

VM's likelihood to perform any 1/O operation. We use the rinm
time of the VCPU in its last scheduled cycle to predict whethe
will issue any 1/O request in a short time after it is to be stthed

in the next run cycle. This is motived by the data-intensivarac-
teristic of MapReduce workloads. If the running time of a UCiB
smaller than threshold, this means that the VCPU is more likely
to issue an 1/O request and block in the next cycle. In thispap
we setS to 10°ns as more than half of the running time of a VM is
less thanl0°ns as shown in Figure 3. At the same tinseshould
not be a large number to prevent delaying domO0 aggressivaly.
MRG scheduler places the VCPUs from the cluster group poior t
domo0 in order to batch the 1/O requests together, and thereid
ditionally reduce the number of context switches and imerid®
response latency.

4.2 Cluster Fairness

In order to provide fair scheduling to each MapReduce ctuste
group and prevent VM starvation, it is necessary to first jpl@v
proportional fair CPU time to each group on the physical nreeh
and then to each VM belonging to a group. For example, VMs from
two clustersC; andC; are co-located on a physical machiiig;
consists of four VMs and’; two VMs. Suppose all VMs have the
same resource allocations. Thén has% of the CPU power and
C uses the remaining. When(, is scheduled, the VMs id'y
will each run consecutively. VMs from@’; will not be picked by the
scheduler until the allocated CPU time 0k is used. The key in-
sight behind group scheduling is that by letting the scherdmlck
the running time of each cluster and allowing context svegbnly
in the same cluster, tasks in the same group proceed at ribarly
same rate. A side benefit is that if the MapReduce clustermis ru

Figure 6: Example of two-level scheduling hierarchy. Groupl,
2, and 3 have the credit of 600, 300, and 900. The sharing ratio
between groups is 2:1:3. In each group, CPU time is allocated
to individual VMs using their credits (number in each VM) as
sharing weight.

turn, the group user who has a set of VMs to form a MapReduce
cluster can allocate credits to each VM.

It is possible for VMs in one group to issue too many I/O re-
quests in a batch in which case all VMs in the group are in the
blocked state. In order to eliminate wasted CPU cycles, we intro-
duce a timeout counterto each group. The timeout starts when
the scheduler finds that all VMs in the group are in I/O blogkin
state and the group has remaining credit. Once the timeqireax
and there is still no runnable VM, the group must yield the GBU
the next group in the run queue. Section 4.2.1 analyses heetto
t properly.

ning on a network filesystem, more savings can be made in terms There are two priorities defined for a groupnder and over.

of cache coherence and memory sharing [18].

Our proposed MRG scheduler uses a two-level scheduling hier
archy. The terminology credit is still used in our work to den
the CPU allocation unit, the same as in the credit schedétehe
first level, the scheduler allocates credits across grospytthe
weighted fair sharing. The weight of a cluster group is tha i
each VM’s credit in this group. The user can also allocatelcre
its to each group. At the second level, the scheduler akscits
PCPU among the VMs in one group using each VM's credit. Note
when the user explicitly allocates credits to a group, tleelits of
the VMs in that group are only used as weights for the secenel-|
intra-group scheduling. In this case, the credit assignedM i
is normalized ag”, x (C;/ > C;), whereCy is the group credit
andC;/ Y Cj is the fraction of total VCPU credits in the group for
VM i.

Figure 6 shows an example of the scheduling hierarchy. The
credits for the three groups are respectively 600, 300, & 9
which means the CPU sharing with a 2:1:3 ratio. Within group
1, the ratio of sharing is 2:1 and the two VMs are aIIocageﬁhd
% of the overall CPU time. When group 1 is scheduled to run on
the PCPU, the scheduler only considers the two VMs in group 1
and allocates corresponding CPU time to them. Group 1 ytakls
CPU to VMs in other groups in the run queue when it consumes all
of its credits. The scheduler guarantees that each VM igive
CPU time as its weighted shares as long as there is a runrikg ta
init.

The two-level scheduling strategy, providing the capabitf
specifying CPU sharing in both group and VM level, allows the
cloud provider and the user to follow their own resourcecatmn
rules, without worrying about each other. The provider cdles

Under means the group has remaining credit, winler denotes
the group has used up its credit. Like the existing scheduheler
has a higher priority thaaver. For VMs, we use the same priority
relationship as the credit scheduler.

Two-level scheduling can be accomplished by extending #thaoa
in Section 4.1, which we propose to group VCPUs belongingéo t
same group in the run queue and assign them different perit
First, the group, which the VM on the head of the run queue be-
longs to, is selected as the current running group on the PCPU
Second, because VCPUs vary in their remaining credits, V&ORU
the same group can be spread across different priority megas
shown in Figure 5. Because the scheduler is only allowed to se
lect VCPUs in the same group, it must check each region for any
available VCPU. As described in Section 5, our implemeatati
achieves a time complexity ofX(n)) in picking the next VCPU
from the run queue.

