convenience of being able to have access to the data from every-
where or collaborative application scenarios in which multiple data
users share single data stores (multi-client settings). Notwithstand-
ing the reason, since consumers have decided it is worth paying for
outsourced storage, the next question we ask is, how much more
would security cost in this context?

Several existing systems encrypt data before storing it on poten-
tially data-curious servers [8, 10, 30]. File systems such as I3FS
[22], GFS [17], and Checksummed NCryptfs [37] perform online
real-time integrity verification.

It can be seen that two main assurances are of concern here: in-
tegrity and confidentiality. The cheapest integrity constructs de-
ployed in most of the above revolve around the use of hash-based
MACs. As discussed above, SHA-1 based keyed MAC constructs
with 4096-byte blocks would cost around 4 picocent/byte on the
server and 200 picocents/byte on the client side, leading toa total
cost of about 25 picocents/bit. This is at least 4 times lowerthan the
cost of storing the bit for a year and at least one order of magnitude
lower than the costs incurred by transferring the same bit (at 900+
picocents/bit). Thus,for outsourced storage, integrity assurance
overheads are negligible.

For publicly verifiable constructs, crypto-hash chains canhelp
amortize their costs over multiple blocks. In the extreme case, a
single signature could authenticate an entire file system, at the ex-
pense of increased I/O overheads for verification. Usually,a chain
only includes a set of blocks.

For an average of twenty 4096 byte blocks1 secured by a single
hash-chain signed using 1024-bit RSA, would yield an amortized
cost approximately 1M picocents per 4096-byte block (30+ pic-
ocents/bit) for client read verification and 180+ picocents/bit for
write/signatures. This is up to8 times more expensive than the
MAC based case.

4.2.3 Searches on Encrypted Data
Confidentiality alone can be achieved by encrypting the outsourced

content before outsourcing to potentially access-curiousservers.
Once encrypted however, it cannot be easily processed by servers.

One of the first processing primitives that has been explored
allows clients to search directly in remote encrypted data [4, 6,
13]. In these efforts, clients either linearly process the data using
symmetric key encryption mechanisms, or, more often, outsource
additional secure (meta)data mostly of size linear in the order of
the original data set. This meta-data aids the server in searching
through the encrypted data set while revealing as little as possible.

But is remote searching worth it vs. local storage? We con-
cluded above that simply using a cloud as a remote file server is
extremely non-profitable, up to several orders of magnitude. Could
the searching application possibly make a difference? Thiswould
hold if either (i) the task of searching would be extremely CPU in-
tensive allowing the cloud savings to kick in and offset the large
losses due to network transfer, or (ii) the search is extremely selec-

1Douceur et al. [16], show that file sizes can be modeled using a
log-normal distribution. E.g., forµe = 8.46, σe = 2.4 and 20,000
files, the median file size would be 4KB, mean 80KB, along with a
small number of files with sizes exceeding 1GB [3, 16].

tive and its results are a very small subset of the outsourceddata set
– thus amortizing the initial transfer cost over multiple searches.

We note that existing work does not support any complex search
predicates outside of simple keyword matching search. Thusthe
only hope there is that the search-related CPU load (e.g., string
comparison) will be enough cheaper in the cloud to offset theinitial
and result transfer costs.

Keyword searching can be done in asymptotically constant time,
given enough storage or logarithmic if B-trees are used. While the
client could maintain indexes and only deploy the cloud as a file
server, we already discovered that this is not going to be profitable.
Thus if we are to have any chance to benefit here, the index struc-
tures need to also be stored on the server.

In this case, the search cost includes the CPU cycle costs in read-
ing the B-tree and performing binary searches within B-treenodes.
As an example, consider 32 bit search keys (e.g., as they can be read
in one cycle from RAM), and a 1 TB database. 1-3 CPU cycles are
needed to initiate the disk DMA per reading, and each compari-
son in the binary search requires another 1-3 cycles (for executing
a comparison conditional jump operation). A B-tree with 16KB
nodes will have approximately a 1000 fanout and a height of 4-5,
so performing a search on this B-tree index requires about 100-300
CPU cycles. Thus in this simple remote search,S → L outsourc-
ing would result in CPU-related savings of around 2,500-8,000 pic-
ocents per access. Transferring 32 bits fromS → L costs upwards
of 900 picocents. Outsourced searching becomes thus more expen-
sive for any results upwards of 36 bytes per query. In realitythis
is much worse because of TCP overheads and potential need fora
full 3 way handshake.

4.2.4 Insights into Secure Query Processing
By now we start to suspect that similar insights hold also for

outsourced query processing. This is because we now know that
(i) the tasks to be outsourced should be CPU-intensive enough to
offset the network overhead – in other words, outsourcing peanut
counting will never be profitable, and (ii) existing confidentiality
(e.g., homomorphisms) and integrity (e.g., hash trees, aggregated
signatures, hash chains) mechanisms can “secure” only verysim-
ple basic arithmetic (addition, multiplication) or data retrieval (se-
lection, projection) which would cost under a few of cycles per
word if done in an unsecured manner. In other words,we do not
know yet how to secure anything more complex than peanut count-
ing. And outsourcing of peanut counting is counter productive in
the first place. Ergo our suspicion.

