
Ficklebase: Looking into the Future to
Erase the Past

Sumeet Bajaj#1, Radu Sion#2

Computer Science, Stony Brook University
Stony Brook, NY, USA

1 sbajaj@cs.stonybrook.edu
2 sion@cs.stonybrook.edu

Abstract—It has become apparent that in the digital world data
once stored is never truly deleted even when such an expunction
is desired either as a normal system function or for regulatory
compliance purposes. Forensic Analysis techniques on systems
are often successful at recovering information said to havebeen
deleted in the past.

Efforts aimed at thwarting such forensic analysis of systems
have either focused on (i) identifying the system components
where deleted data lingers and performing a secure delete oper-
ation over these remnants,or (ii) designing history independent
data structures that hide information about past operations which
result in the current system state.

Yet, new data is constantly derived by processing existing
(input) data which makes it increasingly difficult to remove
all traces of this existing data, i.e., for regulatory compliance
purposes. Even after deletion, significant information canlinger
in and be recoverable from the side effects the deleted data
records left on the currently available state.

In this paper we address this aspect in the context of a
relational database, such that when combined with (i) & (ii),
complete erasure of data and its effects can be achieved (“un-
traceable deletion”).

We introduce Ficklebase – a relational database wherein once
a tuple has been “expired” – any and all its side-effects are
removed, thereby eliminating all its traces, rendering it un-
recoverable, and also guaranteeing that the deletion itself is unde-
tectable. We present the design and evaluation of Ficklebase, and
then discuss several of the fundamental functional implications
of un-traceable deletion.

I. I NTRODUCTION

The “delete” operation in modern computer systems can
at many times be anillusion [65]. Although once deleted,
data may no longer be accessible via legitimate system inter-
faces, numerous instances [29, 68, 70] have demonstrated that
presumably erased data can be recovered with simple mining
techniques.

Preserving un-wanted data not only jeopardizes user privacy
& confidentially but can also violate retention policies set
forth by legislations such as HIPAA [17], FERPA [8], FISMA
[9], EU Data Protection Directive [7] and the Gramm–Leach–
Bliley Act [10]. E.g., the fifth directive of the Data Protection
Act [20] mandates that information shall not be retained for
any longer than its intended purpose.

Prior work has addressed this issue on two fronts: “secure
deletion” and “history independent” data structures.

The observation that data artifacts can linger in systems
for a significant period after deletion [32, 40] gave rise to the

requirement of “secure deletion”. This is important since nu-
merous system sub-components such as memory [33], storage
mediums [39] and file systems [30] have shown to preserve
deleted data. Applications such as databases hold on to deleted
data in transaction logs, error logs, temporary tables, de-
allocated data pages, index entries and audit logs [38, 69].

These data remnants can later be recovered by employing
forensic analysis [3] techniques. In good hands [6, 14, 53,
62, 67, 71] these techniques are very helpful in incriminating
wrong-doings by malicious users, however in the wrong hands
they pose a grave threat to data & user privacy.

Mechanisms have therefore been designed to identify sys-
tem parts where deleted data artifacts linger and subsequently
remove them. Solutions have been proposed for general stor-
age media [39, 45, 54, 72], file systems [24, 56] and database
applications [69]. Also, off-the-shelf tools can now be used to
perform such a secure data erase [5].

“History independent” data structures [48] (also referredto
as “uniquely represented” data structures) have the property
that their storage layout is a function of only the current
state and not of the history of past operations that led to
it. Such data structures reveal no additional information to
an adversary outside of what can be inferred anyway via
legitimate interfaces. If a delete operation is part of a system
interface, then utilizing a “history independent” data structure
ensures that – an adversary subsequently gaining access to the
system storage is unable to infer whether the delete operation
was performed at all. This is critical sincetraditional data
structures (e.g., B-Tree indexes) preserve (in their current state
layout) information about past operations. “History indepen-
dent” variants have been developed for Hash Tables [61], 2-3
Trees [59], B-Trees [42] and Skip-Lists [43].

A third, largely ignored aspect in preventing erased data
from being recovered concerns its relationship to the current
state (data present in the system now). The main observation
here is that side-effects of deleted data persist within the
current state – this can be then exploited to derive information
about the deleted data items in direct violation of regulation
and the intent behind deleting the data in the first place.

For true regulatory compliance, “secure deletion” and “his-
tory independent” data structures are not sufficient by them-
selves but rather need to be augmented with mechanisms for
full erasure of post-deletion data side-effects. We term this

Name Alias
Current

Location
Speciality Rating

Ethan Hunt Hawk Hong Kong Access 8.7

Charles Vine Spider Zurich Intelligence 9.1

Sarah Walker Tzar Dhaka Security 8.1

John Steed Chopper Warsaw Strategy 7.9

Sam Clover Agent J Omsk Intelligence 7.6

….. ….. ….. ….. …..

Code Department Avg (Rating)

MI832 Narcotics 8.4

ST782 Weapons 8.9

CI397 Collections 7.6

CR641 Crime 9.0

….. ….. …..

Mission Agent

ST782 Hawk

MI832 Spider

CI397 Tzar

MI832 Chopper

MI832 Agent J

….. …..

Agent Source Destination Mission Date

Hawk Berlin Vienna ST782 03/12/11

Spider Chicago Sydney MI832 06/15/11

Hawk Vienna Hong Kong ST782 01/23/12

Spider Sydney Zurich MI832 08/07/12

….. ….. ….. ….. …..

T

I

M

E

MI832 Assignments

Agent Rating

Spider 8.7

Chopper 7.9

Avg(Rating)

8.3

Transaction T2 : New Assignment

Agent Rating

Spider 8.7

Chopper 7.9

Agent J 7.6

Avg(Rating)

8.067

Transaction T3 : Delete Chopper

Transaction T1: New Assignment

AgentRating

Spider 8.7

Avg(Rating)

8.7

Agent Rating

Spider 8.7

Agent J 7.6

Avg(Rating)

8.7

Avg(Rating)

8.15

Rollback T1

Rollback T2

Delete Chopper

Re-Execute T2

(a) (b)

Agent

Mission Assignment

Travel

Fig. 1. (a) Intelligence Agency Database Snippet (b) Rollback vs
Transaction Re-Execution

“un-traceable1 deletion” (Section II).
In the following we introduce Ficklebase a relational

database with fully un-traceable deletion guarantees.

II. M OTIVATION AND CONCEPTS

The numerous regulatory compliant data expiration man-
dates derive from real-life privacy concerns in today’s increas-
ingly digital societies.

To illustrate how deleted/expired data can leave side-effects
behind, consider a snippet from a hypothetical intelligence
agency database (Figure 1(a)). As a simple example - suppose
that once agent Sarah leaves the agency all evidence of her
existence in the database needs to be eradicated. This would
mean deletion of agent information tuples from theAgent
relation, travel information fromTravel relation and mis-
sion assignments (Mission). In addition, theAvg(Rating)
attribute inMission would need to be recomputed for each
mission the agent was assigned to. Note that simple rollback
of transactions that computed theAvg(Rating) will not
suffice, but they need to be re-executed to compute the new
correct values (Figure 1(b)). If such a re-computation is not
performed, any adversary that gains access to the database
in the future can infer that deletion took place as well as
potentially significant additional information about the deleted
agent, by looking at properties of the tuples and indexes for
theMission andAgent relations.

At first glance it may appear that such a deletion can sim-
ply be performed by application logic. However, it becomes
quickly apparent that, deletion of all data linked to the agent
gets complicated, e.g., in the case of a transaction that uses
agent information and mission data to generate new travel
assignments for others. Also, implementing such a deletion
in application logic (e.g. by using pre-defined Compensating
Transactions [34, 55]) requires detailed semantic knowledge
of all database transaction operations. Finally, this would
also significantly increase the burden on database application

1To differentiate from a “secure deletion” performed by overwriting.

developers. Ideally, removal of all traces of the deleted agent
from the agency records should be supported transparently by
the underlying database. Ficklebase achieves exactly this.

