
TrustedDB: A Trusted Hardware based
Database with Privacy and Data Confidentiality

Sumeet Bajaj
Stony Brook Computer Science

Stony Brook, New York, USA
sbajaj@cs.stonybrook.edu

Radu Sion
Stony Brook Computer Science

Stony Brook, New York, USA
sion@cs.stonybrook.edu

ABSTRACT
TrustedDB is an outsourced database prototype that al-
lows clients to execute SQL queries with privacy and under
regulatory compliance constraints without having to trust
the service provider. TrustedDB achieves this by leverag-
ing server-hosted tamper-proof trusted hardware in critical
query processing stages.

TrustedDB does not limit the query expressiveness of sup-
ported queries. And, despite the cost overhead and perfor-
mance limitations of trusted hardware, the costs per query
are orders of magnitude lower than any (existing or) poten-
tial future software-only mechanisms. TrustedDB is built
and runs on actual hardware, and its performance and costs
are evaluated here.

Categories and Subject Descriptors
H.2.0 [DATABASE MANAGEMENT]: General—Secu-

rity, integrity, and protection; H.2.4 [DATABASE MAN-
AGEMENT]: Systems—Query Processing

General Terms
Security

Keywords
Database, Trusted Hardware

1. INTRODUCTION
Outsourcing has finally arrived, due in no small part to the

availability of cheap high speed networks, storage and CPUs.
Clients can now minimize their management overheads and
virtually eliminate infrastructure costs1.

Virtually all major“cloud”providers today offer a database
service of some kind as part of their overall solution. Numer-

1Discussing the merits or faults of outsourcing and “clouds”
is beyond the scope of this paper. Others have done and
continue to do so [7, 40, 41].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

ous startups also feature more targeted data management
and/or database platforms.

Yet, significant challenges lie in the path of large-scale
adoption. Such services often require their customers to in-
herently trust the provider with full access to the outsourced
datasets. But numerous instances of illicit insider behavior
or data leaks have left clients reluctant to place sensitive
data under the control of a remote, third-party provider,
without practical assurances of privacy and confidentiality

– especially in business, healthcare and government frame-
works. And today’s privacy guarantees of such services are
at best declarative and subject customers to unreasonable
fine-print clauses – e.g., allowing the server operator (or ma-
licious attackers gaining access to its systems) to use cus-
tomer behavior and content for commercial, profiling, or
governmental surveillance purposes [15, 16].

Existing research addresses several such outsourcing secu-
rity aspects, including access privacy, searches on encrypted
data, range queries, and aggregate queries. To achieve pri-
vacy, in most of these efforts data is encrypted before out-
sourcing. Once encrypted however, inherent limitations in
the types of primitive operations that can be performed on
encrypted data lead to fundamental expressiveness and prac-
ticality constraints.

Recent theoretical cryptography results provide hope by
proving the existence of universal homomorphisms, i.e., en-
cryption mechanisms that allow computation of arbitrary
functions without decrypting the inputs [43]. Unfortunately
actual instances of such mechanisms seem to be decades
away from being practical [19].

Ideas have also been proposed to leverage tamper-proof
hardware to privately process data server-side, ranging from
smartcard deployment [29] in healthcare, to more general
database operations [8, 28, 31].

Yet, common wisdom so far has been that trusted hard-
ware is generally impractical due to its performance limita-
tions and higher acquisition costs. As a result, with very few
exceptions [29], these efforts have stopped short of proposing
or building full - fledged database processing engines.

However, recent insights [14] into the cost-performance

trade-off seem to suggest that things stand somewhat differ-

ently. Specifically, at scale, in outsourced contexts, computa-

tion inside secure processors is orders of magnitude cheaper

than any equivalent cryptographic operation performed on

the provider’s unsecured common server hardware2 , despite
the overall greater acquisition cost of secure hardware.

2e.g., it is much cheaper to add numbers privately inside ex-
pensive cryptographic coprocessors than to perform the ex-

This is so because cryptographic overheads (for cryptog-
raphy that allows some processing by the server) are ex-
tremely high even for simple operations, a fact rooted not
in cipher implementation inefficiencies but rather in funda-
mental cryptographic hardness assumptions and constructs
(such as trapdoor functions – the cheapest we have so far
being at least as expensive as modular multiplication [35]).
This is unlikely to change anytime soon (none of the current
primitives have, in the past half-century). New mathemat-
ical hardness problems (e.g., elliptic curve cryptography –
which unfortunately is only a bit more efficient) will need to
be discovered to allow hope of more efficient cryptography.

As a result, we posit that a full-fledged strong-privacy en-
abling secure database leveraging server-side trusted hard-
ware can be built and run at a fraction of the cost of any
(existing or future) cryptography-enabled private data pro-
cessing on common hardware. We validate by designing and
implementing TrustedDB, an SQL database processing en-
gine that makes use of IBM 4764/5 [5, 6] cryptographic co-
processors programmed to run custom components securely.

Tamper resistant designs however are significantly con-
strained in both computational ability and memory capac-
ity which makes implementing fully featured database so-
lutions using secure coprocessors (SCPUs) very challeng-
ing. TrustedDB achieves this by utilizing common unse-
cured server resources to the maximum extent possible. For
example TrustedDB enables the SCPU to transparently ac-
cess external storage while preserving data confidentiality
with on-the-fly encryption. This eliminates the limitations
on the size of databases that can be supported. Moreover,
client queries are pre-processed to identify sensitive compo-
nents to be run inside the SCPU. Non-sensitive operations
are off-loaded to the untrusted host server. This greatly
improves performance and reduces the cost of transactions.

Overall, despite the overheads and performance limita-
tions of trusted hardware, the costs of running TrustedDB
are orders of magnitude lower than any (existing or) poten-
tial future cryptography-only mechanisms. The TrustedDB
design provides strong data confidentiality assurances. More-
over, it does not limit query expressiveness.

The contributions of this paper are two-fold: (i) the in-
troduction of new cost models and insights that explain and
quantify the advantages of deploying trusted hardware for
data processing, and (ii) the design, development, and eval-
uation of TrustedDB, a trusted hardware based relational
database with full data confidentiality.

2. MODEL AND TOOLS
Deployment. We will consider the following concise yet
representative deployment model. Sensitive data is placed
by a client with a remote (untrusted) service provider. For
confidentiality, parts of the data are encrypted before out-
sourcing. Later, the client or an authorized third party
queries the outsourced datasets through an interface exposed
by the server. It is imperative for the client that certain sen-
sitive portions of the database are never revealed. Queries
will need to be performed by the outsourcing server with full
computational privacy. Moreover, the client prefers to not
be restricted in the nature of queries. Network layer con-
fidentiality is assured by mechanisms such as SSL/IPSec.

pensive cryptography needed to add the numbers encrypted
on plain server hardware with privacy.

Other security issues such as authentication and authoriza-
tion have been extensively addressed in existing research and
therefore are not the main focus here.
Adversary. For strong assurances, we consider the server
to be untrusted and curious. Given the possibility to get
away undetected, it will attempt to compromise data confi-
dentiality. Overt denial of service attacks are not of interest.
Trusted Hardware. TrustedDB leverages the existence
of trusted hardware such as the IBM 4758 PCI [4] and the
newer IBM 4764 PCI-X [5] cryptographic coprocessors (SC-
PUs) in close data proximity. The 4764 is a PowerPC 405
based board, runs embedded Linux and can be custom pro-
grammed. Both SCPUs feature tamper resistant and re-
sponsive designs [27] and thus provide a secure execution
environment. In the eventuality of illicit physical handling,
the devices destroy their internal state and shut down.

However, tamper resistant designs face major challenges
in heat dissipation and as a result, SCPUs are significantly
constrained in both computation ability and memory capac-
ity. This requires careful consideration in achieving efficient
protocols. Efficient solutions can be achieved by balancing
a trade-off in which cheap untrusted main CPUs perform
unsensitive query components while operations on private
sensitive data are performed inside the SCPUs.
Cryptography. The deployed SCPUs offer several crypto-
graphic primitives including symmetric key encryption (AES,
3DES), public key encryption on key lengths up to 4096
bits (RSA), pseudo random number generation and crypto-
graphic hash functions (e.g., in the SHA-family).