4.2.1 Analysisof timeout

In this section, we explore how to set an appropriate valubef
timeout countet, which affects the fairness among different clus-
ter groups and I/O latency. tfis set too low, the MRG scheduler
can switch between clusters of VCPUs quickly, prior to castiph
of pending I/O requests, and therefore cluster-level égsrcannot
be guaranteed. The other extreme, i.e, a largdue, can make the
entire system underutilized by blocking cluster groupgfexecut-
ing when all VCPUs in the running cluster are blocked. In testw
these two extremes, the scheduler must balance the trade-of
tween two factors: cluster-level fairness and utilizatidhese two
factors are directly correlated with VCPU credits and |/Odiing

credits to each group based on the demand of the group user. Intime. Therefore, they are used to derive the value for timeou

First, we define credit-remaining ratio (CRR) for each grasp only reduce its waiting time in the run queue, but also insecthe
, o) progress of otheover VCPUSs in the group if there is any.
CRR — 2o Credit remaining of each dom in the group) If the priorities of the two groups are the same, i.e., both ar
Total credit of the group in over priority, the scheduler continues to compare the priitie
of the two next VCPUs of the run queues. Here, we apply the
same rule as the credit scheduler uses, i.e., the schedlyesteals

CRRis the fraction of CPU credits that are remaining for the grou
With CRRclose to 1, it means the group is far from using up its as- VCPU f X : -

. . ; . : rom other queues which has a higher priority tharand
signed CPU credits and therefore it can wait for some time, vc's priority is smaller tharunder. Besides the benefits mentioned

Yt"h?:r::%RR agptroaghes ? It dmeetlrtls the_tgfroup Ihas ctgnsur\r;\?ddm?st Ofearlier, for MapReduce workloads this results in limitifhg tvari-
s credit and we tend not to wait for a long time. We deline ¢ ¢ running time among VCPUSs in the same group.

tw as the wakeup latency between the time when all VCPUs in a In the second case when the group of the next VCPU in the peer’s

group are blocked and any of them is boosted. We initiafizéo run queue is the same gswe directly compare the two next VC-
1 ms and then update the value only when all VCPUs of the cur- PUs(.q When the groupgi]i of thmderypriorirt)y, we use the credit

rent running group are blocked: By combini6g? R andt.,, we scheduler’s rule again to reduce the waiting timeuader VCPUs
calculate the timeout as follows: in the run queue. However, when the current grougwés, we must
not starve other groups witlinder priority in the current queue.
Thus, we only steal VCPUs withoosted priority.
Cache affinity must also be considered. Traditionally cadfie-
Sincet,, is changed only on the condition that all VCPUs of ity is exploited by the OS scheduler to improve performandié
the running group are blocked by a set of consecutive I/Ogstgy @ high cache affinity most of a process’s data and instrustioe
this update imposes minimal scheduler overhead. As destiib ~ accumulated in the cache and thus the process runs moretetfici
Section 4.1, a group of blocked VCPUs are placed in front af@lo when being scheduled to this core again. Because of the data-
which can process a subset of the tasks from the batch ofseque ~ intensive nature of MapReduce workloads, it is crucial it

t = t, X CRR.)

As aresult, it is very likely that at least one of the blocke@RU VMM scheduler can achieve a desirable cache affinity level fo
can be boosted. such workloads.

A coarse granularity cache management algorithm is prapose
4.3 Symmetric Multi-Processor Support in [19] for real-time tasks: the scheduler which those t#ak VC-

PUs bind with migrates real-time VCPUs in a coarser-graityla
(e.g., 1 second) to balance their loads based on CPU usdggeyhis
across cores. The MRG scheduler borrows the feature of €oars
h granularity from [19] to achieve the balance between loddrza

ing and cache affinity. That is for any VCPU of a MapReduce
cluster, MRG invokes VCPU migration once every secondgeamst

of 10ms. Coarse granularity load balancing is necessaoydier to

give a VCPU a higher chance to be scheduled on the current CPU
and to gain benefits from cache affinity, especially for t@eHeavy
VMs, like MapReduce nodes.

In a SMP-enabled platform, each PCPU has its own run queue
of VCPUs. Load balancing across each core is crucial forieffic
CPU utilization. VCPUs can be migrated from one core to agioth
to improve performance. Two factors must be considered by t
scheduler prior to migrating a VCPU. First, migrating lodinsm
other cores should not cause severe starvation of VCPUshwhic
have already existed in the run queue. Second, the costgyodtmi
ing a VCPU include giving up a warm cache and resorting VCPUs
in the run queue.

In the current implementation of the credit scheduler, Ibad
ancing across cores is invoked when the running VCPU yidids t

PCPU. If the priority of the next VCPU in the current run queue 5, DESIGN AND IMPLEMENTATION

snext , is higher than OVER, itis allowed to run on the CPU; then In this section, we provide details of the design and impleme

nho VCPU migratfiqn occuré.P(LDJtherwise, tEe Eched.uler .firstkrfllgpu tation of the scheduler for Xen version 3.1.1We demonstrate
the run queue of its peer S to see whether migrating a that the proposed scheduler can be easily integrated wétiexh

can.improve the responsiveness of the overa!l system. Tdrelse isting credit scheduler based on its per-CPU run queuesaudec
begins from the core on the same socket and iterates the V6PUs there is no modification to the guest operating system, amy op

its run queue. If there is a VCP.U in the p_eer’s run queue having source and closed source OS can be used to host the MapReduce
a priority higher tharsnext .and its cache is not hot on the peer \,4e ag 4 virtual machine with the proposed scheduler. , kinest
CPU, this VCPU can be migrated to the current CPU run queue. ,y4a4 two configurable variables to the guest domgirmup_i d

The VCPU's cache is considered hot, if its last schedulea fisn andgr oup_cr edi t to support MapReduce cluster group_s VMs

less than 1ms. . I I . with the sameyr oup_i d belong to a single MapReduce cluster.
We propose a basic modification to the existing load balancin The group_i d is then assigned to the VCPU(s) owned by the

algorithm in order to support the cluster groups. We alloadlo VM. The basic algorithm is presented in Figure 7.