A. Concepts

To generalize, consider the following notation for a trans-
action Tj in a relational database -Tj(R) → (M), where
R represents the read operations performed byTj while M

indicates the data modifications (update & insert) operations
of Tj (|R| ≥ 0,|M | ≥ 0). Let rti , uti anditi denote the read,
update and insert operation respectively of a tupleti. Also
T S(oi) denotes the commit timestamp of the transaction that
performs operationoi.

Now suppose that the following transactions have been
executed & committed (in sequence):T1()→ (it1), T2(rt1)→
(it2), T3(rt2)→ (ut5 , ut6), T4(rt5 , rt4)→ (ut7 , it10).

Let us first determine tuple side-effects in the above execu-
tion. TransactionT2 read tuplet1 and insertedt2. Hence the
insertion oft2 is a side-effect oft1. Similarly, transactionT3

read tuplet2 and updated tuplest5 and t6. Hence updates to
t5 and t6 are side effects oft2. In additionT4 read tuplet5
updated byT3. Hence modifications made byT4 i.e. update
of t7 and insertion oft10 are also side-effects oft2 and so on.

Overall, the side-effects (SA) are as follows:
SA(t1) = (it2 by T2, ut5ut6 by T3, ut7it10 by T4)
SA(t2) = (ut5ut6 by T3, ut7it10 by T4)
SA(t5) = SA(t4) = (ut7 it10 by T4).

It is to be noted from the above illustration that data side-
effects go beyond simple primary-foreign key relationships.
In fact, any data that is read & then results in modification
of other data constitutes a side-effect and needs to be hidden
after deletion (of the read data item).

Now, consider the case when tuplet2 expires and is to be
deleted. Anun-traceable deleteof t2 should leave the database
in a state such that no trace oft2 is left behind, not even its
effects on other data. This requires the following: (1) rollback
of transactionsT4&T3. (2) deletion oft2 (or rollback ofT2).
(3) re-execution of transactionsT3 & T4. (this is necessary as
illustrated by the average example of Figure 1).

This results in the execution schedule -T1T3T4. Any
database that performs operations equivalent to the above steps
and achieves a schedule where the transaction that insertedt2
never took place would achieveun-traceable deletionof t2
(proofs in Section V)2. We defineside-effectsandun-traceable
deletionin the following.

Definition 1: Side-effectsof a tupleti (SA(ti)) are repre-
sented by the set of all data modifications (update and insert)
operations such that

1) If ∃Tj(Rj) → (Mj) s.t. rti ∈ Rj and T S(Tj) >

T S(iti) then,∀otm ∈Mj , otm ∈ SA(ti).
2) ∀otm ∈ SA(ti), If ∃Tj(Rj)→ (Mj) s.t. rtm ∈ Rj and
T S(Tj) > T S(otm) then,∀otn ∈Mj, otn ∈ SA(ti).

2Secure deletion& history independencewould still be required to truly
eraset2 (section IV-E)

Note that this definition is recursive but not circular. There
are two reasons for this: (a) under a fully serializable modeof
execution there exists a serial schedule (i.e. sequential with no
overlap in time) of database transactions; (b)SA(ti) includes
database operations and not the tuples themselves. Consider
the sequenceT1(rt1) → (ut2), T2(rt2) → (ut1). Although it
may appear circular at first glance, the operationsut1 andut2

are distinct, therebySA(t1) = {ut2} andSA(t2) = {ut1}.
Definition 2: Un-Traceable Delete. Let the current

database state be achieved by the following serialized trans-
action execution sequence -ΓS = ...Tj−2Tj−1TjTj+1Tj+2,
where tupleti was inserted by transactionTj . Then anun-
traceable deleteof ti is a (set of) operation(s) that changes
the current database state into a statecomputationally indistin-
guishable3 from a state resulting from the execution sequence
ΓE=...Tj−2Tj−1T

′
jTj+1Tj+2, whereT ′

j = φ or T ′
j = Tj − iti .

T ′
j = φ when the application logic dictates that non-

insertion ofti means complete rollback of transactionTj. In
this caseΓE = ΓS − Tj. Otherwise,T ′

j = Tj − iti e.g. when
Tj insertsti using an insert-select query.

B. Applications

It is important to note that such anuntraceable delete
operation is very often not desirable – especially in scenarios
involving data with real-life artifacts such as cash. E.g.,
consider a banking application that records money transfer
between clients. If a clientA has transfers recorded with
another clientB, then deletion of clientA (when A closes
its account), does not justify deletion ofA↔ B transfers and
their side-effects – since these “side-effects” are in factthe
cash that now belongs toB!

On the other hand consider a privacy sensitive application
that maintains confidential documents, records document ac-
cesses by its users and generates statistical or cross-document
intelligence information. Once a documentD is to be purged
it is important to properly erase all associated access records
& intelligence information deduced fromD, lest this would
reveal its existence as well as leak information from therein.

A third category of applications where an equivalent ofun-
traceable deleteoperation is desired is not privacy but rather
functionality-centric: economic data such as the Current Pop-
ulation Survey (CPS) [4] are permitted to undergo revisions.
A simple case for revision could be that an individualI is
wrongly classified, which means deletion ofI ’s information
from the data set and its effects on computed statistics (e.g.
average earnings).

C. Discussion

A database providingun-traceable deletionwill in certain
aspects function differently than a traditional database without
it. Here we discuss some of these differences.

3No non-uniform probabilistic polynomial time algorithm exists that can
distinguish between them [52]. Ficklebase in fact offers stronger information
theoretic guarantees but we formulate this definition in terms of computational
adversaries to allow for the deployment of cryptography in the underlying data
structures and mechanisms.

Time-sensitive Queries. If a query running over “past” data
(previously generated) is repeated, then the intuition is that
database responses should be unchanged since the past has
already occurred (e.g. order is shipped, patient is discharged
etc). However,un-traceable deletionof one or more tuples
that comprised the result set of such a query could result in a
different response (for the same query) at a later time!

E.g., consider the query “find the number of
agents that travelled on datedt” on the sample
database from Figure 1 which in SQL is –
SELECT COUNT(DISTINCT AGENT) FROM TRAVEL
WHERE DATE = dt.

If a given agent was made un-traceable on datede, where
de > dt then, the responses of the above query will be different
on two datesd1 and d2 (dt < d1 < de < d2), although the
expected answer for the query on both datesd1 andd2 would
be the same (in a traditional database).
Committed Transactions. Traditionally, once committed,
transactions are treated as permanent and irreversible. How-
ever, with un-traceable deletionthis is no longer the case.
In fact for a database to supportun-traceable deletionit
must employ mechanisms to change the effects of transactions
committed in the past. This is not only required but is also the
most challenging requirement to meet.
External Application Logic. Un-traceable deletion can not
be easily applied transparently for databases that are agnostic
to the application logic semantics, e.g., when most of the
business logic or functionality resides in application programs
which in turn access the database externally via a standard
SQL interface.

The reason for this is straightforward. For untraceability, the
database must be able to re-execute transactions. This means
that database must have access and understand all application
logic. E.g., in Figure 1 if the database did not know that the
Rating statistic was computed as an average it would not be
able to correctly remove the effects of deleted agentChopper.
While often this can be alleviated by moving as much as
possible from the application logic into the data layer, for
fully external logic, things can get complicated.
Delete vs Un-Traceable Delete. Note that the transaction
notations in Section II-A and the definition ofun-traceable
delete(definition 2) do not include traditional delete operations
(di). This is done for simplicity and also to differentiate
between traditional delete operations (delete queries) from an
un-traceable deletion. However, the inclusion of delete query
operations are required and strongly supported.