We will denote by E(M,K) the encryption of message M
with key K. PKALICE denotes a public key that belongs
to Alice while SKALICE represents her private key. Digital
signatures are written as S(M,K) – a signature of message
M with private key K. The cryptographic hash of message
M is denoted by H(M). || represents concatenation. ⊕
denotes the bit-XOR operation.

3. THE REAL COSTS OF SECURITY
Traditional wisdom suggests that deploying trusted hard-

ware is generally feasible only in niche-markets such as bank-
ing and ATM security while generally impractical due to
performance limitations and high acquisition costs.

This idea has propagated also to the secure outsourcing
realm mainly due to the belief that practical data confiden-
tiality and protection against curious and malicious insiders
can be achieved on untrusted common hardware in “soft-
ware” only, e.g., by wisely applied combinations of cryptog-
raphy and data security protocols.

Further, confirmation has been achieved, for correctness

assurances (no data confidentiality) where this seems to be
indeed the case at least for simple types of queries. Several
results provide relatively efficient mechanisms that guaran-
tee query correctness e.g., for range queries [25, 30].

Yet, as soon as confidentiality becomes a concern, data
needs to be encrypted before outsourcing. Once encrypted,
solutions can be envisioned that: (A) straightforwardly trans-
fer data back to the client where it can be decrypted and
queried, (B) deploy cryptographic constructs server-side to
process encrypted data directly or indirectly, and (C) pro-
cess the encrypted data server-side inside tamper-proof en-
closures of trusted hardware (which the client trusts).

In the remainder of this section we will compare the per-
transaction costs of each of these cases. This is possible

H, S M L

monthly $44.90 $95 $13
bandwidth (d/u) 15/5 Mbps per 1Mbps per 1Mbps
dedicated No Yes Yes
picocent/bit 115/345 3665 500

Figure 1: Network service costs [12–14].

in view of novel results of Chen et al. [12–14] that allow
such quantification. We will show that, at scale, in out-
sourced contexts, (C) computation inside secure hardware

processors is orders of magnitude cheaper than any equiva-

lent cryptographic operation performed on the provider’s un-

secured common server hardware (B). Moreover, due to the
extremely high cost of networking when compared with com-
putation, the overhead of transferring (even a small subset of
the data) back to the client (for decryption and processing)
in (A) is overall significantly more expensive than (C).

The main intuition behind this has to do with the amor-
tized cost of CPU cycles in both trusted and common hard-
ware, as well as the cost of transferring network bits. Due
to economies of scale, provider-hosted CPU cycles are 1-2
orders of magnitude cheaper than that of clients, for CPU
cycles in traditional hardware but most importantly also for
trusted hardware. The cost of a CPU cycle in trusted hard-
ware (56+ picocents3, discussed below) becomes thus of the
same order as the cost of a traditional CPU cycle at client
sites (e.g., 14-27 picocents for small businesses). These in-
clude both acquisition and running components.

Additionally, when data is hosted far from its accessing
clients, the extremely expensive network traffic often domi-
nates; transferring a single bit of data over a network costs
upwards of 3500 picocents!

Finally, cryptography that would allow processing on en-
crypted data demands extremely large numbers of cycles
even for very simple operations such as addition. And, this
limitation is rooted in fundamental cryptographic hardness
assumptions and constructs (such as cryptographic trap-
doors – the cheapest we have so far being at least as ex-
pensive as modular multiplication [35] – which comes at a
pricetag of upwards of tens of thousands of picocents per op-

eration [14]) and is unlikely to change anytime soon (none
of the current primitives have, in the past half-century).

The above insights lead to (C) being a significantly more
cost-efficient solution than (A) and (B). We now detail.

3.1 Cost of Primitives
Compute Cycles and Networks. In [12–14] Chen et
al. derived the cost of compute cycles for a set of environ-
ments ranging from individual homes with a few PCs (H)
to large enterprises and compute clouds running upwards of
tens of thousands of CPUs (L) (M,L=medium,large sized
business). These costs include a number of factors, such
as hardware (server, networking), building (floor space leas-
ing), energy (electricity), service (personnel, maintenance,
administration) etc.

Their main thesis is that, because of the economies of
scale and associated favorable operating parameters, per-
cycle costs decrease dramatically when run in large compute
providers’ infrastructures (Figure 2). The resulting costs
range from 27 picocents for a small business environment
to less than half of a picocent for large cloud computing
providers with infrastructures of tens of thousands of servers.

31 US picocent = 10−14 USD

Parameters H S M L

Scale <10 <1000 <10k >10k
CPU utilization 5-8% 10-12% 15-20% 40-56%
server:admin ratio N.A. 100-140 140-200 800-1000
Space ($/sqft/month) N.A. 0.5 0.5 0.25
PUE N.A. 2-2.5 1.6-2 1.2-1.5
Hardware ($/CPU) 750 500 500 350
Electricity ($/KW) 0.09 0.07 0.07 0.06
CPU Cycle (picocent) 5 14-27 2 <0.5

Figure 2: Summarized costs and key parameters for
different computing environments [12–14].

Network service costs (Figure 1) range from a few hundred
picocents per bit for non-dedicated service to thousands of
picocents in the case of medium sized businesses.

Validation. We chose to validate these analytical num-
bers by exploring today’s offerings and their pricing points.
Results are surprisingly close. Amazon for e.g., charges 1-2.5
picocents per cycle (this price includes their markup as well
as additional resources such as local storage and some net-
working traffic), whereas rackspace.com’s CPU cycles range
from 0.3-2.4 picocents. Similarly, amazon.com’s network ser-
vice can be had at price points ranging from 800 to 2500 pic-
ocents per bit, depending on source and destination region.

Trusted Hardware. We now evaluate the cost of SCPU
cycles. Two main cost-impacting differences between gen-
eral purpose trusted hardware SCPUs and traditional hard-
ware are: reduced computation speeds and increased pricing
points. The considered IBM 4764/5 SCPUs are connected
to the world through PCI-X/PCIe buses and motherboards
controlled by traditional CPUs. The main CPUs act only
as a communication conduit for the SCPUs and do not need
to spend time to service the SCPU otherwise.

For simplicity we consider only one SCPU per main CPU.
For tighter packing of multiple SCPUs per motherboard (up
to 4), the overall efficiency of the system is even higher.

SCPU energy consumption peaks by design at only 25W,
yet, we conservatively estimate the deployment of SCPUs
effectively doubles energy and service costs i.e., to defend
against any critique claiming that in effect the main CPU
will need to be dedicated as a communication conduit. In re-
ality message forwarding takes only a few percentage points
of the main CPU’s compute capacity.

SCPUs are expensive (roughly one order of magnitude
higher than traditional server hardware. At the time of writ-
ing the IBM 4764 could be purchased for around $8,000 at
retail which is the number we will deploy in our estimation
(unofficial bulk pricing is around $5,000 excluding support
services). Finally, the 4764 runs a Motorola PowerPC 405
RISC CPU at 233 MHz. For consistency, we would like to
normalize this to CISC x86 cycles. We performed extensive
benchmarking (detailed results are out of scope here) and
have identified that branching, integer ops and memory ac-
cess performance (essential for DBMS query processing) is
almost identical to an x86 AMD K6 model 6 at 200 MHz
with 512 KB L2-cache – which in turn performs equivalently
to a Pentium II core at 166 MHz [2].

Considering these numbers in equation (1) in [12–14] we
derive the cost of (x86-equivalent) CPU cycles inside cloud-
hosted SCPUs to be approximately 56 picocents. We note
that while this is indeed much higher than the < 0.5 pic-
ocent cost of a cycle on cloud commodity hardware, it is
comparable to the cost of cycles in CPUs hosted in small
sized enterprises (14-27 picocents).