balancing qnly if the cl_us_ter group of the_next VCPU n therent As described in Section 4.1, each PCPU has its own run queue
run queue is obver priority. For corvenience, we will use: to to sort the VCPUs in the priority order. To support grouping-V
denote the _next VCPU in the current run queue gial denote its PUs with the samgr oup_i d in the run queue, it is necessary to
group. We first cons@erthe case thatthe group .Of the nexdiaP link VCPUs in the same_group together. Furthermore, in time ru
the PEETS run queue Is different from|f the priority of the pe?rs queue, VCPUs in the same group can be in different priority re
group 1 higher thag, we _stt_aal _the _next VCPU from the peersrun gions. Therefore, it is necessary to track all VCPUs baseiison
queue if that VCPU's priority is higher or equal tmder. Since running PCPU, as well as itgr oup_| D. A double linked list is

there is only two priority options for a group, the peer'sigsanust used for each group as shown in Figure 8. When sorting VCPUs in
have anunder priority. In this situation, no matter which priority

ve has, continuing running it will further exceed the CPU shgri 11he mogification is downloadable as a patch to Xen v3.4.1
of its group. But for the peer group witlnder priority, stealing (changeset 19717) ahttp://ntl.cewit.stonybrook.
anunder VCPU to run on the current PCPU immediately will not edu/ nr g- schedul er

/I A vepu becomes runnable
Insert VCPU_runqueue(vcpu):
pcpu = current;
if vepu is domO:
check if vepu can be deferred,
else:
insert vcpu to its group based on priority;

/I every 10ms
Sched_tick:
sort vcpu in the runqueue;

/I every 30ms
Sched_acct:
allot credits to VCPUs of VMs in each group;
if timer=1 second:
run load balancing algorithm;

Figure 7: Pseudo code for MRG scheduler.

G VM1 & VM2
L’ VCPU-1 <> VCPU-2

VCPU-1 < VCPU-2

e VM1 [VM2
H

VCPU-1 <> VCPU-2

Figure 8: Linked list of VCPUs for each group

the run queue, the scheduler can use the group list to quiitidy

the VCPUs with the samgr oup_| D. When one group is sched-
uled to run on the PCPU, the scheduler can locate the VCPUs in
this group, which may be in discrete priority regions. Initidd,
recall that the scheduler needs to decide whether an uleydd
VCPU can be inserted in front of dom0’s VCPU based on its last
running time. Al ast _rti ne field is added to each VCPU to
record the previous running time.

Once the scheduler has constructed the data structuredl for a
VCPUs and groups, the two-level scheduling mechanism id izse
coordinate the VCPUs to run on the PCPU. Each VCPU and group
are initialized by assigning proportional weights of ctediiom the
configuration files. In the main function, the scheduler tesizhe
credits for VCPUs and groups and sorts VCPUs in the run qukue o
the PCPU. In practice, these two events of sorting VCPUsamuth
queue and credit accounting are separated (Figure 7). Threfo
occurs in every scheduling tick@ms) only if any of the VCPU’s
credits have been updated, which happens in each accoyming
riod (30ms). Since the existing credit scheduler already assigns
constant weights for credit accounting, our implementatitains
these weights as default. After sorting the VCPU in the rueugy
the head of the run queue is the next one to be scheduled. heith t
two-level scheduling policy, VCPUs in the same group arevadd
to run on the PCPU as long as there are remaining credits éor th
group and the blocking timer has not expired. The schedriks t
stealing a VCPU to the current run queue every second if tloe-pr
ity condition is satisfied. Note that all the modificationstie VMs
configured as MapReduce nodes do not affect VMs of other types
If the scheduler finds the VCPU does not havgraup_i d, this
VCPU is treated by the default scheduling.

6. EXPERIMENTAL EVALUATION

We begin by evaluating the performance of a single MapReduce
cluster group running on a single physical machine. Thiglgol
evaluates the improvement of group clustering (Sectiohwithin
the scheduler which is the underlying principle of the ottveo
improvements. We compare the results of four benchmarkappl
tions with Xen'’s default credit scheduler (baseline) analyare the
root causes of the improvements. Subsequently, we evatlate
proposed MRG scheduler running multiple cluster groupgsdubs
on three physical machines and mixing different benchmarks

All experiments were performed on Dell servers, running the
modified Xen hypervisor (v3.4.1). The VMs run Fedora 8 and ker
nel v2.6.18.8 in all cases with one virtual CPU, 512MB memory
and 40G disk space. We run Hadoop-0.20.2 on the VMs with its de
fault configuration, except for setting the replicationtéaof data
blocks to 2.

We usexent r ace to capture the virtualization events such as
context switches between VMs, scheduled times, VCPU blauk w
and running timexentrace is able to output the trace buffer from
the hypervisor level to the user level in a binary format. Véee
only the events related to VM scheduling when runniegt r ace.
They are runstate changes, domain wake, schedule switdlscan
forth.

The benchmark workloads we use throughout the experimental
evaluations are from the examples shipped with the Hadosp di
tribution and a SQL-like query in Hive [26] — a data warehouse
infrastructure built on Hadoop. We choose three types othen
marks from Hadoop:word count, grep, and sort. Word count
counts the number of occurrences of each word in the input file
Word count is I/O-intensive, while grep searching for a tagex-
pression is limited by CPU resources. The sort benchmarken t
experiment uses the merge-sort algorithm; it reads chuhiata
to each map node, generating intermediate data, and corgpbe
results. Thus, although the sort application has a lot ofdf®
erations, it still consumes much more CPU resources than wor
count. We choose these workloads because they represént typ
cal MapReduce applications and exercise different systetnica
for evaluating the performance of Hadoop. Moreover, theythe
building blocks of software frameworks such as searchindex-
ing, pattern mining, and optimizing advertisement. At lag use
a Hive query to a database, including join, select, and irog@ra-
tions. The Hive query (hql) differs from the previous beneinks
in that the query will be parsed into several MapReduce jgbs b
the query compiler and represent more advanced data seuaftu
MapReduce. The dataset and Hive query script can be dowedoad
at the project website The configurations of the four applications
are listed in Table 1. The input data to word count, grep, amt s
are generated by the tools shipped with the Hadoop, whilelive
database is populated from a local disk file. We choose a vdde v
riety of data input sizes for these jobs such that the execuiine
ranges from approximately0 to nearly80 minutes.