III. M ODEL

Adversary. We assume an adversary with full access to
today’s database. She can employ any mining or forensic
techniques and wishes to recover information about any tuples
deleted in the past.

Suppose that a tupleti expires and is made un-traceable at
time Et. Let Dct denote the database state at timect. Then
the goal ofun-traceable deletionis to prevent the adversary
from recovering any information (via side-effects) aboutti

V1

E0 E1 E2 En-1 En

….

Time

E3

Current Time (Et)

E0 < Et < E1

Current Time (Et)

E1 < Et < E2

V2 V3 Vn

V1

E1 E2 E3 En En+1

….

Time

E4

V2 V3 Vn

Current Time (Et)

E2 < Et < E3
V1

E2 E3 E4 En+1 En+2

….

Time

E5

V2 V3 Vn

Fig. 2. Version maintenance & expiration with progression of time.
Vj = Versionj .

(including its existence), while having full access to any (or
all) of the database statesDcj , wherecj > Et.

Note that the case where the adversary gains access to any
two database statesDcm andDcn whereti ∈ Dcm andcm <

Et < cn is trivial, since the adversary can detect the deletion
of ti by merely computing the difference between the states
Dcm andDcn .
Data Expiration. Tuples come with associated expiration
times, specified/computed at the time of their database inser-
tion (or generation).

It is at this expiration time that a tuple needs to be deleted
(un-traceably). Moreover, tuples are expired at fixed time
interval granularities e.g., daily, weekly, monthly etc – adaily
policy of tuple expiration means that tuples are deleted at the
end of each day (say at midnight). For simplicity, we assume
expiration times of all tuples coincides with the end of such
a period.

Traditional delete operations (delete queries) can be exe-
cuted at any time by clients. However, a tuple is deleted un-
traceably only at its expiration.

IV. A RCHITECTURE

A. Overview

At an overview level, one of the main insights behind
Ficklebase is to maintain virtual “future” versions of the
database in which the expired tuples are not supposed to exist.
Ongoing transactions are then applied to all these (current
and future) versions. This in effect constructs directly from
the untraceable deletedefinition (Section II) in which if all
transactions are applied to a database instance except for the
insertion of tupletj , then tj has undergone anuntraceable
deletein that instance.

This approach avoids two key problems: (i) keeping track
of all system-wide side-effects, and (ii) retroactive rollbacks
of committed transactions & their re-execution.

….Client

Server

Database

Proxy

Rewriting

by Proxy

Queries for V1

Queries for V2

Queries for Vn

Consolidation

Execution

Order.…

Rewritten Transaction

BEGIN

Q1

Q2

….
Qm

COMMIT

BEGIN

Q1

Q2

….

Qm

COMMIT

Original Client

Transaction

(a)

(b)

BEGIN

COMMIT

Submit

Order

Fig. 3. Overview of (a) Architecture (b) Query Re-writing.Qi =
Queryi, Vj = Versionj .

The maintenance of future versions, transaction application
and expiration are entirely achieved using versioning and
runtime query re-writing.

To exemplify, recall from Section III that tuples expire at
fixed intervals of time (based on policy). We denote the end
time of each such interval asEi. For each time interval range
a separate logical database versionVi is maintained (Figure
2) that contains only tuples with an expiration time≤ Ex(Vi),
whereEx(Vi) is the time whenVi will be fully “expired”. At
any timeEt, E0 ≤ Et < E1, database versionsV1 to Vn exist
with Ex(V1) = E1, Ex(V2) = E2 and so on.

Each client transactionTj is thentransparentlyapplied to all
these versions with the following restrictions: (i) when applied
to versionVi, only tuples with expiration times≤ Ex(Vi) are
visible to queries inTj, and (ii) insertion of a tuplet by Tj in
Vi is ignored if expiration time oft is ≤ Ex(Vi−1). Both (i)
and (ii) are achieved through query re-writing (Section IV-C).

The net effect is that VersionVi is a database version
wherein all tuples with expiration times≤ Ex(Vi−1) were
never inserted. As a result, their side-effects are never propa-
gated to any transactions and data structures inVi (including
underlying indexes etc). In effect all such tuples underwent an
untraceable delete when versionVi−1 expired at timeEx(Vi−1)
(see section V for proof).

The client application is not aware of the existence of
multiple versions (other than the current versionV1) nor the
application of transactions to versions other thanV1.

At any given timeEt only versionsVi whereEx(Vi) >Et

exist (i ≥ 1). A versionVi is expired (utilizing asecure delete
operation) at its expiration timeEx(Vi) (section IV-E).

To illustrate, at any timeEt, E0 < Et < E1 versions
V1, V2, ..., Vn exist, with V1 being the current version visible
to clients (Figure 2). Once the current time approachesE1,
versionV1 is deleted,V2 becomeV1, V3 becomesV2 and so
on. Also,Ex(V1)← E2, Ex(V2)← E3 and so on.

Finally, a new versionVn+1 is created when a tuple with
expiration time>En is inserted by any client transactionTj .
Components. Figure 3 (a) illustrates the main Ficklebase

components. The main query re-writing logic resides in the
Ficklebase proxy. The proxy intercepts all client queries and
communicates with the server on behalf of the clients. The
database server is an off-the-shelf DBMS.
Execution Model. A client transactionTj is a set of serial-
izable SQL statementsTj={begin,Q1,Q2,Q3,...,Qm,commit}
whereQj is a DDL (create/drop), DML (insert/update/delete)
or a select query.

Algorithm 1 EXDT2VER
Input: sver INT, exdt DATE, policy INT
Output: version BIT(βv)

1: ver← 0
2: ever← 0
3: switch(policy)
4: case 1:
5: ever = datediff(exdt, curdate()) + 1
6: case 2:
7: ever = perioddiff(extract(yearmonth from exdt),

extract(yearmonth from curdate())) + 1
8: case 3:
9: ever = (perioddiff(extract(yearmonth from exdt),

extract(yearmonth from curdate())) div
3) + 1

10: case 4:
11: ever = year(exdt) - year(curdate()) + 1
12: end switch
13: if ever≥ sver then
14: ver← 2sver−1

15: end if
16: return ver

B. Versioning

All versions are maintained within a single database in-
stance. To limit storage overheads tuple copies are combined
i.e. if tuple attributes have the same value across multiple
versions then only a single copy of the tuple is maintained
for all such versions.

A specialVERSIONattribute is transparently added to each
relation by query rewriting (section IV-C) and is not visible to
clients. TheVERSIONattribute is a bit field of sizeβv wherein
a bit bi (0<i<βv) is set iff the tuple is valid in versionVi i.e.
expiration time of tuple≤ Ex(Vi)

4.
Client queries only specify the tuple expiration times on

insertion via theEXPIRATION TIMEtuple attribute. Rewriting
of insert queries (figure 5(a)) converts this expiration time
into the correct value of theVERSION attribute5. This is
accomplished using theEXDT2VERfunction (depicted in al-
gorithm 1). Note that this is a sample function that implements
daily, monthly, quarterly & yearly expirations. For additional

4The last bit (bβv
) is used for consolidation and does not represent any

version.
5Expiration times are only specified/computed in insert queries & cannot be

updated at a later time – an almost pervasive requirement of most information
life-cycle regulations.

functionality (e.g. hourly) necessary modifications should be
made.

Also, tuples are copied “on write” only, when an update
modifies an attribute value causing it to differ between ver-
sions. The version attribute is then automatically modifiedby
query rewrites to indicate distinct tuple versions.