We validated these costs also by different avenues, e.g., by
considering the core SCPU power consumption, acquisition
costs, mean time between failure etc. For 56% utilization we
arrived at the more favorable estimate of 48 picocents per
cycle. Nevertheless, for consistency, in the following we use
the above conservative 56 picocents value.

3.2 Comparison
Given these data points we now compare the (A), (B) and

(C) alternatives discussed above. We consider the following
simple scenario: a client outsources a dataset composed of
integers encrypted to a service provider. The encrypted data
is then subjected to a simple aggregation (SUM) query in
which the server is to add all the integers and return the re-
sult to the client. We chose this mechanism not only for its
illustrative simplicity but also because SUM aggregation is
one of the very few types of queries for which non-hardware
solutions have been proposed in existing research. This al-
lows us to directly compare with existing work. Later we
also generalize for arbitrary queries. Figure 3 summarizes
the cost analysis that follows.

Querying un-encrypted data. No confidentiality. As
a baseline consider the most prevalent scenario today, in
which the client’s data is stored unencrypted with the ser-
vice provider. Client queries are executed entirely on the
provider’s side and only the results are transferred back.
Although this is the most cost - effective solution it offers
no data confidentiality. The lower bound cost of query exe-
cution in this case is as follows4 :

Costunencrypted = Cost of addition operations on server
+ Cost of transmitting results.

Costunencrypted = 2 ·D · Cbit transmit+
(

N

D
− 1

)

· Ccycle server · ηaddition
(1)

where N is the size of the entire database in bits, D = 32 (32
bit integers), Ccycle server is the cost of one CPU cycle on
server hardware, ηaddition = 1 is the average number of CPU
cycles required for an addition operation [26]. Cbit transmit

is the cost of transmitting 1 bit of data from the service
provider to the client (discussed above).

(A) Transferring encrypted data to client. The first
baseline solution that provides data confidentiality works by
transferring the entire database to the client. The client then
decrypts the database and performs the aggregation. The
cost of this alternative becomes

Costtransfer = Cost of data transmission + Cost of de-
cryption on client + Cost of addition operations on client.

Costtransfer = N · (Cbit transmit + Cbit decryption)+
(

N

D
− 1

)

· Ccycle client · ηaddition
(2)

Where Cbit decryption = 8 picocents is the (normalized) cost
of decrypting one bit with AES-128 in a medium-sized (M)
enterprise and Ccycle client = 2 picocents is the cost of a sin-
gle client CPU cycle in medium sized enterprises. Naturally
we observe that here the cost of transferring the database
to the client dominates.

(B) Cryptography. Traditional additive homomorphisms
[33, 34, 37] have been used in existing work [22, 42] to allow

4The cost of reading data from storage into main memory is
a common factor in all solutions and thus not included here

servers to run aggregation queries over encrypted data. Ad-
ditive homomorphic encryption allows the computation of
the encryption of the sum of a set of encrypted values with-
out requiring their decryption in the process.

Existing homomorphisms require the equivalent work of
at least a modular multiplication in performing their corre-
sponding operation (e.g., addition). Moreover, for security,
this modular multiplication needs to be performed in fields
with a large modulus. For efficiency [42] goes one step fur-
ther and proposes to perform aggregation in “parallel” by
simultaneously adding multiple 32-bit integer values (in fact
exactly 32 integer pairs – 32 integers in each 1024 bit chunk).
They achieve this by adding two 1024-bit chunks of data (en-
crypted by the client before outsourcing) at a time. Due to
the properties of the Paillier cryptosystem, each such addi-
tion involves one 2048-bit modular multiplication5.

The server then computes the encrypted sum of all such
large integers (achieved by a single modular multiplication of
the 2048-bit encrypted values – this multiplication happens
modulo 2048) and returns the result to the client. The client
decrypts the (2048 bit) result into a 1024 bit plaintext, splits
this into 32 integers of 32 bits each, and computes their sum.
The cost of this scheme is given by

Costhomomorphic = Cost of Modular Multiplications on
server + Cost of data transmission + Cost of decryption on
client + Cost of addition operations on client

Costhomomorphic =
Bh

D
·

((

N

Bh

− 1

)

· Cmodular mul+

2 ·Bh · Cbit transmit + Chomomorphic dec+
(

Bh

D
− 1

)

· Ccycle client · ηaddition

)

(3)

where Bh = 1024 is the plaintext block size and Cmodular mul

is the cost of performing a single modular multiplication
modulo 2048 on the server. Chomomorphic dec is the cost
of performing the single decryption on client and involves
modular multiplication and exponentiation.

(C) SCPUs. A possible use of a SCPU in the execution
of the aggregation query is to perform the aggregation fully
inside the SCPU. The result can then be re-encrypted and
transmitted back to the client.

In addition to the core CPU processing costs (which can
be computed directly from the cost of SCPU cycles), data
transfer overheads are incurred i.e., to bring encrypted data
into the SCPU and then transfer the encrypted results back
to the host server. The total cost of the solution becomes

Costscpu = Cost of data transmission between the host
server and SCPU + Cost of decryption inside SCPU + Cost
of addition operations inside SCPU + Cost of data trans-
mission from server to client + Cost of decryption at client

Costscpu =

⌈

N

Bs

⌉

·
(

δsrv · Ccycle srv + δscpu · Ccycle scpu

)

+

N · Cbit decryption scpu+
(

N

D
− 1

)

· Ccycle scpu · ηaddition scpu+

Bc · Cbit encryption scpu + Bc · Cbit transmit+

Bc · Cbit decyption client

(4)

5To process n-bit plaintexts, Paillier operates in n2 = 2048
bit fields for 1024 bit plaintexts. Ciphertexts are 2048 bit.

106

107

108

109

1010

1011

1012

1013

1 101 102 103 104 105 106

C
os

t (
pi

co
ce

nt
s)

Database Size (KB)

Costunencrypted

Costtransfer

Costhomomorphic

Costscpu

Figure 3: Comparison of outsourced aggregation
query solutions (logarithmic)

Where δsrv and δscpu are the server and SCPU cycles used
to setup data transfer and include the cost of setting up and
handling DMA interrupts. Ccycle scpu is the cost of a SCPU
cycle. Bs = 64KB is the block size of data transmitted
between the server and the SCPU in one round and Bc is
the cipher block size (128 bits for AES). ηaddition scpu = 2
is the number of cycles per addition operation in the SCPU
for 64 bit addition (on a 32 bit architecture).

Figure 3 shows the cost relationship between the solu-
tions. It can be seen that for any data set sizes Costscpu <
Costhomomorphic and Costscpu < Costtransfer. We also note
that for data sets of size < 100KB, the cost of client-side ho-
momorphic decryptions (which involves modular exponenti-
ation) dominates and exceeds the data transmission cost in
Costtransfer. Overall, the use of SCPUs is the most efficient
from a cost-centric point of view, by more than an order of
magnitude when compared with cryptographic alternatives.

3.3 Generalized Argument
Yet, the use of a specific cryptographic mechanism in the

analysis above seems to leave doubts regarding the general-
ity of the conclusion. The fact that this holds today does
not seem to imply its validity tomorrow. Thus, it would be
important to provide a generalized argument as to why this
conclusion should hold in general. We do so here.

Recall that current cryptographic constructs that guar-
antee confidentiality are based on trapdoor functions [21].
Currently viable trapdoors are based on modular exponen-
tiation in large fields (e.g., 2048 bit modular operations) and
viable homomorphisms involve a trapdoor for computing the
ciphertexts (the encrypted data on which computations are
performed). Additionally, the homomorphic operation it-
self involves processing these encrypted values at the server
in large fields, while respecting the underlying encryption
trapdoor. This involves at least the cost of a modular mul-
tiplication in large fields (e.g., 2048 or 4096 bits) [33, 34, 37].
This fundamental cryptography has not improved in effi-
ciency in decades and would require the invention of new
mathematical tools before such improvements are possible.