6.1 Single Cluster Group

We begin by running a 4-node single cluster of MapReduce VMs
on a single physical machine, which is the machine type 1 of Ta
ble 2. In total there are five VMs running on the machine, idelu
ing domO0. A single core on the physical machine is used to run
all VMs, as well as dom0. By doing so we can study the effects
of grouping VMs on reducing the number of unnecessary contex
switches caused by boosting domO and other VMs. We run thre fou

2http://ntl.cewt.stonybrook.edu/
nT g- schedul er

Table 1: Application types and input sizes for the workloads
[Applications [Wordcount | Grep Sort I Hql |
Category Label | Input size Label | Input size|| Label | Input size|| Label [Table size (# entries
Small S-wc 2G | S-grep 10G || S-sort 512M || S-hql 100,000
Medium M-wc 5G || M-grep 15G || M-sort 1G || M-hal 200,000
Large L-wc 10G || L-grep 20G || L-sort 2G L-sql 400,000
70 1
5 60 .
z 0.8
-E 50 P
g 40 L. 06f i
=1 D f
% 30 O
2 Q.4 ot B
* 20 ! -
/ - - - Baseline
10 ":Dg; 02, N e N . . MRG o
° S-wc M-wc L-wc |S-grep M-grep L-grep | S-sort M-sort L-sort | S-hql M-hql L_-hql ?_03 164 165 169 107
Time (nanosecond)
(a) Finish time (a) domO
25 1
- A
S 0.8
"2 15 '8 0.6
3 a
§ [e | U R SRR) S © 0.4r A
- — —Baseline
05 - % o.2f .7]
0 - - 03 e = = 8
S-wc M-wc L-wc |S-grep M-grep L-grep | S-sort M-sort L-sort | S-hgl M-hgl L-hql 10 10 _10 10 10 10
Time (nanosecond)
(b) dom1

(b) Number of context switches

Figure 9: Finish time and number of context switches for word
count, grep, sort, and Hive benchmarks. Each benchmark run
with small, medium, and large input sizes. (a) finish time; (B
number of context switches. White bars show the results usm
the baseline, while results of the MRG scheduler are plotteéh
different patterns to denote each application.

types of benchmark applications using the baseline and rthe p
posed MRG scheduler and measure the workload completian tim
and the number of context switches during the executionsalgde
vary the job size of each benchmark to see how the proposed-sch
uler scales when the job size increases. The results arenpees
in Figure 9. White bars show the results using the baselihdew
results of the MRG scheduler are plotted in different patéo de-
note each application. All results are the average of 10; remer
bars show the standard deviations calculated.

The first observation from the results is that for all typespf
plications, the proposed scheduler is able to reduce thehead
of context switches, without penalizing the job finish tinoéghe
MapReduce jobs. However, the effects on the finish time and re
ducing the number of context switches vary depending onfipk-a
cation type. For example, for the word count of all input sittee
MRG scheduler can reduce the number of context switches by mo
than a half, while the savings for the grep application isuat

Figure 10: CDF of running time for dom0 and dom1 using the
baseline and MRG scheduler.

each node has more I/O requests to issue to dom0. As a rekah, w
domO of word count is scheduled, it can process more bate¢ted |
requests than that of grep and sort, reducing more intexteaon-
text switches between other VMs and dom0. On the other hand,
since processing of an I/O from a VM at domO could be postponed
after other VMs are inserted, the savings from batching lilDbe&
offset by this delay. However, given the significant improents
on the context switch overhead, the adverse effect on thehftime
for word count is negligible.

Figure 10 compares the cumulative distributions of runtimee
of two VMs for a medium input size sort application, which rep
filed for 10 minutes during the middle of execution using theds
line and MRG scheduler. Note that tieaxis is on a log scale.
There are two interesting observations here. First, we fiatifor
domO (Figure 10(a)), the MRG scheduler has running times con
centrated at values larger tha6°ns, which are much longer than
the default credit scheduler. That88% of the running time of
domoO are less than or equall®®ns with the baseline, while about
20% fall in that range with MRG. Second, the difference between
the CDFs of the default and proposed scheduler for the unpriv
leged domain (dom1), shown in Figure 10(b), is not as siganific
as dom0. This is because that MRG scheduler is clustering 1/0
requests from a group of VMs in a MapReduce cluster before the

22%. Second, we see that batching 1/0O requests improves the jobreal device driver starts to process them. Thus, the MRGdsche

completion time for grep, sort, hgl by abd2i% of all input sizes,
but not for word count. This is due to the fact that word cosnt i
more |/O-heavy, compared with the other applications. &foee,

uler makes domO run longer to process more I/O when domo is
scheduled. In addition, provided that the completion tilmesnot
impacted by the proposed scheduler, the increased averageg

Table 2: VM deployment in the multiple cluster testbed.

Consolidation level | group 1 | group 2 | Machine type
3 VMs / host 2 1 1
5VMs / host 3 2 2
4 VVMs / host 2 2 2
| total | 7 | 5] - |

Machine type 1: Pentium D 2.8GHz, 2MB L2 cache, and 3G memory
Machine type 2: Core 2 Duo 3.0GHz, 6MB L2 cache, and 6G memory

times for individual domains indicates that the number aftest
switches must be decreased, confirming our previous results

6.2 Multiple Cluster Groups

In this section we performed studies by deploying two MapRe-
duce clusters across three physical machines to evaluatyénall
performance of the MRG scheduler. Table 2 summarizes tlepla
ment of VMs in the testbed. We use physical machines with dif-
ferent capacities and have various consolidation levelsgemble
the practical allocation of provisioning multiple MapReguclus-
ters, like Amazon EC2. In particular, since VMs in a cluster a
placed across several physical machines, machine capadnild
network traffic will affect the performance of MapReducegoin
Table 2, the first column lists the number of VMs hosted on the
physical machines. The second and third columns are the @umb
of VMs belonging to each cluster. All physical machines rha t
same patched Xen and OS version, the same for all guest d@main
In total, cluster 1 and 2 consist of 7 and 5 VMs, respectivilig
also enable the two cores on the machine in this experimeshicio
the effect of the proposed SMP load balancing support.