As an example, consider the following tupletj with
k attributes – tj = {VERSION=0000..11, ATTR1=value1,
ATTR2=value2, ... , ATTRk=valuek}. TheVERSIONattribute
has bits b1 & b2 set indicating that the same tuple copy
is valid in both, versionsV1 & V2 i.e. expiration time of
tj ≤ Ex(V2). Now, suppose that an update query being applied
to V2 modifies ATTR1 from value1 to value′1. Then a new
copy of tj is created such that
tj = {VERSION=0000..01, ATTR1=value1, , ATTR2=value2,
... , ATTRk=valuek} and
t′j = {VERSION=0000..10, ATTR1=value′1, , ATTR2=value2,
... , ATTRk=valuek}
The version fields of the original and copied tuples are updated
(by query rewrites, Figure 5(b)) to correctly maintain distinct
version copies.

C. Query Rewriting

Ficklebase relies heavily on query re-writing within the
proxy. Each client query is transformed into a set of queries
each of which is then classified as aversion specificor con-
solidationquery. Figure 3 (b) gives an overview of query re-
writing along the order of query submission by the client and
the order of execution after re-writing.BEGIN andCOMMIT
statements are executed as is at the start and end of the re-
written transaction.

Version specificqueries only affect the version that they
are applicable to whileconsolidationqueries ensure compact
storage by combining tuple copies across versions.

Figures 4(a) - 5(b) detail the query re-writing operations.
We briefly discuss them in the following.
DDL (Create/Drop) statements [figure 4(a)]. DDL state-
ments are re-written in order to (1) Transparently add the
VERSIONattribute to the relation being created. TheVER-
SION attribute is also added (as the terminal field) on any
indexes. (2) To create and dropVersion Specificviews which
are later used in rewriting select & DML (insert/update)
queries applicable to each version. AVersion Specificview
on a relationR for a versionVi selects only the tuples from
R that are valid in versionVi. (3) Create additional indexes on
theVERSIONattribute thereby improving overall performance
of the re-written transaction.
Select statements [figure 4(b)]. A select statement is re-
written for each version. When applied to a versionVi it is
ensured that the select only reads tuples valid in that version.
This is achieved by replacing all table references in the select
statement with the correspondingVersion Specificviews. Only
the results of the select statement executed on versionV1

are returned to the client. The remainder of the results are
filtered out by the proxy component. Thus the existence of
other versions is hidden from client applications.

(i)

(ii)

C

l

i

e

n

t

Q

u

e

r

y

Q

u

e

r

y

V1

Q

u

e

r

i

e

s

V1

to

Vn

C

l

i

e

n

t

Q

u

e

r

y

Q

u

e

r

y

V1

Q

u

e

r

i

e

s

V1

to

Vn

(a)

C

l

i

e

n

t

Q

u

e

r

y

Q

u

e

r

i

e

s

V1

to

Vn

(b)

Fig. 4. Query Rewrites for (a) DDL (Create & Drop) statements. (b) Select statement.

The case where a transaction is read-only (i.e. comprises of
only select statements e.g. a reporting application) is handled
differently. In this case all queries within the transaction are
applied only to the current versionV1 (and the results of each
statement returned to the client). This is sufficient since read-
only transactions do not modify any tuples, and hence do not
generate side-effects.
DML (insert/update) statements [figures 5(a),5(b)].Similar
to select, DML statements are also re-written to replace
table references withVersion Specificviews. DML statements
also create new tuples (or modify existing tuples in case
of updates), thereby bringing additional tuple copies into
existence. These extraneous copies are combined together by
consolidation queries which are generated for each relation
in which either a tuple is inserted or modified by the client
transaction. Also, similar to select, only results of statements
executed on current versionV1 are seen by clients.

D. Version Specific Rollbacks

It is often desired by application logic that transactions be
rolled back under certain conditions e.g. tuple not found. Note
that these are not error/failure conditions such as duplicate key
or deadlock (in which case the transaction is implicitly rolled
back by the DBMS) but rather a part of application function-
ality. E.g. consider the following two queries submitted aspart
of a client transaction.

SELECT @d_next_o_id := d_next_o_id, d_tax
FROM DISTRICT WHERE d_id = 1 AND d_w_id = 1

ROLLBACK(ISNULL(@d_next_o_id))

Here, the client application desires that if no tuple is selected
by the first select query then the transaction be rolled back.
The ROLLBACK syntax is specially provided by Ficklebase
for this purpose. Recall from Section II that it is essential
for the database to posses the entire application logic. The
ROLLBACKas shown in this example enables the specification
of such conditions within transaction queries.

Now, it is entirely possible that when being applied to
distinct versions a rollback may occur for certain versions,
but not for others. Query rewriting in Ficklebase handles
this at different levels (1) The clientROLLBACK statement
is also re-written for each version, including creation of
separate copies (for each version) of user-defined variables
(like @d next o id in the example above). (2) A savepoint is
created on the database before execution of queries for each
version.

When a rollback occurs (i.e. the condition in theROLL-
BACK statement evaluates to true) for any version the Fick-
lebase proxy issues a SQLROLLBACK statement to the
database, rolling back the transaction up to the previous
savepoint. This undoes the effects of all queries executed on
that specific version. The effects of queries on other versions
remain intact.

This is not unlike the case of nested transactions [64] with
a distinct sub-transaction for each version. Individual sub-
transactions can be rolled back without affecting the parent
transaction.

E. Expiration

As illustrated in Figure 2 when the current timeEt

approachesEx(V1), versionV1 expires. Expiration involves

Q

u

e

r

i

e

s

V1

to

Vn

C

l

i

e

n

t

Q

u

e

r

y

C

o

n

s

o

l

i

d

a

t

i

o

n

Q

u

e

r

i

e

s

(a)

C

o

n

s

o

l

i

d

a

t

i

o

n

Q

u

e

r

i

e

s

C

l

i

e

n

t

Q

u

e

r

y

Q

u

e

r

i

e

s

V1

to

Vn

(b)

Fig. 5. Query Rewrites for (a) Insert statement. (b) Update statement.

the following (1) Physical delete of all tuples that were
valid only until versionV1 i.e. tuples with expiration time
≤ Et = Ex(V1). (2) Setting the next versionV2 as the current
versionV1 visible to clients i.e.Vi ← Vi+1, i ≥ 1 and thus
Ex(Vi)← Ex(Vi+1).

(1) + (2) are achieved by a scheduled task that executes (at
the expiration intervalEx(V1)) a transaction comprising of the
following queries for each relationRi.

UPDATE Ri SET VERSION = VERSION >> 1

DELETE FROM Ri WHERE VERSION = 0

The next effect of the above queries is the deletion of all
tuples that were valid only in versionV1 and not in any other
versionVi, i > 1.

Secure Deletion. However, the execution of the above
two queries is not sufficient to physically delete all tuples
from the expired version for two reasons (1) Many database
systems do not physically delete (at time of execution of delete
statement) but rather mark tuples for deletion at a later time.
This limitation of many popular database systems has been
analyzed in [69]. (2) Other database components such as the
transaction log, temporary files etc may still reveal deleted
content.

Thus deleted tuples will remain in existence even after ex-
piration. To avoid such leakage of deleted content we suggest
adoption ofsecure deletionmechanisms from [69] wherein (1)
During the execution of delete statement the space where tuple
content resides is overwritten (by zeros). (2) Individual log
records in the transaction log are encrypted to avoid revealing

any deleted tuples. We refer the reader to [69] for details.
History Independence. Data structures such as B-Trees are

commonly used by the underlying database storage engines.
The storage layout of B-Trees (or variations such as B+-Trees)
is often a function of the (sequence of) operations performed
on them due to their deterministic insertion & deletions.
Thus, even afterun-traceable delete& secure deletion(as
above) an adversary gaining access to the database storage
that utilizes these structures can potentially (by analyzing their
layouts) still reveal deleted content. We note that although
such deductions are difficult in practice [53, 69] they are
nonetheless possible and in certain very specific cases trivial
[53] (e.g. an index based on incrementing values). For B+-
Trees in particular the amount of information regarding past
operations decreases as the fan-out increases and fan-outsin
typical usages are usually large. Ideally a fan-out ofN (N is
the total number of tuples) stores all index values sorted in
a single root node and is completelyhistory independent, but
not practical since it affects performance.