Thus, overall, for large scale, efficient deployments (e.g.,
clouds) where CPU cycles are extremely cheap (e.g., 0.45
picocents/cycle), performing (the cheapest, least secure) ho-
momorphic operations (modular multiplication) comes at a
pricetag of at least 30,000 picocents [14] even for values as
small as 32-bit (e.g., salaries, zipcodes).

Thus, even if we assume that in future developments ho-
momorphisms will be invented that can allow full Turing
Machine languages to be “run” under the encryption enve-
lope (today we can just add or multiply numbers), unless
new trapdoor math is discovered (none was in the past 3+
decades), each operation will cost at least 30,000 picocents
when run on efficient servers. By comparison, SCPUs pro-
cess data at a cost of 56 picocents/cycle. This is a difference
of several orders of magnitude in cost!. We also note that,
while ECC signatures (e.g., even the weak ECC-192) may be
faster, ECC-based trapdoors would be even more expensive,
as they would require two point multiplications, coming at
a price-tag of least 780,000 cycles ([17] page 402).

Yet, this is not entirely accurate, as we also need to ac-
count for the fact that SCPUs need to read data in before
processing. The SCPUs considered here feature a decryp-
tion throughput of about 10-14 MBytes/second for AES de-
cryption [5], confirmed also by our benchmarks. This lim-
its the ability to process data and the real costs of e.g.,
comparing (in a JOIN operation) two 32-bit integers be-
comes dominated not by the single-cycle conditional JUMP
CPU operation but by the cost of decryption. At 166-200
megacycles/second (recall the 4764 was benchmarked as 166-
200MHz x86 equivalent), this results in the SCPU having to
idly wait anywhere between 47 and 80 cycles for decryption
to happen (in the crypto engine module) before it can pro-
cess the data. This in effect results in an amortized SCPU
cost of between 2632 and 4480 picocents (3556 picocents on
average) for each operation which reduces the above 3 orders
of magnitude difference to only one order of magnitude, yet
still in favor of SCPUs 6.

The above holds even for the case when the SCPU has only
enough memory for the two compared values. Further, in the
presence of significantly higher, realistic amounts of SCPU
memory (e.g., M = 32MBytes for 4764-001), optimizations
can be achieved for certain types of queries such as relational
JOINs. The SCPU can read in and decrypt data pages (in-
stead of single data items) and run the (partial) JOIN query
over as many of the decrypted data pages as would fit in
memory at one time. This results in significant savings. To
illustrate, consider a page size of P (32-bit words) and a
simple JOIN algorithm for two tables of size N 32-bit in-
tegers each (we’re just concerned with the join attribute).
Then the SCPU will perform a number of (N/P)2 + (N/P)
page fetches each involving also a page data decryption at
a cost of P · 3556 picocents7. Thus we get a total cost (de-

cryption + operations) of (N
2

P
+ N) · 3556 + N2 · 56. For

reasonable sizes (e.g., P = M/2/4 = 4 million 32-bit words
can be accommodated) this cost becomes 3+ orders of mag-
nitude lower than the N2 · 30000 picocent cost incurred in
the cryptography-based case!

Cost vs. Performance. Given these 3+ orders of magni-
tude cost advantages of the SCPU over cryptography-based
mechanisms, we expect that for the above discussed aggrega-
tion query mechanism [42], the SCPU’s overall performance

will also be at least comparable if not better despite the
CPU speed handicap. We experimentally evaluated this hy-

6The cost can be reduced further by up to 50% if instead of
AES, a cipher is built using a faster cryptographic hash as
a pseudo-random function [10].
7Recall that decrypting 32-bits incurs an amortized cost of
around 3556 picocents.

105

1010

1015

1020

1025

1030

100 101 102 103 104 105 106 107 108 109 1010 1011 1012

C
os

t (
pi

co
ce

nt
s)

Database size (items)

Cryptography based (SELECT query)
Cryptography based (JOIN query)

SCPU (SELECT query)
SCPU (JOIN query)

Figure 4: The SCPU is 1-5 orders of magnitude
cheaper than deploying cryptography. (logarithmic)

pothesis and achieved a throughput of about 1.07 million
tuples/second for the SCPU. By contrast, in [42] best-case
scenario throughputs range between 0.58 and 0.92 million
tuples/second (and at much higher overall cost).

Why Cost and Not Performance? Overall, we believe
– despite being tightly related through the energy factor,
cost per transaction constitutes an often more appropriate
and practical metric of performance than overall asymp-

totic runtime complexity – which is neither meant to cap-
ture constants nor any other cost-driven performance fac-
tors. Moreover, transaction cost provides increased versatil-
ity in system design, allowing fine-tuning of a desired overall
cost/performance ratio. This is especially true in scenar-
ios involving highly-parallelizable processing, e.g., relational
queries that can often be rewritten to target different data
segments in parallel. In such cases, a straightforward strat-
egy for maximizing performance while minimizing cost can
be applied: pick the lowest per-transaction cost solution and
allocate enough hardware resources to it to achieve a de-
sired transaction throughput. We believe such cost-centric
computing paradigms have the potential to fundamentally
change the way systems and algorithms are designed.

Conclusion Summary. As Figure 4 illustrates, for lin-
ear processing queries (e.g., SELECT) the SCPU is roughly
one+ order of magnitude cheaper than any cryptography
based mechanisms. For JOIN queries, the SCPU costs drop
even further even when assuming no available memory. Fi-
nally, in the presence of realistic amounts of memory, due to
increased overhead amortization, the SCPU is multiple or-
ders of magnitude cheaper than software-only cryptographic
solutions on legacy hardware.

Cheaper Niches. We note that the above conclusion may

not apply to targeted niche scenarios. E.g., it is entirely
possible that by maintaining client pre-computed metadata
server-side, processing of a pre-defined expected set of queries
can be aided. To protect data confidentiality, this metadata
requires the use of cryptography (by definition) – but due
to the pre-computation step it may result in fewer such op-
erations and a lower cost; all this while balancing a storage
– expressivity – query arrival rate trade-off. This is a bit
counter-intuitive – after all it seems that the access to the
encrypted metadata brings us back to square one – but we
should not pessimistically discount it yet. Depending on

Figure 5: TrustedDB architecture

the cost of the additional required data storage at the time8

and incoming query patterns, such query-targeted, niche so-
lutions may turn out to be cheaper than general-purpose
full-fledged SCPU-backed databases like TrustedDB.

4. ARCHITECTURE
TrustedDB is built around a set of core components (Fig-

ure 5) including a request handler, a processing agent and

communication conduit, a query parser, a paging module,
a query dispatch module, a cryptography library, and two
database engines. While presenting a detailed architectural
blueprint is not possible in this space, in the following we
discuss some of the key elements and challenges faced in
designing and building TrustedDB.

4.1 Outline
Challenges. The IBM 4764 SCPU presents significant
challenges in designing and deploying custom code to be
run within its enclosure. For strong security, the underly-
ing hardware code as well as the OS are embedded and no
hooks are possible e.g., to augment virtual memory and pag-
ing mechanisms. We were faced with the choice of having to
provide virtual memory and paging in user land, specifically
inside the query processor as well as all the support soft-
ware. The embedded Linux OS is a Motorola PowerPC 405
port with stripped down libraries required to support the
IBM cryptography codebase and nothing else. This con-
stituted a significant hurdle, as cross-compilation became
a complex task of mixing native logic with custom-ported
functionality. The SCPU communicates with the outside
world synchronously through fixed sized messages exchanged
over the PCI-X bus in exact sequences. Interfacing such
a synchronous channel with the communication model of
the query processors and associated paging components re-
quired the development of the TrustedDB Paging Module.
The SCPU’s cryptographic hardware engine features a set
of latencies that effectively crippled the ability to run for
highly interactive mechanisms manipulating small amounts
of data (e.g., 32 bit integers). To handle this we ported
several cryptographic primitives to be run on the SCPU’s

8Which will be a function of both the number of supported
queries and the data size. Storing one bit for one year cur-
rently costs 100+ picocents [12–14].

