Ficklebase: Looking into the Future to
Erase the Past

Sumeet Bajaj!, Radu Sior#?

# Computer Science, Stony Brook University
Stony Brook, NY, USA
!sbaj aj @s. st onybr ook. edu
2si on@s. st onybr ook. edu

Abstract—It has become apparent that in the digital world data requirement of “secure deletion”. This is important sinee n
once stored is never truly deleted even when such an expuneti  merous system sub-components such as memory [33], storage
is desired either as a normal system function or for regulatty  megjyms [39] and file systems [30] have shown to preserve
compliance purposes. Forensic Analysis techniques on sgats deleted data. Apolicati h as datab hold on tedel
are often successful at recovering information said to havéeen ele e, ala. pr_) ICations such as databases hold on ele
deleted in the past. data in transaction logs, error logs, temporary tables, de-

Efforts aimed at thwarting such forensic analysis of system allocated data pages, index entries and audit logs [38, 69].
have either focused on (i) identifying the system componest  These data remnants can later be recovered by employing
where deleted data lingers and performing a secure delete ep forensic analysis [3] techniques. In good hands [6, 14,53
ation over these remnants,or (ii) designing history independent . L, L Ee
data structures that hide information about past operations which 62,67, 71] these techmques are very helpful In Incrimmgti
result in the current system state. wrong-doings by malicious users, however in the wrong hands

Yet, new data is constantly derived by processing existing they pose a grave threat to data & user privacy.

(input) data which makes it increasingly difficult to remove Mechanisms have therefore been designed to identify sys-
all traces of this existing data, i.e., for regulatory complance om harts where deleted data artifacts linger and subséguen
purposes. Even after deletion, significant information carlinger :

in and be recoverable from the side effects the deleted data '€MOVE them. Solutions hav_e been proposed for general stor-
records left on the currently available state. age media [39,45,54,72], file systems [24,56] and database

In this paper we address this aspect in the context of a applications [69]. Also, off-the-shelf tools can now be dise
relational database, such that when combined with (i) & (i) perform such a secure data erase [5].
complete erasure of data and its effects can be achieved (“un “History independent” data structures [48] (also referred

traceable deletion”). o N
We introduce Ficklebase — a relational database wherein omc @S “Uniquely represented” data structures) have the piypper

a tuple has been “expired” — any and all its side-effects are that their storage layout is a function of only the current
removed, thereby eliminating all its traces, rendering it \n- state and not of the history of past operations that led to
recoverable, and also guaranteeing that the deletion itskis unde- it Such data structures reveal no additional information t
tectable. We present the design and evaluation of Ficklebesand an adversary outside of what can be inferred anyway via
then discuss several of the fundamental functional implicéons - . .
of un-traceable deletion. !egmmate mterfac_:_es_. If a dglete o_perann is part of aeays
interface, then utilizing a “history independent” datausture
|. INTRODUCTION ensures that — an adversary subsequently gaining access to t

The “delete” operation in modern computer systems caystem storage is unable to infer whether the delete operati
at many times be amlusion [65]. Although once deleted, was performed at all. This is critical sindeaditional data
data may no longer be accessible via legitimate systentintetructures (e.g., B-Tree indexes) preserve (in their aurstate
faces, numerous instances [29, 68, 70] have demonstrated thyout) information about past operationtHistory indepen-
presumably erased data can be recovered with simple minitent” variants have been developed for Hash Tables [61], 2-3
techniques. Trees [59], B-Trees [42] and Skip-Lists [43].

Preserving un-wanted data not only jeopardizes user grivac A third, largely ignored aspect in preventing erased data
& confidentially but can also violate retention policies seftom being recovered concerns its relationship to the crre
forth by legislations such as HIPAA [17], FERPA [8], FISMAstate (data present in the system now). The main observation
[9], EU Data Protection Directive [7] and the Gramm-Leachkere is that side-effects of deleted data persist within the
Bliley Act [10]. E.g., the fifth directive of the Data Protém current state — this can be then exploited to derive infoionat
Act [20] mandates that information shall not be retained fabout the deleted data items in direct violation of regafati

any longer than its intended purpose. and the intent behind deleting the data in the first place.
Prior work has addressed this issue on two fronts: “secureFor true regulatory compliance, “secure deletion” and-‘his
deletion” and “history independent” data structures. tory independent” data structures are not sufficient by them

The observation that data artifacts can linger in systersslves but rather need to be augmented with mechanisms for
for a significant period after deletion [32,40] gave risehie t full erasure of post-deletion data side-effects. We teris th