Such leakages from storage layouts of data structures can
be prevented using one of the below two approaches (1) By
the adoption ofhistory independentversions of storage data
structures such as B-Treaps [42] or B-SkipLists [43]. (2) By
re-creation of index on expiration.

Although ready-to-use, well evaluated implementations of
history independentB-trees are not yet easily available, it is
nonetheless a promising direction to pursue.

(2) is a rather simple technique to employ and can be
achieved by executing the following queries (or equivalent
operations) for each relationRi

CREATE TABLE Ri_tmp LIKE Ri

INSERT INTO Ri_tmp SELECT * FROM Ri
ORDER BY Ai

DROP TABLE Ri

RENAME TABLE Ri_tmp TO Ri

whereAi is a set of (any) attributes of Ri such that|Ai| ≥ 1.
All indices of the newly created relation would not have any
delete operations performed on them and hence the effects of
delete operations will not be evident in their layouts.

Thus, as suggested earlier a combination ofsecure dele-
tion & history independenceplay a crucial role (along with
Ficklebase) to ensure true erasure of deleted content.

Having adopted the above solutions the final component to
tackle would be the underlying file system (if the database is
not deployed using raw disks). A file system has mechanisms
(also deterministic) to allocated free pages to the DBMS on re-
quest (e.g. when a B+-Tree node is full and requires splitting).
Hence not unlike the storage data structures this also warrants
the use ofhistory independentfile systems. Although research
on history independentdata structures clearly points out their
applicability to file systems providing usable implementations
needs further investigation. An alternative approach (until the
easy availability of such file systems) is to use a separate disk
partition when re-creating the index. The new partition will
have no imprints of prior file system operations.

F. Storage Analysis

Suppose the database comprises ofN tuples and the number
of active versions isn. Then in the worst case every tuple has
a distinct copy in each versionVi, 1 ≤ i ≤ n giving a overall
storage requirement ofN · n. In the best case each tuple has
the same attribute values for all of its versions and onlyN

storage is required.
Now, suppose that each tuple is equally likely to expire at

any Ei, 1 ≤ i ≤ n and it has distinct copies for each of its
versionVj s.t. Ex(Vj) ≤ Ei. Then the storage requirements
areN · (n+1)

2 .
If we further assume a random distribution of client queries

such that each tuple expiring atEi, 1 ≤ i ≤ n is equally
likely to havej copies (1 ≤ j ≤ i), then the average storage
requirement isN · (n+3)

4 .
This gives an overall storage complexity ofO(N · n).

V. UNTRACEABILITY

We now show that query rewriting and versioning indeed
achievesun-traceable deletionas defined (Section II).

Let ΓS denote the set of all transactions submitted by the
client until timeℓ. Let tupletk with expiration timeEt > ℓ be
inserted by a transactionTj whereTj ∈ ΓS . The expiration
of tuple tk will coincide with the expiration of some version
Vj i.e. Ex(tk) = Ex(Vj) = Et (as per the expiration model in
Section III).

Let ΓVi

E
denote the set of transactions successfully executed

(without being rolled back) on versioni until time ℓ.
Then, Ficklebase guarantees that each version does not

see any tuples that already should have been expired by the
expiration time of the previous version. More formally:

Theorem 1:∀Vi, Tj ∈ ΓVi

E
iff. Ex(tk) ≥ Ex(Vi), (“un-

traceable deletionof tk”) 6

Proof: (summarized). This follows naturally by the con-
struction of query rewriting. We enumerate all transactions
that “touch” Vi. First, for any incoming transaction, function
EXDT2VER (Figure 5(a)) determines whethertk is valid in
(and should touch) for each specific versionVi i.e. whether
Ex(tk) ≥ Ex(Vi). If not, tk is inserted with a zero-valued
VERSION attribute such thattk is not visible to any subse-
quent query onVi. In the end, all tuples with zero VERSION
attributes are deleted by the consolidation queries beforethe
transaction commits (Figure 5(a)). Second, if the transaction
rolls back onVi then the rollback mechanism of Section IV-D
ensures its queries have no effect onVi. Third, when the
current time is> Et, all versionsVj where E(Vj) ≤ Et

will expire and be securely deleted (Section IV-E). The only
versions left would have expiration time> Et.

VI. D ISCUSSION

Forensic Analysis. At first glance it may seem thatun-
traceable deletionrules out additional security mechanisms
such as maintenance of audit logs to detect/prevent data
tampering, since any additional recorded data opens up another
avenue through which deleted content can be leaked. However,
this is not the case. The only aspect that must be considered
while recording any such information is making it non-
readable to the adversary (e.g. by using encryption) as in [67].
Future Work. In section II we laid down the requirement
that for un-traceable deletionall application logic should
be in possession of the database. Ficklebase requires all
application logic to be written as database queries. Another
direction via which this can be achieved is by utilizing stored
procedures [15]. Under this scenario re-writing of SQL queries
is insufficient, instead mechanisms are needed for execution
of arbitrary procedural code in the context of versioning.

We note that although Ficklebase’s approach of query re-
writing makes it independent of the underlying DBMS, it lim-
its performance for scenarios where large number of versions
need to be maintained. Hence, for greater performance we are
looking in to (1) moving parts of Ficklebase functionality in to
the DBMS by modifying the storage engine and (2) designing
new data structures, that efficiently allow maintenance &
expiration of versions.

Finally, it is important to continue to integrate Ficklebase
with the work on history independent file systems to ensure
cross-layer, end-to-end assurances.
Limitations. The current implementation does not provide
support for re-writing user defined triggers and custom views.
We plan to implement these features in the future.

6This can also be written asΓVi
E

= ΓS − Tj whenEx(Vi) > Ex(tk).

 0

 100

 200

 300

 400

 500

 600

1 5 10 15 20

P
er

 T
ra

ns
ac

tio
n

E
xe

cu
tio

n
tim

e
(m

s)

Number of versions

Order Status
Stock Level
New Order

Delivery
Payment

Fig. 6. Execution times for TPC-C transactions.

VII. E XPERIMENTS

Benchmark. We evaluate the performance of Ficklebase
using the TPC-C benchmark [19]. The benchmark data is set
up with 16 warehouses giving a total database size (on disk) of
1.5 GB for each run. The database buffer pool size is 200MB.
In the initial versioned database, tuples in relationsoorder,
order line and new orderare given random expiration times.
The tuples in other relations have fixed maximum expiration
times. New tuples inserted during the benchmark transactions
are also given random expiration times.
Setup. The database server runs on an Intel Xeon 3.4 GHz,
4GB RAM Linux box (kernel 2.6.18). The server DBMS is
off-the-shelf MySQL version 14.12 Distrib 5.0.45. The client
system is an Ubuntu VM running on an Intel core i5 at 1.60
GHz with 2 GB RAM. The Ficklebase proxy is implemented
in Lua [11] and runs within the mysql proxy [12] component
version 0.8.2. To simulate the TPC-C clients we use the
BenchmarkSQL tool [1], modified so that all TPC-C logic
is comprised in SQL queries.
Measurements. To measure the TPC-C transaction execution
times we execute ni × 50 runs of each TPC-C transaction
using a single client and record the average execution time (ni
is the target number of versions the test database instance is set
up for). The multiplicative factor (× 50) ensures that targets
of insert/update queries are distributed across all versions of
the test database instance. Figure 6 shows the results for each
of the TPC-C transactions with varying number of versions.