Figure 6: Database Schema

main processor instead, and thus eliminate the hardware la-
tencies for small data items. Space constraints prevent the
discussion of the numerous other encountered challenges.

Overview. To remove SCPU-related storage limitations,
the outsourced data is stored at the host provider’s site.
Query processing engines are run on both the server and in
the SCPU. Attributes in the database are classified as being
either public or private. Private attributes are encrypted
and can only be decrypted by the client or by the SCPU.

Since the entire database resides outside the SCPU, its size
is not bound by SCPU memory limitations. Pages that need
to be accessed by the SCPU-side query processing engine are
pulled in on demand by the Paging Module.

Query execution entails a set of stages. (0) In the first
stage a client defines a database schema (and partially pop-
ulates it). Sensitive attributes are marked, i.e., by deploying
the “SENSITIVE” keyword that the client layer transpar-
ently processes by encrypting the corresponding attributes:

CREATE TABLE customer(ID integer primary key,
Name char(72) SENSITIVE, Address char(120) SENSITIVE);

(1) Later, a client sends a query request to the host server
through a standard SQL interface. The query is transpar-
ently encrypted at the client site using the public key of the
SCPU. The host server thus cannot decrypt the query. (2)
The host server forwards the encrypted query to the Request
Handler inside the SCPU. (3) The Request Handler decrypts
the query and forwards it to the Query Parser. The query is
parsed and rewritten as a set of sub-queries, and, according
to their target data set classification, each query is identified
as being either public or private. (4) The Query Dispatcher
forwards the public queries to the host server and the pri-
vate queries to the SCPU database engine while handling
dependencies. The net result is that the maximum possible
work is run on the host server’s cheap cycles. (5) The final
query result is assembled, encrypted (and digitally signed if
correctness assurances are desired) by the SCPU database
and the Query Dispatcher and sent back to the client.

4.2 Query Parsing
Outline. Sensitive attributes can occur anywhere within a
query (e.g., in SELECT, WHERE or GROUP-BY clauses,
in aggregation operators, or within sub-queries). The Query
Parser’s job is then:

• To ensure that any processing involving private at-
tributes is done within the SCPU. All private attributes
are encrypted using a shared data encryption keys be-
tween the client and the SCPU (Section 4.4), hence
the host server cannot decipher these attributes.

• To optimize the rewrite of the client query such that
most of the work is performed on the host server. This
significantly increases performance.

To exemplify how public and private queries are generated
from the original client query we use examples from the
TPC-H benchmark [3]. TPC-H does not specify any classifi-
cation of attributes based on security. Therefore, we define a
attribute set classification into private (encrypted) and pub-
lic (non-encrypted). The resultant schema is listed in Figure
6. In brief, all attributes that convey identifying informa-
tion about Customers, Suppliers and Parts are considered
private. The resulting query plans (including rewrites into
main CPU and SCPU components) for TPC-H queries Q3,
Q4, and Q6 are illustrated in Figure 7.
Aggregation Example. For queries that have WHERE
clause conditions on public attributes, the server can first
SELECT all the tuples that meet the criteria. The private
attributes’ queries are then performed inside the SCPU on
these intermediate results, to yield the final result. For e.g.,
query Q6 of the TPC-H benchmark is processed as shown
in Figure 7 (a) 9. The host server first executes a pub-
lic query that filters all tuples which fall within the desired
ship date and quantity range, both of these being public
attributes. The result from this public query is then used
by the SCPU to perform the aggregation on the private at-
tributes extended price and discount. While performing
the aggregation the private attributes are decrypted inside
the SCPU. Since the aggregation operation results in a new
attribute composing of private attributes it is re-encrypted
before sending to the client. This encryption is also done
within the SCPU.

Note that the execution of private queries depends on the
results from the execution of public queries and vice-a-versa
even though they execute in separate database engines. This
is made possible by the TrustedDB Query Dispatcher in con-
junction with the Paging Module.
Grouping Example. If the client query specifies a GROUP
or ORDER BY on public attributes but the selection in-
cludes an aggregation of the private attributes, the grouping
or sort operation is performed inside the SCPU. Figure 7 (b)
illustrates this for the TPC-H query Q3. If the aggregation
did not involve any private attributes then the host server
performs all the GROUP BY and sorting operations.
Nested Queries. The case of nested queries is similar,
yet additional care should be taken when computing exe-
cution plans to limit the amount of data transfer between
the host server and the SCPU which may result in sub-
optimal performance. One such example is query Q4 of the
TPC-H benchmark which includes a sub-query on a private
attribute. The query plan illustrated in Figure 7 (c) runs
the removal of duplicates on attribute order key within the
SCPU. An alternative would be to perform this operation
on the host server. The choice to do this in the SCPU is
made to reduce the traffic over the PCI interface. Efficient
handling of nested queries is subject to ongoing work.

9More efficient query plans for these queries exist and con-
stitute the subject of ongoing work.

(a) (b) (c)
Figure 7: TrustedDB query plans for TPC-H queries (a) Q6, (b) Q3, and (c) Q4.

4.3 Dispatching. Paging. DBMS Engines.
The TrustedDB stack inside the SCPU includes a Query

Dispatcher, a Paging Module and a DBMS Engine as well
as a general communication conduit library running on top
of the PCI-X bus. These components connect to the world
through the server/host-side TrustedDB Agent running on
the main server CPU.

As discussed above, the Query Dispatcher is in charge of
forwarding public sub-queries to the host server and private
queries to the SCPU DBMS Engine while handling all de-
pendencies between the sub-queries. The main goal is to
maximize the utilization of cheap cycles on the host server.

The SCPU DBMS Engine (a heavily modified PowerPC
ported SQLite core) interfaces with the Paging Module to
extend its database pages buffer pool with storage outsourced
transparently on demand to the server. To achieve this, the
TrustedDB Paging Module traps I/O requests made by the
SCPU DBMS engine. It then interacts with the external
TrustedDB Agent and (en)decrypts (e)ingres pages on de-
mand. This paging mechanism is key in enabling support
for large databases.

The main CPU DBMS is an unmodified MySQL 14.12
Distrib 5.0.45 engine. As the TrustedDB stack makes no as-
sumptions about this engine, it can be substituted with any
other SQL engine with minimal effort (SQL syntax related).

4.4 Security
Data Encryption is only one of the links in a chain of trust

that ensures the security of TrustedDB. Several other assur-
ances are required. Clients need to be confident that (i) the
remote SCPU was not tampered with and (ii) runs the cor-
rect TrustedDB code stack (including the correct user-land
TrustedDB modules as well as the underlying OS and SCPU
hardware logic). Finally, clients need to have the means to
(iii) communicate secretly with the TrustedDB modules run-
ning inside the SCPU.

(i) is assured by the tamper-resistant construction of the
SCPU which meets the FIPS 140-2 level 4 [1] physical se-
curity requirements. In the event of SCPU tamper detec-
tion, sensitive memory areas containing critical secrets are
automatically erased. (ii) can be ensured by deploying the

SCPU Outbound Authentication [39] mechanisms discussed
below. (iii) is achieved by deploying public-private key cryp-
tography in key messaging stages. Both, client and the
SCPU possess a public-private key pair (Figure 5). Not
unlike HTTPS/SSL communication between a web-browser
and server, messages sent between the client and the SCPU
are encrypted 10. The client’s public key certificate and key
PKCLIENT is provided to the SCPU on demand. The SCPU
public key is available via Outbound Authentication (OA).
While full details are significantly more complex and out of
scope [39], we now discuss the main OA insights.

Outbound Authentication. The main idea behind out-
bound authentication is to provide ways for clients to as-
certain the security state of a remote secure processing unit
that allows running of arbitrary code. This is achieved by
bootstrapping a chain of trust rooted in the clients’ trust in
known basic pieces of logic running on the SCPU.