We start by surveying existing mechanisms. Hacigumus et al.
[19] propose a method to execute SQL queries over partly obfus-
cated outsourced data to protect dataconfidentiality against a data-
curious server. The main functionality relies on (i) partlyobfuscat-
ing the outsourced data by dividing it into a set of partitions, (ii)
query rewriting of original queries into querying referencing par-
titions instead of individual tuples, and (iii) client-side pruning of
(necessarily coarse grained) results. The information leaked to the
server is balancing a trade-off between client-side and server-side
processing, as a function of the data segment size. [21] explores
optimal bucket sizes for certain range queries.

Ge et al. [38] discuss executing aggregation queries with con-
fidentiality on an untrusted server. Unfortunately, due to the use
of extremely expensive homomorphisms this scheme leads to large
processing times for any reasonably security parameter settings (e.g.,
for 1024 bit fields, 12+ daysper queryare required).

Other researchers have explored the issue ofcorrectnessin set-
tings with potentially malicious servers. In a publisher-subscriber
model, Devanbu et al. deployed Merkle trees to authenticatedata
published at a third party’s site [14], and then explored a general
model for authenticating data structures [26, 27]. In [31, 32] as well
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as in [25], mechanisms for efficient integrity and origin authentica-
tion for selection predicate query results are introduced.Different
signature schemes (DSA, RSA, Merkle trees [28] and BGLS [9])
are explored as potential alternatives for data authentication prim-
itives. In [24, 36]verification objectsVO are deployed to authen-
ticate data retrieval in “edge computing” In [33, 35] Merkletree
and cryptographic hashing constructs are deployed to authenticate
range query results.

To summarize, existing secure outsourced query mechanisms
deploy (i) partitioning-based schemes and symmetric key encryp-
tion for (“statistical” only) confidentiality, (ii) homomorphisms for
oblivious aggregation (SUM, COUNT) queries (simply too slow to
be practical), (iii) hash trees/chains and (iv) signature chaining and
aggregation to ensure correctness of selection/range queries and
projection operators. SUM, COUNT, and projection usually be-
have linearly in the database size. Selection and range queries may
be performed in constant time, logarithmic time or linear time de-
pending on the queried attribute (e.g., whether it is a primary key)
and the type of index used.

For illustration purposes, w.l.o.g., consider a scenario most fa-
vorable to outsourcing, i.e., assuming the operations behave lin-
early and are extremely selective, only incurring two 32-bit data
transfers between the client and the cloud (one for the instruction
and one for the result). Informally, to offset the network cost of
900 × 32 × 2 = 57, 600 picocents, only traversing a database of
size at least105 will generate enough CPU cycle cost savings. Thus
it seems that with very selective queries (returning very little data)
over large enough databases, outsourcing can break even.

Cost of Security. In the absence of security constructs, we were
able to build a scenario for which outsourcing is viable. Butwhat
about a general scenario? What are the overheads of securitythere?
It is important to understand whether the cost savings will be enough
to offset them. While detailing individual secure query protocols is
out of scope here, it is possible to reason generally and gainan
insight into the associated order of magnitudes.

Existing integrity mechanisms deploy hash trees, hash chains
and signatures to secure simple selection, projection or range queries.
Security overheads would then includeat least the (client-side)
hash tree proof re-construction (O(log n) crypto-hashes) and sub-
sequent signature verification of the tree’s root. The hash tree proofs
are often used to authenticate range boundaries. The returned ele-
ment set is then authenticated often through either a hash chain (in
the case of range joins, at least 30 picocents per byte) or aggre-
gated signature constructs (e.g., roughly 60,000 picocents each, for
selects or projections). This involves either modular arithmetic or
crypto-hashing of the order of the result data set. For illustration
purposes, we will again favor the case for outsourcing, and assume
only crypto-hashing and a linear operation are applied.

Consider a database ofn = 109 tuples of 64 bits each. In that
case (binary) hash tree nodes need to be at least 240 bits (80 +160
bits = 2 pointers + hash value) long. If we assume 3 CPU cycles are
needed per data item, the boundary condition results in selectivity
s ≤ 0.00037 before outsourcing starts to make economical sense.
In a more typical scenario ofs = 0.001 (queries are returning 0.1%
of the tuples), a per-query loss of over 0.3 US cents will be incurred.

The above holds only for theS → L scenario in which hash
trees are deployed. In the case of signature aggregation [32, 33],
the break-even selectivity would be even lower due to the higher
computation overheads.

5. TO CONCLUDE
In this paper we explored whether cryptography can be deployed

to secure cloud computing against insiders. We estimated common
cryptography costs ( AES, MD5, SHA-1, RSA, DSA, and ECDSA)
and finally explored outsourcing of data and computation to un-

trusted clouds. We showed that deploying the cloud as a simple
remote encrypted file system is extremely unfeasible if considering
only core technology costs. We also concluded that existingsecure
outsourced data query mechanisms are mostly cost-unfeasible be-
causetoday’s cryptography simply lacks the expressive power
to efficiently support outsourcing to untrusted clouds. Hope is
not lost however. We found borderline cases where outsourcing of
simple range queries can break even when compared with localex-
ecution. These scenarios involve large amounts of outsourced data
(e.g.,109 tuples) and extremely selective queries which return only
an infinitesimal fraction of the original data (e.g., 0.00037%).
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