We observe the following overheads for each added version
New Order(≈4.9 %),Delivery (≈7.8 %),Payment(≈6.7 %).

Version maintenance and query-rewriting (section IV) may
initially give the impression that each added version in theory
will result in an overhead of close to 1x i.e. if a transaction
takes timet to complete execution on one version, then on
two versions it would require 2t time, on three versions 3t
and so on. This is because each client transaction is applied
to all logical database versions. In practice however, thisis
not the case and actual overheads are far lower as seen above.

This is due database caching and co-location of tuple

versions. Updates to individual tuples can cause distinct copies
to be present in the database. However, these copies reside
close together and are very often located in the same storage
node (i.e. leaf node of the underlyingB+-tree). Hence queries
applicable to a specific version often locate their target tuples
in the database caches, where they were processed for previous
versions.

In addition, re-writing of create statements further ensures
this by adding theVERSIONattribute only as the terminal
field of primary keys or other indexes (Figure 4(a)). Thus
even if tuples are valid in different versions (and differ in
their VERSIONattribute) they will not be dispersed within
the storage indexes.

Stock leveland order statusare both read-only transac-
tions. Note from section IV-C that read-only transactions are
executed only on version one. Hence increasing number of
versions to not contribute any overheads on these transactions.

VIII. R ELATED WORK

Secure Deletion.Solutions providingSecure Deletionemploy
either (1) Overwritingor (2) Encryption to erase deleted
content from storage media.

Methods to recover erased data from magnetic storage were
originally presented in [45] along with schemes to make this
recovery significantly more difficult. In fact [45] suggeststhat
it may be necessary to overwrite deleted content up to 35 times
to completely ensure non-recovery.

Later [51, 72] claim that at least software-based data recov-
ery can be made impossible by a single overwrite. [51] also
provides extensions to the Ext3 file system that implement
overwriting not just of deleted file content but also of file
meta-data (e.g. name,owner,group,size etc).

[72] investigates the possibility of recovering deleted con-
tent utilizing an electron microscope concluding that although
recovery of an individual bit is possible, the likelihood of
recovering sizeable data using this technique is negligible.

An extension for the Ext2 file system was made available
by [24]. Here an asynchronous overwriting mechanism is
employed which causes less interference with user tasks but
sacrifices security for a short interval (from deletion timeto
overwrite operation).

Many available off-the-shelf tools aid insecure deletion[5].
A survey of these sanitization & forensic analysis tools is
provided in [39].

[33] addresses identification and removal of deleted content
from main memory. The goal here is to reduce the lifetime
of data in main memory (referred to assecure deallocation).
On deallocation the solution overwrites the heap/stack content
with zeros to prevent recovery.

[54] posit that overwriting is insufficient and instead employ
encoding/decoding to protect sensitive data. AES encryp-
tion/decryption is used (within a modified firmware) to protect
deleted content.

[56] designed a NAND flash file system based on YAFFS
to supportSecure Deletion. Encryption is used to delete files,
while a single block is allocated for storage of all keys. The

key store block is erased using overwriting and once this is
done all deleted(encrypted) content becomes un-recoverable.

Encryption is also employed in [74] to dispose of relevant
index entries when a record expires.Secure deletionfor a
versioning file system is provided in [63]. Here, a special stub
is stored with each encrypted data block. On deletion only
the stub is overwritten which renders the associated block un-
recoverable.

For a more detailed survey onsecure deletionwe refer the
reader to [37].
History Independence. Both secure deletionand history
independentdata structures [48] are complimentary to Fickle-
base since all three are essential & need to exist in tandem to
achieve complete erasure of deleted content.

Initial work on History Independencefocussed on hash
tables [25, 26, 61] and is not directly applicable to relational
databases (unless specific hash indices are used).

B-Treaps [42] and B-Skip-Lists [43] are promising alter-
natives for use in database storage engines. Both offer the
same functions as a standard B-Tree and have the same depth
O(logB n), where B is the block transfer size. The only
advantage of B-Skip-Lists over B-Treaps is their simplicity
making them easier to implement.

A comprehensive survey and explanation of thesehistory
independentdata structures is available via [41].
Compensating Transactions. A compensating transaction
on execution undoes the effect of a previously committed
transaction without resorting to cascading aborts. Hence,com-
pensating transactions can potentially be utilized to undo
the side effects of deleted tuples as in Ficklebase. However,
Compensating Transactions are application-dependent [55],
need to be pre-defined and can only be minimally automated.
Ficklebase on the other provides support forun-traceable
deletionat the database level.

Guidelines for designing compensating transactions are dis-
cussed in [55]. [34] uses an example of an online bookshop
transaction to review several notations for compensation in-
cluding their syntax and semantics.

Sagas [28] is a flow composition language which achieves
atomicity based on compensation. In case of a long running
transactions that fails to complete, compensation is employed
to undo its effects. [28] also addresses parallel composition,
nesting and exception handling. In addition, composition lan-
guages such as BPEL4WS [2] enable programmers to specify
compensations for associated transactions.
Multiversion Databases. On the flip side of deletion is the
requirement to record every single change made to data. This
may be required for historical queries or to document system
evolution. Research onmultiversion databasesachieves this by
designing data structures that are efficient for both storing &
retrieving versioned data. Here, no information is ever deleted
but is rather made available for later querying by version or
by time.

Designed data structures range from basic B-Trees [57]
to transactionalB+-Trees [46] with concurrency support.
In addition [49, 50] address branched evolution while [58]

enables creation of views on multi-versioned data.
A summary of various multi-versioned data structures is

available in [47]. Commercial [13] and open source imple-
mentations [16, 18] are also available.
Statistical Databases.Statistical databases[27] are used for
maintaining statistics over data in an OLAP (online analytical
processing) model. The main security concern here is to
prevent an adversary from deducing very specific information
by issuing statistical queries. Typical approaches to prevent
such leakage include (but are not limited to) – only supporting
aggregate queries, refusal to answer queries with small result
sets, returning ranges instead of specific values etc [31, 36]. At
first glance it may seem thatstatistical databasesachieveun-
traceable deletionat least for aggregates. E.g. if a data item
is deleted then all aggregates will be updated to remove its
effects. However, such databases are designed for the OLAP
model and are not intended for data modification operations
such as deletion.
Forensic Analysis. Forensic analysis[44], related research
[53, 60, 71] and available tools [6, 14] serve to enable detec-
tion/prevention of tampering of system data. Several forensic
algorithms are discussed in [62]. In some casesforensic
analysiscan be complimentary to Ficklebase, e.g. [67] makes
audit logs unreadable by the adversary thereby closing another
avenue of a possible leakage of deleted data items.
Data Degradation. Data Degradation [22] is a work-in-
progress to address removal of sensitive data. Here the goalis
to gradually degrade sensitive information over time eventually
making it un-recoverable. Although comprehensive techniques
are yet to be designed [21] gives a simple introductory
solution. Here, a data item is degraded in steps from specific
to more general values. E.g. an address field may initially
contain the entire detailed address. In the next iteration the
street part is removed, a following iteration removes the state
& zip leaving only the country code and so on.
Information Flow Control. Although not dealing with
removal of side-effectsinformation flow controland related
implementations [35, 66, 73] enable tracking of sensitive data
across system components. This can be used along with
Ficklebase to detect and later delete copies of data items that
have crossed system boundaries (e.g. moved to another node
on a distributed system).
Other. [23] enables application developers to specify destruc-
tive policies on business records. These policies are stored
and later executed as stored procedures. The execution is
triggered by additional policies that define a critical view
which comprise of sensitive data. The destructive policieshere
need to be predefined not unlike compensating transactions.