The SCPU is divided into four layers running software of
differing levels of trust: Layer 0 (Miniboot 0 software), Layer
1 (Miniboot 1 software), Layer 2 (OS), and Layer 3 (applica-
tion software). The layers can be loaded in increasing order
of their number. Once loaded, each layer is issued a public
key pair (Figure 5) certified by the layer below. The Layer
0 public key (PKIBMC) is certified by the manufacturer us-
ing its private key. The Layer 1 public key (PKDEVICE) is
certified by the layer 0 private key (SKIBMC). The Layer
2 public key (PKOS) is certified by the layer 1 private key
(SKDEVICE) and finally the Layer 3 public key (PKTDB) is
certified by the layer 2 private key (SKOS). This effectively
builds a chain of trust rooted in the manufacturer’s public
key (PKIBM). The chain of all these public key certificates
constitutes the Outbound Authentication certificate. It can
be used to provably assert to remote parties what software

currently runs inside the SCPU as shown in Figure 8(a).
The OA certificate guarantees that the public key PKTDB

indeed belongs to an application running inside a SCPU.
Moreover, the OA certificate chain also contains the signed

crypto hash of the software installed in each Layer. By veri-

10And thus, despite acting as a communication conduit be-
tween the client and the SCPU, the server cannot perform
man-in-the-middle attacks and gain access to sensitive data.

Figure 8: (a) Acquiring Outbound Authentication
certificate. (b) Setup of Data Encryption Key. (c)
Secure Transmission of query results

fying this software hash against an expected published value
(e.g., for the TrustedDB stack) the client can trust the soft-
ware executing in all the layers. If the software in any layer
is updated then the key pairs for that layer and all layers
above it will be re-generated and re-attested. The updated
software hashes will be available the next time client requests
an OA certificate. This satisfies requirement (ii).

The TrustedDB application running within the SCPU gen-
erates its own public-private key pair (PKTDB, SKTDB).
Any request made by the client to the SCPU is encrypted
using the public key PKTDB (or a symmetric key generated
out of a Diffie-Hellman key exchange). The client trusts the
SCPU public key as it is attested to using the OA certificate.

Data Encryption. While communication security has
been discussed above, data confidentiality still remains to
be guarded. The client database consists of public (non-
encrypted) and private (encrypted) attributes. The private
attributes are transparently encrypted by the client layer
before the database is uploaded to the host server or as part
of any insert/update queries. The encryption is performed
using the data encryption keyKDATA generated by the client
(of at least 160 bits [10]). The TrustedDB stack within the
SCPU gains access to this key as shown in Figure 8(b).

Conversely, when query execution generates new private

attributes they are encrypted inside the SCPU before send-
ing them back to the client. E.g., consider the query SELECT

avg(SALARY) FROM EMPLOYEES. The result of avg(SALARY)

is an aggregation over an existing private attribute. In this
case the result is encrypted inside the SCPU using the key
KDATA (Figure 8(c) - and signed if needed for authenticity)
before transmitting back to the client11.

For increased efficiency, different avenues for data encryp-
tion are available. (I) In the simplest case, the entire database
is encrypted at page level and TrustedDB is fetching and de-
crypting pages on demand. This features the highest through-
put, but limits the ability to use the main CPU’s cycles in
the process (as the data set is first decrypted inside the
SCPU before anything). This case is suitable for queries
on data sets that feature ONLY sensitive attributes. (II)
For more complex queries, a straightforward application of

11We note that in this case, also correctness guarantees –
against an actively malicious server – can be achieved for
free, but only for queries involving solely private attributes.

a symmetric encryption mechanism such as AES can be en-
visioned. Each tuple is encrypted separately with KDATA

and some randomness added to ensure indistinguishability.
This mechanism is viable for BLOBS and large-sized at-
tribute values (e.g., hundreds of KBytes+) but less so for
small data items such as integers due to encryption laten-
cies and ciphertext blow-up factors. (III) Finally, for fine-
grained encryption of data, each individual attribute value
within each tuple is encrypted separately with random keys
generated by a cryptographic hash function based cipher
initialized with KDATA and per-tuple additional data that
guarantees its uniqueness across the entire database. Ex-
tensive details and cryptographic proofs are out of scope.
The result is based on a NMAC construction [10, 21]:

E(tbl.attr.val) = ctrattr || tbl.pri key || idxK || (tbl.attr.val ⊕ k)

k = F (KDATA[idxK] || ctrattr || tbl.pri key||F (KDATA[idxK]))
(5)

where tbl is the table name, tbl.attr is the attribute to be
considered, tbl.attr.val is the plaintext value of the current
tuple, tbl.pri key is the primary key of the current tuple in
table tbl, ctrattr is a unique identifying number associated
with tbl.attr12, idxK is an index in a table of KDATA keys
which allows multiple such keys to exist simultaneously (and
be refreshed periodically) for increased security, and F (·) is
a cryptographic hash function (SHA,MD5) [10]13.

5. DISCUSSION
Handling Database Updates. Data manipulation queries
(INSERT, UPDATE) also undergo a rewrite. Moreover, any
new generated attribute values are re-encrypted within the
SCPU before updating the database. For illustration, con-
sider the query UPDATE EMPLOYEES SET SALARY = SALARY +

2000 WHERE ZIP = 98239. If SALARY is a private attribute
then the query works by first decrypting the SALARY at-
tribute, performing the addition and then re-encrypting the
updated values and is executed within the SCPU. On the
other hand if SALARY is a public attribute then the query
will be executed entirely by the host server.

Limitations of the current query parser. The current
query parser does not provide efficient support for query
nesting, specifically for queries with large intermediate re-
sults. In ongoing work we try to understand whether some-
thing can be done to alleviate the costs associated with
such large intermediate results that need to be transfered
synchronously through the SCPU. A key element in future
work will involve designing query parsers to generate effi-
cient query plans while optimizing trade-offs between mul-
tiple metrics such as overall dollar cost of execution or per-
formance, in addition to data confidentiality constraints.

Access Patterns. The current implementation reveals
access patterns to the externally stored data pages. While
this may not be an issue in many applications, it would
be interesting to explore the deployment of efficient private
information retrieval mechanisms to prevent the server from
learning these patterns.

Caching. TrustedDB query execution can result in inter-
mediary results which can often be cached and re-used for

12For storage efficiency we don’t want to use the entire
tbl.attr value in the result.

13Note that the known MD5 collision - resistance related
vulnerabilities are not a problem here where it is used as a
source of randomness only.

 0

 2

 4

 6

 8

 10

 12

 14

 16

insert update

La
te

nc
y

(m
s)

(a)

MySQL
TrustedDB

 0

 25

 50

 75

 100

 125

 150

 175

 200

Q3 Q5 Q6 Q10

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(b)

MySQL - No Encryption
TrustedDB

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Q3 Q5 Q6 Q10

%
 o

f t
ot

al
 q

ue
ry

 e
xe

cu
tio

n
tim

e

(c)

SCPU encryption operations
SCPU decryption operations

Private Query Processing on SCPU
Public Query Processing on host server

Figure 9: (a) Query latencies. (b) Execution times. (c) Query time profile.

efficiency. Similarly, the query plan decisions need not be re-
peated, but rather previously devised plans can be cached,
e.g., for hot queries. The plans can be encrypted and stored
on external storage with the aid of the Paging Module.

Parallelism. The current prototype runs on a single SCPU.
An extension to multiple SCPUs is straightforward and would
allow better scaling to target desired throughputs.

Compliance. TrustedDB can also be easily augmented
with a Compliance Module to support regulatory compli-
ance. Policies that regulate data can be communicated to
and enforced by the SCPU securely at runtime. Since sen-
sitive attributes are only accessed within the SCPU the en-
forcement of policies is guaranteed at very little additional
cost. An example of such a compliance policy would be to
enforce tuple-level mandatory retention times as well as ad-
ditional lifecycle management enablers.