Agent MIg32 Assignments developers. Ideally, removal of all traces of the deletegnag

e R DR | TEnEEE IR from the agency records should be supported transparently b
CEPSZfIZSH\;‘i:te ;T::r Hoznugri'z:ng IntAelclicge:rsuce SZ Transaction T1: New Assignment the underlying database' FiCklebase aChieVeS eXaCtly th|S
Sarah Walker Tzar Dhaka Security 8.1 mm m

;ohncslteed (;hoppejr Woarsal:/v | Stlila.tegy ;2 Spider 8.7 83

am Clover | Agent sk itelligence | 7.6 T | croeeer 79 A. Concepts
Mission Assignment Transaction T2 : New Assignment . . . . _
M en [ rating Wave ating) To gengrallze, co_nS|der the following notation for a trans
Mig32 | Narcotics | 84 ST782_ | Hawk Spider 87 8.067 action 7 in a relational database F;(R) — (M), where
ST782 | Weapons 8.9 MI832 Spider M Chopper 7.9 . - X

€397 | Collections | 76 1297 | Tar Agent) 7.6 R represents the read operations performedhywhile A

CR641 Cri 9.0 MI832 | Chopper . . B ope . . .

..... o |"Misss [ ageni | E | TrensactionT3: pelete chopper  indlicates the data modifications (update & insert) openatio
— Ep%ﬁ@! of T; (|R| > 0,|M| > 0). Letry,, u;;, andi,, denote the read,
Ce [ G T ieaeler [Tke | Bn agent) 76 /SOlPaK T update and insert operation respectively of a tupleAlso

Ha»wk Bgrlln Vienna ST782 | 03/12/11 Rollback T opper L. .

Spider | Chicago | Sydney | WIB32 | 06/15/11 Re-Brecute T, TS(0;) denotes the commit timestamp of the transaction that

Hawk Vienna Hong Kong ST782 | 01/23/12 m : : .

Spider | Sydney Zurich MI832 [ 08/07/12 T 815 perfOI’mS Operathl@i.

"""""""""" X (b) ¥ Now suppose that the following transactions have been

(a) executed & committed (in sequenc&):() — (i, ), Ta(rs,) —
Fig. 1. (.a) Intelligencg Agency Database Snippet (b) Rollback VE:,), Ts(re,) — (utsuutg)v Ty(reg,me,) — (Utpitm)-
Transaction Re-Execution Let us first determine tuple side-effects in the above execu-
tion. Transactiorl; read tuplet; and inserted,. Hence the

“un-traceablé deletion” (Section II). . . . . - ;
In the following we introduce Ficklebase a relationallnsertlon Ofty is a side-effect of,. Similarly, transaction’

. . read tuplets and updated tuples, andts. Hence updates to
database with fully un-traceable deletion guarantees. 1> andt, are side effects of,. In additionT; read tuplets
II. MOTIVATION AND CONCEPTS updated byT;. Hence modifications made b3, i.e. update

The numerous reaulatory comoliant data expiration maﬁf t7> and insertion ofo are also side-effects @ and so on.
u u gu y Pl xpirati Overall, the side-effectsS(A) are as follows:

dates derive from real-life privacy concerns in today’'saas- . )
privacy y SA(t1) = (iy, by T, ug,uz, by Ts, us.iv,, by T4)

ingly digital societies. _ .
. . P, S.A(tg) = (utsutG by T3, Uty Uty by T4)
To illustrate how deleted/expired data can leave S|dect5‘feSA(t5) = SA(ts) = (up, ir,, by T)).

behind, consider a .snippet from a h_ypothetical intelligenc It is to be noted from the above illustration that data side-
agency database (Figure 1(a)). As a simple example - suppo&gcts go beyond simple primary-foreign key relationship
that once agent Sarah leaves the agency all evidence of T‘rﬁ ot anv d . 4 e

. . . . , any data that is read & then results in modification
existence in the database needs to be eradicated. This WOL*Ida . . .

. - . of other data constitutes a side-effect and needs to be midde
mean deletion of agent information tuples from tHAgent : .
. ) . , . after deletion (of the read data item).

relation, travel information froni'ravel relation and mis-

sion assignmentsMission). In addition, the Avg(Rating) Now, consider the case when tupipexpires and is to be
attribute in Mission would need to be recomputed for eaCt(;Ieleted. Arun-traceable deletef ¢, should leave the database

mission the agent was assigned to. Note that simple rollbdg#a state such that no trace &f is left behind, not even its

of transactions that computed théuvg(Rating) will not effects on other data. This requires the following: (1) vattk

suffice, but they need to be re-executed to compute the n ransactionsl; &T5. (2) deletion oft, (or rollback ofT).
correct values (Figure 1(b)). If such a re-computation is n ) re-execution of transactiors & 7. (t.h's IS hecessary as
performed, any adversary that gains access to the datat ggtr.ated by th? average example of Figure 1).