IX. CONCLUSION

In this paper we introducedun-traceable deletionwhich
along withsecure deletionandhistory independenceis integral
in ensuring complete erasure of deleted content.

We provide insights into the new functional aspects of this
new assurance in the context of databases and present the de-
sign and evaluation of Ficklebase, a relational database which

achieves un-traceable deletionvia versioning and query-
rewriting.

REFERENCES

[1] BenchmarkSQL. Online at http://sourceforge.net/projects/
benchmarksql/.

[2] Business Process Execution Language for Web Services. Online at http:
//www.ibm.com/developerworks/library/specification/ws-bpel/.

[3] Computer Forensics. Online at http://en.wikipedia.org/wiki/Computer
forensics.

[4] Current Population Survey (CPA). Online at http://www.bls.gov/cps/.
[5] Deleted but not gone. Online at http://www.nytimes.com/2005/11/03/

technology/circuits/03basics.html?pagewanted=print.
[6] EnCase. Online at http://www.guidancesoftware.com/forensic.htm.
[7] EU’s Data Protection Directive. Online at http://ec.europa.eu/justice/

data-protection/indexen.htm.
[8] Family Educational Rights and Privacy Act (FERPA). Online at http:

//www2.ed.gov/policy/gen/guid/fpco/ferpa/index.html.
[9] Federal Information Security Management Act (FISMA). Online at http:

//csrc.nist.gov/groups/SMA/fisma/index.html.
[10] Gramm–Leach–Bliley Act (GLB). Online at http://en.wikipedia.org/

wiki/Gramm-Leach-Bliley Act.
[11] Lua programming language. Online at http://www.lua.org/.
[12] MySQL Proxy. Online at http://forge.mysql.com/wiki/MySQL Proxy.
[13] Oracle Total Recall. Online at http://www.oracle.com/us/products/

database/options/total-recall/overview/index.html.
[14] Sleuth Kit. Online at http://www.sleuthkit.org/.
[15] Stored Procedure. Online at http://en.wikipedia.org/wiki/Stored

procedure.
[16] Tau BerkelyDB. Online at http://www.cs.arizona.edu/projects/tau/tbdb/.
[17] The Health Insurance Portability and Accountability Act of 1996

(HIPAA). Online at http://www.hhs.gov/ocr/privacy/.
[18] TimeDB. Online at http://www.timeconsult.com/.
[19] TPC-C Benchmark. Online at http://www.tpc.org/tpcc/default.asp.
[20] UK Data Protection Act 1998 (DPA). Online at http://en.wikipedia.org/

wiki/Data Protection Act 1998#Dataprotection principles.
[21] Nicolas Anciaux, Luc Bouganim, Harold van Heerde, Philippe Pucheral,

and Peter M. G. Apers. Instantdb: Enforcing timely degradation of
sensitive data. InProceedings of the 2008 IEEE 24th International Con-
ference on Data Engineering, ICDE ’08, pages 1373–1375, Washington,
DC, USA, 2008. IEEE Computer Society.

[22] Nicolas Anciaux, Luc Bouganim, Harold van Heerde, Philippe Pucheral,
and Peter M.G. Apers. Data degradation: making private dataless
sensitive over time. InProceedings of the 17th ACM conference on
Information and knowledge management, CIKM ’08, pages 1401–1402,
New York, NY, USA, 2008. ACM.

[23] Ahmed A. Ataullah, Ashraf Aboulnaga, and Frank Wm. Tompa. Records
retention in relational database systems. InProceedings of the 17th
ACM conference on Information and knowledge management, CIKM
’08, pages 873–882, New York, NY, USA, 2008. ACM.

[24] Steven Bauer and Nissanka B. Priyantha. Secure data deletion for linux
file systems. InProceedings of the 10th conference on USENIX Security
Symposium - Volume 10, SSYM’01, pages 12–12, Berkeley, CA, USA,
2001. USENIX Association.

[25] Guy E. Blelloch. Strongly history-independent hashing with appli-
cations. In In Proceedings of the 48th Annual IEEE Symposium on
Foundations of Computer Science, pages 272–282, 2007.

[26] Guy E. Blelloch and Daniel Golovin. Strongly history-independent
hashing with applications. InProceedings of the 48th Annual IEEE
Symposium on Foundations of Computer Science, FOCS ’07, pages 272–
282, Washington, DC, USA, 2007. IEEE Computer Society.

[27] Claus Boyens, Oliver Gnther, and Hans j. Lenz. Statistical databases.
[28] Roberto Bruni, Hernán Melgratti, and Ugo Montanari. Theoretical

foundations for compensations in flow composition languages. SIGPLAN
Not., 40(1):209–220, January 2005.

[29] Simon Byers. Scalable exploitation of, and responses to information
leakage through hidden data in published documents.ATT Research,
2003.

[30] Brian Carrier. File System Forensic Analysis. Addison-Wesley Profes-
sional, 2005.

[31] Francis Y. Chin. Security in statistical databases forqueries with small
counts.ACM Trans. Database Syst., 3(1):92–104, March 1978.

[32] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel
Rosenblum. Understanding data lifetime via whole system simulation.
In Proceedings of the 13th conference on USENIX Security Symposium -
Volume 13, SSYM’04, pages 22–22, Berkeley, CA, USA, 2004. USENIX
Association.

[33] Jim Chow, Ben Pfaff, Tal Garfinkel, and Mendel Rosenblum. Shredding
your garbage: reducing data lifetime through secure deallocation. In
Proceedings of the 14th conference on USENIX Security Symposium -
Volume 14, SSYM’05, pages 22–22, Berkeley, CA, USA, 2005. USENIX
Association.

[34] Christian Colombo and Gordon J. Pace. A compensating transaction
example in twelve notations. Technical Report CS2011-01, Department
of Computer Science, University of Malta, 2011. Available from
http://www.um.edu.mt/ict/cs/research/technicalreports.

[35] Michael Dalton, Hari Kannan, and Christos Kozyrakis. Raksha: a
flexible information flow architecture for software security. SIGARCH
Comput. Archit. News, 35(2):482–493, June 2007.

[36] Dorothy E. Denning and Jan Schlörer. A fast procedure for finding a
tracker in a statistical database.ACM Trans. Database Syst., 5(1):88–
102, March 1980.

[37] Sarah M. Diesburg and An-I Andy Wang. A survey of confidential
data storage and deletion methods.ACM Comput. Surv., 43(1):2:1–2:37,
December 2010.

[38] Kevvie Fowler. SQL Server Forensic Analysis. Addison-Wesley
Professional, 2008.

[39] Simson L. Garfinkel and Abhi Shelat. Remembrance of datapassed: A
study of disk sanitization practices.IEEE Security and Privacy, 1(1):17–
27, January 2003.

[40] Tal Garfinkel, Ben Pfaff, Jim Chow, and Mendel Rosenblum. Data
lifetime is a systems problem. InProceedings of the 11th workshop on
ACM SIGOPS European workshop, EW 11, New York, NY, USA, 2004.
ACM.

[41] Daniel Golovin.Uniquely represented data structures with applications
to privacy. PhD thesis, Pittsburgh, PA, USA, 2008. AAI3340637.

[42] Daniel Golovin. B-treaps: A uniquely represented alternative to b-
trees. InProceedings of the 36th International Colloquium on Automata,
Languages and Programming: Part I, ICALP ’09, pages 487–499,
Berlin, Heidelberg, 2009. Springer-Verlag.

[43] Daniel Golovin. The B-skip-list: A simpler uniquely represented
alternative to B-trees.CoRR, abs/1005.0662, 2010.