The CPU resource allocation to these VMs is described as fol-
lows. On three physical machine each cluster is assignedrg@d
its and all VMs are configured to have the same credit of 256sTh
two clusters have equal share of the CPU resource on eacttghys
machine, which in turn allocate the same CPU resources o eac
VM in the same group. VMs of different cluster groups, howgve
may have different allocated CPU resources. For exampberde
ing to the two-level credit assignment policy, the two atuston
the second physical machine (row 2 in Table 2) have equaésifar
CPU time, while the ratio of CPU time of VMs in cluster 1 to tkos
in cluster 2 is 2:3.

6.2.1 Performance

Figure 11 compares the finish time for different combination
of MapReduce jobs running on the two clusters using the imesel
and the proposed scheduler. There are four groups of réstjs
in Figure 11; each group consists of one application job arhea
cluster with varying input sizes. For example, the two whiaes
of the rightmost four bars of group (i), represent the finishes
of S-wc and S-grep by the baseline scheduler, the two colomes!
by the MRG scheduler. As expected, although the proposestisch
uler outperforms the baseline in overall finish time, theef vary
depending on the combinations of job types. For any comioimat
with word count (group (i-ii) in Figure 11), MRG scheduler-im
proves the finish time of the other group application. Sinoedw
count is the most I/O-heavy workload among the three types of
jobs, its VCPU will be boosted more aggressively than VCPUs o
VMs running the grep and sort tasks. As a result of the twetlev
scheduling policy, the VCPUSs of grep and sort clusters cartheir
allocated time slots without being interrupted by VCPUs tbfen
clusters. Thus, the disadvantage of boosting VCPU of I/&+he
task is effectively limited. Similar to the single-groupstdts, the

I
IS

O Baseline
= MRG

0'2 ‘_h mm
0 m ﬂl ﬂl
¢=°é o,°b '-;°é e°é '-.°6 4

:Ob

Percentage of duplicated tasks (%)

&

« R R

RN
&N N X

< X) <

‘,,4‘ @S\" Vs‘ ‘_,S‘

&d() é"XV ngs'
3 «
& v %

Figure 12: Percentage of duplicated tasks.

performance of word count does not change too much. For the jo
combinations of grep, sort, and hgl shown in group (iii) amyl the
MRG scheduler outperforms the baseline-by0%, on average.

A unique feature of the MapReduce frameworksieculative
execution, which provides high availability and robustness of the
cluster [7]. However, speculative tasks are not free; thendades
are duplicated tasks and more resource contentions, afipeni
the virtualized environment. Although the MRG schedulemsru
in the hypervisor level unlike other MapReduce schedulilgg-a
rithms, it has indirect impact on this metric. Thus, it is ionfant to
evaluate the number of speculative tasks.

A speculative task is launched when the progress of onemgnni
task is below average in either the map or reduce phase. Ataiiw
can be caused by many reasons such as hardware failureraesou
contentions, or misconfiguration. Although a speculatasktis
important to achieve fault-tolerance, it has negative ictpdue to
the extra energy and resource costs. Figure 12 shows thernperc
age of duplicated map tasks from the results of two MapReduce
clusters. The MRG scheduler reduces duplicated tasks iouall
one case. Furthermore, in Figure 12 the percentage of cigpdic
tasks is higher with the sort application running in one teusT his
is because the sort application generates a much largeraruhb
intermediate and final results than word count and grep. An in
creased number of fetch failures within the map and redundtse
spans the creation of a larger number of duplicated taskerallv
these results imply that the proposed scheduler is ablelémba
the progress of map tasks running on each VM of the cluster.

Combining with the results of execution times (Figure 11§ w
can conclude that the MRG scheduler can deliver performence
provement over the default credit scheduler under variousbé-
nations of MapReduce clusters, while reducing the cost pfeca
switching and the number of duplicated tasks. In additioe Joad-
ing balancing method of MRG allows VCPUs from the two cluster
groups to perform well on SMP platforms.

6.2.2 Fairness

We evaluate the fairness between two MapReduce clusters on
a physical machine by comparing the relative differencevben
the running time of one group by the scheduler with the time de
fined by a generalized processor sharing (GPS) schedulgwy al
rithm [23]. In a GPS system, the amount of service time olethin
by each processduring a time interval, 72) is proportional to
its CPU weighty;. That is if process and j are continuously
runnable with fixed real numbets; andq;, then GPS satisfies

Ti(Ti,m2) i .
T N)
Tj(r1,72) ¥

This concept can be easily extended to running multiple MapR

=1,2,---,N. 3)

(o2}
o

1%
o

N
o

Finish time (minute)
&

20 [/ TEBIE e Ml e il e < '“
7 S
= == R |~ . 70— TN N-_

5 2 7 N N

e lE LB 5118 E (ars 2.4 IO, LI NN LN R
S-wc M-wc L-wc S-wc M-wc L-wc S-grep M-grep L-grep S-sort M-sort
S-grep M-grep L-grep | S-sort M-sort L-sort | S-sort M-sort L-sort S-hql M-hgl

(i) (i)

(iii) (iv)

Figure 11: Finish times of two clusters running different canbinations of MapReduce applications. (i) Cluster 1: word ount, cluster
2: grep; (ii) Cluster 1: word count, cluster 2: sort; (iii) Cl uster 1: grep, cluster 2: sort; (iv) Cluster 1: sort, cluster2: Hive query.
White bars show the results using the baseline, while residtof the MRG scheduler are plotted in different patterns.

duce clusters on a physical machine. We consider clustgreoas
cesses and the credit assigned to each cluster as the weéghby
the scheduler. Equation 3 can be transformed to

Tc, (11, 72)
Te, (11, 72)

=Y =12 N, 4)
Wj

whereTc, (11, 72) denotes the CPU time that clustgr receives in
interval (11, 72)andw; the credit assigned to clustéf;.