6. EXPERIMENTS
Setup. The SCPU of choice is the IBM 4764-001 PCI-
X with the 3.30.05 release toolkit featuring 32MBytes of
RAM and a PowerPC 405GPr at 233 MHz. The SCPU sits
on the PCI-X bus of an Intel Xeon 3.4 GHz, 4GB RAM
Linux box (kernel 2.6.18). The server DBMS is a standard
MySQL 14.12 Distrib 5.0.45 engine. The SCPU DBMS is
a heavily modified SQLite custom port to the PowerPC.
The TrustedDB stack (including Communication Conduit,
Query Parser, Query Dispatcher, Paging Module, Crypto
Engine, TrustedDB Agent etc.) is written in C.

Throughput and Latency. In Section 3 we discussed a
benchmarked throughput of 10-14 MB/second for page-level
AES encryption. We have also discussed how to achieve a 1+
million tuples/second throughput in an aggregation query on
relational data that does not involve public attributes.

While the above numbers are impressive, they only hold
for niche cases such as aggregation. For general queries, the
data needs to be provided encrypted per-tuple with addi-
tional fields that allow the SCPU DBMS to reconstruct the
individual tuple decryption key (equation (5), Section 4.4).

In such cases, fewer optimizations are possible, and the
resulting queries have higher execution times. For example
for F (·)=MD5 in equation (5), TrustedDB can achieve sus-
tained I/O decryption throughputs of over 80,000 sensitive
attribute values per second, and does not limit the non-
sensitive data related throughput (processed by the server).

A comparison of MySQL and TrustedDB latencies of IN-

SERT and UPDATE queries are illustrated in Figure 9 (a)
and are likely dominated by I/O elements in both cases.

TPC-H Query Load. To evaluate the runtime of general-
ized queries, instead of concocting our own, we chose several
non-nested14 queries (Q3, Q5, Q6 and Q10) from the TPC-
H set [3] of varying degrees of difficulty and privacy. These
queries all target the standard TPC-H schema in Figure 6
augmented with SENSITIVE attributes. The TPC-H scale
factor was 1 (database size of 1GB).

These queries were selected as they require operations on
private attributes and are sufficiently complex. Figure 9
(b) shows the execution times compared to a simple un-
encrypted MySQL setup.

Figure 9 (c) also depicts the breakdown of times spent in
execution of the public (executed on host server) and private
(executed on the SCPU) sub-queries. The execution times of
private queries include the time required for encryption and
decryption operations inside the SCPU. The public queries
executed on the host server also include the processing times
to interface the TrustedDB stack with the server database
engine and output the final results.

As can be seen, when compared with the completely unse-
cured baseline, security does not come cheap – the execution
times are higher by factors between 1.03 and 7.8. These fac-
tors benefit from the TrustedDB leveraging of the untrusted
server’s CPU for non-sensitive query portions. However, re-
call from Section 3 that the actual costs are orders of mag-
nitude lower than any solution based on software-only cryp-
tography on legacy server hardware.

7. RELATED WORK
Trusted Hardware in Data Management. In [9] SC-
PUs are used to retrieve X509 certificates from a database.

[38] uses multiple SCPUs to provide key based search. The
entire database is scanned by the SCPUs to return matching
records. [36, 44] implement arbitrary joins by reading the
entire database through the SCPU.

Chip-Secured Data Access [29] uses a smart card for query
processing and for enforcing access rights. The client query
is split into three parts - server, client and a terminal query.
The idea is that the server query performs majority of the
computation. The solution is limited by the fact that the
client query executing within the smart cannot generate any

14Recall that the TrustedDB query parser does not yet effi-
ciently support query nesting, especially when it results in
large intermediary results.

intermediate results since there is no storage available on the
card. In follow-up work, GhostDB [32] proposes to embed a
database inside an USB key equipped with a CPU. It“allows
linking [of] private data carried on the USB Key and public
data available on a public server. GhostDB ensures that
the only information revealed to a potential spy is the query
issued and the public data accessed.”

[28, 31] explore the use and limitations of SCPUs for out-
sourced databases and “sketch how a practical system meet-
ing the definition could be built and proven secure”.

[8] discusses the use of a SCPU-based service in a secure
multi-party setting in which “ participating data providers
send encrypted relations to the service that sends the en-
crypted results to the recipients”.

In [11] a database engine is proposed inside a SCPU for
data sharing and mining. The SCPU fetches data from ex-
ternal sources using secure jdbc connections. The entire data
is treated as private which means that queries must be com-
pletely executed inside the coprocessor and the host server
resources are not utilized. The overhead of jdbc connections
is between 20% and 70% of the total query processing time.

Queries on Encrypted Data. Hacigumus et al. [23]
propose a method to execute SQL queries over partly ob-
fuscated outsourced data. The data is divided into secret
partitions and queries over the original data can be rewrit-
ten in terms of the resulting partition identifiers; the server
then performs queries over the partitions. The information
leaked to the server is claimed to be 1-out-of-s where s is the
partition size. This balances a trade-off between client-side
and server-side processing, as a function of the data segment
size. At one extreme, privacy is completely compromised
(small segment sizes) but client processing is minimal. At
the other extreme, a high level of privacy can be attained
at the expense of the client processing the queries in their
entirety after retrieving the entire dataset.

In [24] the authors explore optimal bucket sizes for cer-
tain range queries. Similarly, data partitioning is deployed
in building“almost”-private indexes on attributes considered
sensitive. An untrusted server is then able to execute “ob-
fuscated range queries with minimal information leakage”.
An associated privacy-utility trade-off for the index is dis-
cussed. The main drawbacks of these solutions lies in the
fact that the cost-security trade-off is linear. The increase in
security is linear in the increase in the cost of the solution,
not unlike case (A) in Section 3.

Aggregation queries over relational databases is provided
in [22] by making use of homomorphic encryption based on
Privacy Homomorphism [37]. The authors in [18] have sug-
gested that this scheme is vulnerable to a cipher text only
attack. Instead [18] proposes an alternative scheme to per-
form aggregation queries based on bucketization [23]. Here
the data owner precomputes aggregate values such as SUM
and COUNT for partitions and stores them encrypted at the
server. Although this makes processing of certain queries
faster it does not significantly reduce client side processing.

Query Correctness. Numerous query correctness solu-
tions for outsourced frameworks have been proposed. Due
to space constraints we direct the reader to [20].

8. CONCLUSIONS
This paper’s contributions are two-fold: (i) the introduc-

tion of new cost models and insights that explain and quan-

tify the advantages of deploying trusted hardware for data
processing, and (ii) the design and development of TrustedDB,
a trusted hardware based relational database with full data
confidentiality and no limitations on query expressiveness.

This work’s inherent thesis is that, at scale, in outsourced
contexts, computation inside secure hardware processors is
orders of magnitude cheaper than any equivalent cryptog-
raphy performed on a provider’s unsecured common server
hardware, despite the overall greater acquisition cost of se-
cure hardware. We thus propose to make trusted hardware
a first-class citizen in the secure data management arena.
Moreover, we hope that cost-centric insights and architec-
tural paradigms will fundamentally change the way systems
and algorithms are designed.

9. ACKNOWLEDGMENTS
We would like to thank Sumeet Dash and Nilesh Mahajan

for their help with implementing TrustedDB, as well as our
sponsors, NSF (0937833, 0845192, 0803197), CA Technolo-
gies, NGC, Xerox, IBM, and Microsoft.

10. REFERENCES
[1] FIPS PUB 140-2, Security Requirements for

Cryptographic Modules. Online at http://csrc.
nist.gov/groups/STM/cmvp/standards.html#02.

[2] The UBENCH Toolkit. Online at
http://www.phystech.com/download/ubench.html.

[3] TPC-H Benchmark. Online at
http://www.tpc.org/tpch/.

[4] IBM 4758 PCI Cryptographic Coprocessor. Online at
http://www-03.ibm.com/security/cryptocards/

pcicc/overview.shtml, 2006.