[44] Mario A. M. Guimaraes, Richard Austin, and Huwida Said.Database
forensics. In 2010 Information Security Curriculum Development
Conference, InfoSecCD ’10, pages 62–65, New York, NY, USA, 2010.
ACM.

[45] Peter Gutmann. Secure deletion of data from magnetic and solid-state
memory. In Proceedings of the 6th conference on USENIX Security
Symposium, Focusing on Applications of Cryptography - Volume 6,
SSYM’96, pages 8–8, Berkeley, CA, USA, 1996. USENIX Association.

[46] Tuukka Haapasalo, Ibrahim Jaluta, Bernhard Seeger, Seppo Sippu, and
Eljas Soisalon-Soininen. Transactions on the multiversion b+-tree.
In Proceedings of the 12th International Conference on Extending
Database Technology: Advances in Database Technology, EDBT ’09,
pages 1064–1075, New York, NY, USA, 2009. ACM.

[47] Tuukka K. Haapasalo, Ibrahim M. Jaluta, Seppo S. Sippu,and Eljas O.
Soisalon-Soininen. Concurrency control and recovery for multiversion
database structures. InProceedings of the 2nd PhD workshop on
Information and knowledge management, PIKM ’08, pages 73–80, New
York, NY, USA, 2008. ACM.

[48] Jason D. Hartline, Edwin S. Hong, Alexander E. Mohr, William R.
Pentney, and Emily Rocke. Characterizing history independent data
structures. InProceedings of the 13th International Symposium on
Algorithms and Computation, ISAAC ’02, pages 229–240, London, UK,
UK, 2002. Springer-Verlag.

[49] Linan Jiang, Betty Salzberg, David B. Lomet, and ManuelBarrena
Garcı́a. The bt-tree: A branched and temporal access method. In
Proceedings of the 26th International Conference on Very Large Data
Bases, VLDB ’00, pages 451–460, San Francisco, CA, USA, 2000.
Morgan Kaufmann Publishers Inc.

[50] Khaled Jouini and Geneviève Jomier. Indexing multiversion databases.
In Proceedings of the sixteenth ACM conference on Conference on
information and knowledge management, CIKM ’07, pages 915–918,
New York, NY, USA, 2007. ACM.

[51] Nikolai Joukov, Harry Papaxenopoulos, and Erez Zadok.Secure deletion
myths, issues, and solutions. InProceedings of the second ACM
workshop on Storage security and survivability, StorageSS ’06, pages
61–66, New York, NY, USA, 2006. ACM.

[52] J. Katz and Y. Lindell.Introduction to modern cryptography. Chapman
& Hall/CRC cryptography and network security. Chapman & Hall/CRC,
2008.

[53] Peter Kieseberg, Sebastian Schrittwieser, Martin Mulazzani, Markus
Huber, and Edgar Weippl. Trees cannot lie: Using data structures for
forensics purposes. InProceedings of the 2011 European Intelligence
and Security Informatics Conference, EISIC ’11, pages 282–285, Wash-
ington, DC, USA, 2011. IEEE Computer Society.

[54] Marek Klonowski, MichałPrzykucki, and Tomasz Strumi´nski. Informa-
tion security applications. chapter Data Deletion with Provable Security,
pages 240–255. Springer-Verlag, Berlin, Heidelberg, 2009.

[55] Henry F. Korth, Eliezer Levy, and Avi Silberschatz. A formal approach
to recovery by compensating transactions. Technical report, Austin, TX,
USA, 1990.

[56] Jaeheung Lee, Junyoung Heo, Yookun Cho, Jiman Hong, andSung Y.
Shin. Secure deletion for nand flash file system. InProceedings of the
2008 ACM symposium on Applied computing, SAC ’08, pages 1710–
1714, New York, NY, USA, 2008. ACM.

[57] David Lomet and Betty Salzberg. Access methods for multiversion data.
In Proceedings of the 1989 ACM SIGMOD international conference on
Management of data, SIGMOD ’89, pages 315–324, New York, NY,
USA, 1989. ACM.

[58] Claudia Bauzer Medeiros, Marie-Jo Bellosta, and Geneviève Jomier.
Multiversion views: constructing views in a multiversion database.Data
Knowl. Eng., 33(3):277–306, June 2000.

[59] Daniele Micciancio. Oblivious data structures: applications to cryptog-
raphy. InProceedings of the twenty-ninth annual ACM symposium on
Theory of computing, STOC ’97, pages 456–464, New York, NY, USA,
1997. ACM.

[60] Soumyadeb Mitra, Marianne Winslett, Richard T. Snodgrass, Shashank
Yaduvanshi, and Sumedh Ambokar. An architecture for regulatory
compliant database management. InProceedings of the 2009 IEEE
International Conference on Data Engineering, ICDE ’09, pages 162–
173, Washington, DC, USA, 2009. IEEE Computer Society.

[61] Moni Naor, Gil Segev, and Udi Wieder. History-independent cuckoo
hashing. In Proceedings of the 35th international colloquium on
Automata, Languages and Programming, Part II, ICALP ’08, pages
631–642, Berlin, Heidelberg, 2008. Springer-Verlag.

[62] Kyriacos E. Pavlou and Richard T. Snodgrass. Forensic analysis of

database tampering.ACM Trans. Database Syst., 33(4):30:1–30:47,
December 2008.

[63] Zachary N. J. Peterson, Randal Burns, Joe Herring, AdamStubblefield,
and Aviel D. Rubin. Secure deletion for a versioning file system. In
Proceedings of the 4th conference on USENIX Conference on File and
Storage Technologies - Volume 4, FAST’05, pages 11–11, Berkeley, CA,
USA, 2005. USENIX Association.

[64] R. F. Resende and A. El Abbadi. On the serializability theorem for
nested transactions.Inf. Process. Lett., 50(4):177–183, May 1994.

[65] James M. Rosenbaum. In defence of the delete key.The Green Bag,
3(4), 2000.

[66] Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKinley,
and Emmett Witchel. Laminar: practical fine-grained decentralized
information flow control.SIGPLAN Not., 44(6):63–74, June 2009.

[67] Bruce Schneier and John Kelsey. Secure audit logs to support computer
forensics.ACM Trans. Inf. Syst. Secur., 2(2):159–176, May 1999.

[68] Jitesh Shetty and Jafar Adibi. The enron email dataset database schema
and brief statistical report, 2004.

[69] Patrick Stahlberg, Gerome Miklau, and Brian Neil Levine. Threats to
privacy in the forensic analysis of database systems. InProceedings of
the 2007 ACM SIGMOD international conference on Managementof
data, SIGMOD ’07, pages 91–102, New York, NY, USA, 2007. ACM.

[70] Latanya Sweeney. Protecting job seekers from identitytheft. IEEE
Internet Computing, 10(2):74–78, March 2006.

[71] Maolin Tang and Colin Fidge. Reconstruction of falsified computer
logs for digital forensics investigations. InProceedings of the Eighth
Australasian Conference on Information Security - Volume 105, AISC
’10, pages 12–21, Darlinghurst, Australia, Australia, 2010. Australian
Computer Society, Inc.

[72] Craig Wright, Dave Kleiman, and Shyaam Sundhar R.S. Overwriting
hard drive data: The great wiping controversy. InProceedings of the 4th
International Conference on Information Systems Security, ICISS ’08,
pages 243–257, Berlin, Heidelberg, 2008. Springer-Verlag.

[73] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David
Mazières. Making information flow explicit in histar.Commun. ACM,
54(11):93–101, November 2011.

[74] Qingbo Zhu and Windsor W. Hsu. Fossilized index: the linchpin of
trustworthy non-alterable electronic records. InProceedings of the
2005 ACM SIGMOD international conference on Management of data,
SIGMOD ’05, pages 395–406, New York, NY, USA, 2005. ACM.