In practice, however, a GPS scheduler is infeasible becapse
fect fair scheduler requires that at least one VM in eachietusust
run simultaneously and be scheduled with infinitely smalirga,
which is infeasible. Therefore, a practical schedWewhich aims
to guarantee proportional fairness to each cluster, carvale-e
ated by the lag [2, 20]. However, there is a critical diffiguih
using lag directly to evaluate the fairness of VMM schedil@n-

der MapReduce workloads. Because MapReduce workloadstdo no

have100% CPU usage, the task running in each VM does not con-
sume all the CPU time allotted. Here we defined a modified lag fo
clusterC; running in the interva(r, 72) as

(©)

wherep is the average CPU utilization of the VMs of clustgérin

(11, 72). Thus the modified lag can be explained as the difference
of CPU time scheduled between the normalized GPS schedwer a
the practical schedules. Intuitively, the smallerL; is, the fairer

the schedulef is. In our experiment, because the two clusters are
allotted equal number of credits, we hdlig, (-, .-,) = Tc; (v ,7s)-

This means ideally in any time interval, the two clustersustio
have the same amount of CPU time.

We compareL; of the baseline and the MRG scheduler under
the job combination of word count and sort, both with largetin
size. We rurxent r ace for 15 minutes in the middle of the bench-
mark run on the second physical machine (row 2 of Table 2)- Dur
ing the profiling period all VMs are running MapReduce tashkd a
keep nearly constant CPU utilization; the VMs running wood et
have41% CPU utilization and VMs running sort haéd%. Once
we have the trace outputs, which includes timestamps and N&CP
running times, we sum up the VCPU’s running time belonging to
each cluster for every 30 seconds. The sum is the actual @R ti

Li(t) = |Tc,,eps (T, 2)pp — Tc,,s (1, 2)|,

6
O Baseline

— ® MRG
©
f=4
S 4
b
oo
«
CU
&
§ 2
< l

0 .

word count cluster sort cluster
Figure 13: Average modified lag with standard deviation for
two clusters running word count and sort.

a cluster receives in the 30-second interval. Because ¢o@PU
utilization is low, we obtain word count cluster’s and sduster’s
CPU time by GPS as about 6 and 10 seconds, respectively in the
30-second interval. Figure 13 reports the modified lagsamest
over the sampling period. We see that the MRG schedulernahie
improvements for both clusters, implying better fairneSsrther-
more, we observed the MRG scheduler offers an overall fagrne
to these MapReduce clusters. For the word count clusteze thr
VMs have their running time approximately about 2 second® T
sum is also close to the running time allotted to the clusyethle
GPS scheduler. For the sort cluster, the GPS schedulenaskly
seconds to the two VMs in a 30-second sampling period. We can
see that the running times of sort-1 and sort-2 are arouna¢tb se
onds. From the results, we can also conclude that the tved-lev
scheduling policy in MRG scheduler provides fairness to \Wla
MapReduce cluster.

7. DISCUSSION

Our work is motived by running MapReduce in a virtualized en-
vironment, which has become the dominant paradigm for ldage
processing in a very short time. Two key aspects of MapReduce
workloads enable the MRG scheduler to perform well. Firlit, a

nodes in a cluster run the same map and reduce function. &econ
most MapReduce applications are 1/0O-intensive. The MR@dch
uler performs well when these two conditions hold. Howeesr,
the MapReduce technology evolves, some of the conditions ma

sharing between VMs running simultaneously, assigning) &éd
some accurate number such as credit (in Xen) or shares (Vdwar
ESX [27]) performs better than setting coarse-granularities as

in traditional OSs, e.g., Linux, Solaris, and Mac OS X. Iniadd

change. For example, in a shared MapReduce cluster, nodes cation, group scheduling has been developed previously it to

perform different tasks to improve the cluster utilizatiop allo-
cating slots to different jobs [33]. This breaks the first dition.
At the same time, if some slots are running CPU-intensivkstas
which breaks the second condition, batching I/0O will befieetive.
We leave generalizing the MRG scheduler to different MapRed
frameworks as future work.

Although MRG scheduler is designed inside the Xen hypervi-
sor, we consider the possibility of adding similar capdiei to
other options of hypervisors such as VMware ESX, KVM [17dan
Hyper-V [14]. In fact, because the proposed MRG schedularsta
advantage of batching I/O in a privileged domain and grogipi@-
PUs of VMs in the same cluster, the architecture of those hype
visors must be consideredkernel-based virtual machine (KVM)
converts the Linux kernel into a hypervisor and makes useasfym

improve the desktop interactivity, e.g., TTY-based and QF&ip
scheduling [6]; however, to our knowledge, this is the firsetthat
group scheduling has been used directly for the schedufind/s
and to guide their resource allocations.