[5] IBM 4764 PCI-X Cryptographic Coprocessor. Online
at http://www-03.ibm.com/security/cryptocards/
pcixcc/overview.shtml, 2007.

[6] IBM 4765 PCIe Cryptographic Coprocessor. Online at
http://www-03.ibm.com/security/cryptocards/

pciecc/overview.shtml, 2010.

[7] Daniel Abadi, Michael J. Carey, Surajit Chaudhuri,
Hector Garcia-Molina, Jignesh M. Patel, and Raghu
Ramakrishnan. Cloud databases: What’s new?
PVLDB, 3(2):1657, 2010.

[8] Rakesh Agrawal, Dmitri Asonov, Murat Kantarcioglu,
and Yaping Li. Sovereign joins. In Ling Liu, Andreas
Reuter, Kyu-Young Whang, and Jianjun Zhang,
editors, ICDE, page 26. IEEE Computer Society, 2006.

[9] Alexander Iliev and Sean W Smith. Protecting Client
Privacy with Trusted Computing at the Server. IEEE,
Security and Privacy, 3(2), Apr 2005.

[10] Mihir Bellare. New proofs for nmac and hmac:
Security without collision-resistance. pages 602–619.
Springer-Verlag, 2006.

[11] Bishwaranjan Bhattacharjee, Naoki Abe, Kenneth
Goldman, Bianca Zadrozny, Chid Apte,
Vamsavardhana R. Chillakuru and Marysabel del
Carpio. Using secure coprocessors for privacy
preserving collaborative data mining and analysis. In
Proceedings of the 2nd international workshop on Data

management on new hardware, 2006.

[12] Yao Chen and Radu Sion. On the (Im)Practicality of
Securing Untrusted Computing Clouds with

Cryptography. Online at
http://www.cs.sunysb.edu/~sion/research/.

[13] Yao Chen and Radu Sion. To Cloud or Not To. Online
at http://www.cs.sunysb.edu/~sion/research/.

[14] Yao Chen and Radu Sion. On securing untrusted
clouds with cryptography. In WPES ’10: Proceedings

of the 9th annual ACM workshop on Privacy in the

electronic society, pages 109–114, New York, NY,
USA, 2010. ACM.

[15] CNN. Feds seek Google records in porn probe. Online
at http://www.cnn.com, January 2006.

[16] CNN. YouTube ordered to reveal its viewers. Online
at http://www.cnn.com, July 2008.

[17] Tom Denis. Cryptography for Developers. Syngress.

[18] Einar Mykletun and Gene Tsudik. Aggregation
Queries in the Database-As-a-Service Model. Data and

Applications Security, 4127, 2006.

[19] Rosario Gennaro, Craig Gentry, and Bryan Parno.
Non-interactive verifiable computing: Outsourcing
computation to untrusted workers. In Tal Rabin,
editor, CRYPTO, volume 6223 of Lecture Notes in

Computer Science, pages 465–482. Springer, 2010.

[20] Michael Gertz and Sushil Jajodia. Handbook of

Database Security: Applications and Trends. Springer.

[21] O. Goldreich. Foundations of Cryptography I.
Cambridge University Press, 2001.

[22] Bala Iyer Hakan Hacigumus and Sharad Mehrotra.
Efficient execution of aggregation queries over
encrypted relational databases. In Database Systems

for Advanced Applications, volume 2973, pages
633–650, 2004.

[23] Hakan Hacigumus, Bala Iyer, Chen Li and Sharad
Mehrotra. Executing SQL over Encrypted Data in the
Database-Service-Provider Model. In Proceedings of

the 2002 ACM SIGMOD international conference on

Management of data, pages 216–227, 2002.

[24] B. Hore, S. Mehrotra, and G. Tsudik. A
privacy-preserving index for range queries. In
Proceedings of ACM SIGMOD, 2004.

[25] HweeHwa Pang and Arpit Jain and Krithi
Ramamritham and Kian-Lee Tan. Verifying
Completeness of Relational Query Results in Data
Publishing. In Proceedings of ACM SIGMOD, 2005.

[26] Intel. Intel 64 and IA-32 Architectures Optimization

Reference Manual, 2008.

[27] Joan G. Dyer, Mark Lindemann, Ronald Perez, Reiner
Sailer and Leendert van Doorn. Building the IBM
4758 Secure Coprocessor. IEEE, 34(10), 2001.

[28] Murat Kantarcioglu and Chris Clifton. Security issues
in querying encrypted data. In Sushil Jajodia and
Duminda Wijesekera, editors, DBSec, volume 3654 of
Lecture Notes in Computer Science, pages 325–337.
Springer, 2005.

[29] Luc Bouganim and Philippe Pucheral. Chip-secured
data access: confidential data on untrusted server. In
Proceedings of the 28th international conference on

Very Large Data Bases, pages 131–141. VLDB
Endowment, 2002.

[30] Maithili Narasimha and Gene Tsudik. DSAC:
integrity for outsourced databases with signature
aggregation and chaining. In Proceedings of the 14th

ACM international conference on Information and

knowledge management, pages 235–236, 2005.

[31] Einar Mykletun and Gene Tsudik. Incorporating a
secure coprocessor in the database-as-a-service model.
In IWIA ’05: Proceedings of the Innovative

Architecture on Future Generation High-Performance

Processors and Systems, pages 38–44, Washington,
DC, USA, 2005. IEEE Computer Society.

[32] Nicolas Anciaux, Mehdi Benzine, Luc Bouganim,
Philippe Pucheral and Dennis Shasha. GhostDB:
Querying Visible and Hidden Data Without Leaks. In
Proceedings of the ACM SIGMOD international

conference on Management of data, 2007.

[33] P. Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In Proceedings of

EuroCrypt, 1999.

[34] Pascal Paillier. A trapdoor permutation equivalent to
factoring. In PKC ’99: Proceedings of the Second

International Workshop on Practice and Theory in

Public Key Cryptography, pages 219–222, London,
UK, 1999. Springer-Verlag.

[35] M. O. Rabin. Digitalized signatures and public-key
functions as intractable as factorization. Technical
report, Cambridge, MA, USA, 1979.

[36] Rakesh Agrawal, Dmitri Asonov, Murat Kantarcioglu,
Yaping Li. Sovereign Joins. In Proceedings of the 22nd

International Conference on Data Engineering,
page 26. IEEE Computer Society, 2006.

[37] Ronald Rivest, Len Adleman and Michael Dertouzos.
On data banks and privacy homomorphisms.
Foundations of Secure Computation, 1978.

[38] S. W. Smith and D. Safford. Practical server privacy
with secure coprocessors. IBM SYSTEMS JOURNAL,
40(3), 2001.

[39] Sean W. Smith. Outbound authentication for
programmable secure coprocessors. Online at
http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.58.4066.

[40] Michael Stonebraker, Daniel J. Abadi, David J.
DeWitt, Samuel Madden, Erik Paulson, Andrew
Pavlo, and Alexander Rasin. Mapreduce and parallel
dbmss: friends or foes? Commun. ACM, 53(1):64–71,
2010.

[41] Alexander Thomson and Daniel J. Abadi. The case for
determinism in database systems. PVLDB, 3(1):70–80,
2010.

[42] Tingjian Ge and Stan Zdonik. Answering Aggregation
Queries in a Secure System Model. In Proceedings of

the 33rd international conference on Very large data

bases, pages 519–530. VLDB Endowment, 2007.

[43] Marten van Dijk, Craig Gentry, Shai Halevi, and
Vinod Vaikuntanathan. Fully homomorphic
encryption over the integers. In Henri Gilbert, editor,
EUROCRYPT, volume 6110 of Lecture Notes in

Computer Science, pages 24–43. Springer, 2010.

[44] Yaping Li. Privacy Preserving Joins on Secure
Coprocessors. Technical Report UCB/EECS-2008-158,
EECS Department, University of California Berkeley,
Dec 2008. http://www.eecs.berkeley.edu/Pubs/
TechRpts/2008/EECS-2008-158.html.