Given the open source nature of the Xen hypervisor, a greaht de
of research has been done to advance it. Specifically, welviéal
to highlight efforts to improve Xen'’s support for near—rdahe
applications [19] and I/O intensive applications [13]. Aaneeal-
time application is a task that does not require strict guees,
but it still needs low latency and enough CPU resources withi
certain amount of time. An example would be a server that han-
dles enterprise telephony. Similar to our situation withpRa-
duce workloads, the Xen VMM is not aware of the characteris-
tics of near-real-time tasks. Lee et al. [19] modified Xerrisdit

components of Linux kernel such as scheduler and memory man-scheduler to provide better support for near-real-timekioads.

agement, instead of reimplementing them like Xen and ESXVKV
implements each VM as a regular process, scheduled by the sta
dard Linux scheduler. Thus, we can adapt the Linux schedaler

the MRG scheduler by assigning a cluster ID to each VCPU pro-

Their primary modifications included a scheduling techeidoat
inserted the VCPU of a near-real-time task into a positiothef
run queue where it would be scheduled before its desiredidead
Their experimental results indicate that the aforemesetiomodifi-

cess and batching 1/0O requests from VCPU processes in the sam cation improves the performance of near-real-time wortkboaith-

cluster.Hyper-V, which is Windows 2008 server’s hypervisor, iso-
lates virtual machines in terms of partitions. A root pastitruns
as a privileged partition like domO in Xen and is able to czeat
child partition as a virtual machine. As child partitionsmat have
access to hardware and the root partition performs all tihdqmed
operations, it is possible to modify the root partition’asduler to
enable the MRG scheduler. VMwardZSX server has a quite dif-
ferent architecture than Xen, KVM, and Hyper-V. There is ng-p
ileged domain in ESX and thus all VMs run with the same pryorit
Instead, ESX includes a VMkernel, which provides the fumgti
alities as resource scheduling, 1/0 stack, and device mdrivas a
result, all I/O from VMs will be queued at VMkernel's virtusICSI
layer. In addition, ESX considers VCPUswsrlds. Thus, reorder-
ing I/O could be implemented at the host’s queue of the SG&rla
based on the VCPU worlds. In conclusion, the scheduling-algo
rithms of the above hypervisors can also profit from the meisina
of the MRG scheduler.

8. RELATED WORK

In this section, we present the related work on CPU and I/O
scheduling in operating systems and several job schedalgmy
rithms to improve the performance of MapReduce.

8.1 CPU and I/O scheduling

There is a long history of work in CPU scheduling in both acaide
and industry on supporting a variety of applications ragdiom
real-time applications [12], e.g., video/music playerdsaurce in-
tensive applications, e.g., web servers [8]. To combinebtree-
fits of different ones, a hierarchy loadable scheduler (Hal&)ws
users to assign each application its preferred schedulesrganize
them based on their priorities [24]. According to [24], theosed
MRG scheduler falls into the category of homogeneous hibieal
scheduler, which uses the same scheduling algorithm thoutg
the hierarchy. Homogeneous hierarchical schedulers gecvihi-
erarchical isolation between groups of resource consymétish
fits the MapReduce model. However, it is difficult to assignJCP
time to each VM under the existing HLS because higher prior-
ity processes may preempt lower ones. To address propaktion

out negatively impacting regular (non-real-time) workdealn Hu's
recent work [13], processor cores are divided into severasets
with each employing a specific scheduling algorithm to hai@PU-
intensive or 1/O-intensive workloads. However, this impedhe
burden of run-time monitoring to distribute VCPUs to prop&s-

PUs.

Ye et al. [31] proposed the idea of batching hard disk 1/0 estg!
in a VM environment to reduce power consumption. By grouping
1/0 requests, the hard disk is able to remain in the idle dtate
longer periods of time, thereby lowering power usage. Tlheaid
was combined with two more techniques to further prolong the
length of idleness: buffering to delay writes and flushingtee
early. Their results from their implementation in Xen iratied a
considerable savings in energy consumption with a small(ces
increase) in disk access time.

On the operating system level, Zhuravlev et al. [35] exaahine
the issue of shared resource contention in multicore psoces
Their survey of different classification schemes for scliadual-
gorithms established that cache contention was not thereaon
for performance degradation. Performance was also infacchy
contention for the prefetching hardware and the memoryrotiet
and bus. They determined that the cache miss rate of an applic
was a good indicator of shared resource contention. Corségu
the scheduling algorithms they implemented aimed to aféoap-
plications among the cores such that the miss rate is spreatye

8.2 MapReduce performance improvement

Job scheduling in the MapReduce architecture has been stud-
ied for improving the fairness and responsiveness, duest@dor
performance of the default FIFO scheduling [25, 34, 32]. The
approach proposed in this paper is fundamentally diffefiarh
these existing work in that the MRG scheduler provides hyiper-
level scheduling which tries to fit the characteristics ofdRaduce
workloads. LATE [34] performs speculative tasks based oroeem
generic task progress rate, which takes into account nogedie
geneity in a consolidated system. Sandholm and Lai [25] ege-r
lated and user-assigned priorities to manage the MapReduse
and automatically adjust the resource allocation during time

to meet the deadline or service level for different jobs. Teay
scheduling in [32] solves the conflict between fairness aodlt
ity by delaying the launch of a non-local task for a certairoant

of time when running multiple MapReduce jobs together. A eom
monality among these works is that they all consider runmirey
MapReduce jobs in a shared virtualized environment. Theev
lieve that instead of conflicting with each other, the praubs/ork
fills the gap between the high-level job management and ttierun
lying VM scheduling.

9. CONCLUSION

[16] H. Kim, H. Lim, J. Jeong, H. Jo, and J. Lee. Task-awargusir

[17]

(18]

[19]

[20]

We designed and implemented MRG scheduler, a new Xen sched-

uler for VMs running MapReduce workloads. The scheduler fa-
cilities MapReduce job fairness by introducing a two-legsbup
credit based scheduling policy. Efficiency is improved tiylo
batching of 1/0 requests within a group and elimination ghesu
fluous context switches. Additionally, the proposed metdman
also operates on SMP-enabled platforms. The MRG schedaker w
implemented and tested on the Hadoop platform. Evaluatons
MapReduce benchmarks show the MRG scheduler can deliver
30% performance improvement over the default scheduler with-
out runtime overhead, while simultaneously reducing thetscof
context switching and duplicated tasks. In terms of faisneke
MRG scheduler provides MapReduce cluster group level éagn
and fairness at the VM-level.

10. REFERENCES

[1] Amazon. Amazon Elastic MapReduce.
http://aws. amazon. coni el asti cmapr educe.

[2] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel.
Proportionate progress: a notion of fairness in resoutoeatlon. In
Algorithmica, volume 15, pages 600-625, 1996.

[3] L. Cherkasova and R. Gardner. Measuring CPU overhealdGor

processing in the Xen virtual machine monitorUSENIX, pages

387-390, 2005.

L. Cherkasova, D. Gupta, and A. Vahdat. Comparison otlinee

CPU schedulers in Xen. I@gmetrics/Performance, pages 42-51,

2007.

Cloudera. Cloudera’s distribution for Hadoop.

http://ww. cl oudera. com .

J. Corbet. TTY-based group scheduling.

http://1wn. net/Articles/415740/.

[7] J. Dean and S. Ghemawat. MapReduce: simplified data psoup
on large clusters. I€ommun. ACM, volume 51, pages 107-113, Jan
2008.

[8] K.J. Duda and D. C. Cheriton. Borrowed-virtual-time (BY
scheduling: supporting latency-sensitive threads in @iggpurpose
scheduler. I8 GOPS Oper. Syst. Rev.,, pages 261-276, 1999.

[9] Eucalyptus. Eucalyptus systems.
http://ww. eucal yptus. coni .

[10] K. Fraser, S. Hand, . Pratt, A. Warfield, R. Neugebaaad
M. Williamson. Safe hardware access with the Xen virtual hiree
monitor. INOAS'S, 2004.

[11] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Googlesfjistem.
In SOSP, pages 29-43, 2003.

[12] J. Goossens and R. Devillers. Feasibility intervalstiie deadline
driven scheduler with arbitrary deadlines.RRCSA, pages 54-61,
1999.

[13] Y. Hu, X. Long, J. Zhang, J. He, and L. Xia. I/O schedulimgdel of
virtual machine based on multi-core dynamic partitionilmgHPDC,
pages 142-154, 2010.

[14] Hyper-V. Microsoft Windows Hyper-V.
http://www.microsoft.com/hyper-v-server/.

[15] V. Kazempour, A. Fedorova, and P. Alagheband. Perfocea
implications of cache affinity on multicore processorsElmo-par,
pages 151-161, 2008.

[4

5

[6

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

machine scheduling for I/O performance MEE, pages 101-110,
2009.

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. ¥m: the
Linux Virtual Machine Monitor. InLinux Symposim, pages 225-230,
2007.

H. Lagar-Cavilla, J. A. Whitney, A. Scannell, P. Patghand

S. Rumble. SnowFlock: Rapid virtual machine cloning foruclo
computing. InEurosys, pages 1-12, 2009.

M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh, an&/&nik.
Supporting soft real-time tasks in the Xen hypervisolVVEE, pages
97-108, 2010.

T. Li, D. Baumberger, and S. Hahn. Efficient and scalable
multiprocessor fair scheduling using distributed weighte
round-robin. INPPoPP, pages 6574, 2009.

D. Ongaro, A. Cox, and S. Rixner. Scheduling 1/O in v@tmachine
monitor. INVEE, pages 1-10, 2008.

P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. G. ShinfdPerance
evaluation of virtualization technologies for server agigation. In
TECH Report of HP, 2007.

A. K. Parekh and R. G. Gallager. Generalized procedsariisg
approach to flow control in integrated services networks, th
single-node case. IFEEE/ACM Transactions on Networking,
volume 1, pages 344-357, June 1993.

J. D. Regehr. Using hierarchical scheduling to suppoft real-time
applications in general-purpose operating systemBhiIB. Thesis,
2001.

T. Sandholm and K. Lai. MapReduce optimization usirgutated
dynamic prioritization. IrSgmetrics/Performance, pages 299-310,
2009.

A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang

S. Antony, H. Liu, and R. Murthy. Hive - a petabyte scale data
warehouse using Hadoop. IBDE, pages 996 — 1005, 2010.
VMware White paper. VMware vSphere: the CPU scheduler i
VMware ESX 4.1. 2010.

A. Weissel, B. Beutel, and F. Bellosa. Cooperative lAhovel I/O
semantics for energy-aware applicationsO#DI, pages 117-129,
2002.

A. Whitaker, M. Shaw, and S. Gribble. Scale and perfarogain the
denali isolation kernel. I©SDI, pages 195-209, 2002.

S. Yamada and S. Kusakabe. Effect of context aware sib&edn
TLB. In Workshop on Multi-Threaded Architectures and
Applications, pages 1-8, 2008.

L. Ye, G. Lu, S. Kumar, C. Gniady, and J. H. Hartman.
Energy-efficient storage in virtual machine environmehts/EE,
pages 75-84, 2010.

M. Zaharia, D. Borthakur, J. Sarma, K. EImeleegy, S.rikee, and
|. Stoica. Delay scheduling: A simple technique for achigviocality
and fairness in cluster scheduling.BEaroSys, pages 265278, 2010.
M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, I8rier, and
I. Stoica. Job scheduling for multi-user MapReduce clsster
Technical Report, EECS, Berkeley, 2009.

M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and loigg.
Improving MapReduce performance in heterogeneous envieors.
In OSDI, pages 29-40, 2008.

S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addmegsihared
resource contention in multicore processors via scheglulim
ASPLOS pages 129-142, 2010.