in the future can infer that deletion took place as well as | NiS results in the execution scheduleTy757y. Any
potentially significant additional information about theleted dat@base that performs operations equivalent to the abepe s

agent, by looking at properties of the tuples and indexes fgpd achieves a schedule Wh_ere the transaction that ingerted
the Mission and Agent relations, never took place would achiewan-traceable deletiorof ¢

At first glance it may appear that such a deletion can Sir{proofs in Section \A. We defineside-effectandun-traceable

ply be performed by application logic. However, it become"ieIetionin the following.

quickly apparent that, deletion of all data linked to thertge Definition 1. Side-effectsf a tuplet; (S.A(4;)) are repre-
gets complicated, e.g., in the case of a transaction that u§gnted_ by the set of all data modifications (update and nsert
agent information and mission data to generate new trafdierations such that

assignments for others. Also, implementing such a deletionl) If 37;(R;) — (M;) s.t.r, € R; and TS(T;) >

in application logic (e.g. by using pre-defined Compensatin TS(i,) then,Vo,,, € M;, 0., € SA(t;).

Transactions [34,55]) requires detailed semantic knogged 2) Vo, € SA(t;), If 3T;(R;) — (M,) st.r,,, € R; and

of all database transaction operations. Finally, this woul TS(T;) > TS(ow,,) then,Yo,, € Mj, o0, € SA(L;).

also significantly increase the burden on database applicat

2Secure deletior& history independencevould still be required to truly
1To differentiate from a “secure deletion” performed by aveting. erasety (section IV-E)



Note that this definition is recursive but not circular. TdherTime-sensitive Queries. If a query running over “past” data
are two reasons for this: (a) under a fully serializable moide (previously generated) is repeated, then the intuitiorhéat t
execution there exists a serial schedule (i.e. sequenitialne database responses should be unchanged since the past has
overlap in time) of database transactions; §04(¢;) includes already occurred (e.g. order is shipped, patient is diggtar
database operations and not the tuples themselves. Conside). However,un-traceable deletiorof one or more tuples
the sequenc&i(ry,) — (u,), Ta(r:,) — (ug, ). Although it that comprised the result set of such a query could result in a
may appear circular at first glance, the operationsandu,, different response (for the same query) at a later time!
are distinct, thereby A(t1) = {u, } andSA(t2) = {uy, }- E.g., consider the query “find the number of

Definition 2: Un-Traceable Delete. Let the current agents that travelled on datel;,” on the sample
database state be achieved by the following serializedstradatabase from Figure 1 which in SQL is -
action execution sequencel®* = ..T;_oT; 1T;T;41T;4+2, SELECT COUNT(DI STI NCT AGENT) FROM TRAVEL
where tuplet; was inserted by transactidfi. Then anun- WHERE DATE = d;.
traceable deletef ¢; is a (set of) operation(s) that changes If a given agent was made un-traceable on datewhere
the current database state into a statmputationally indistin- d. > d; then, the responses of the above query will be different
guishablé from a state resulting from the execution sequenam two datesd; andd, (d; < di < d. < ds), although the
D= T; oT; 1 TjTj1Tj 2, WhereT] = ¢ or T] = T; —i,,. expected answer for the query on both datesindd, would

T; = ¢ when the application logic dictates that nonbe the same (in a traditional database).
insertion oft; means complete rollback of transacti®h In  Committed Transactions. Traditionally, once committed,
this casel® = I'® — T}. Otherwise,T] = T; —i;, .. when transactions are treated as permanent and irreversible: Ho

T; insertst; using an insert-select query. ever, with un-traceable deletiorthis is no longer the case.
o In fact for a database to suppoun-traceable deletiont
B. Applications must employ mechanisms to change the effects of transaction

It is important to note that such anntraceable delete committed in the past. This is not only required but is also th
operation is very often not desirable — especially in sdesar most challenging requirement to meet.
involving data with real-life artifacts such as cash. E.gExternal Application Logic. Un-traceable deletion can not
consider a banking application that records money transkg easily applied transparently for databases that arestigno
between clients. If a clientd has transfers recorded withto the application logic semantics, e.g., when most of the
another clientB, then deletion of clientd (when A closes business logic or functionality resides in applicationgrams
its account), does not justify deletion df <> B transfers and Which in turn access the database externally via a standard
their side-effects — since these “side-effects” are in thet SQL interface.
cash that now belongs tB! The reason for this is straightforward. For untraceabiltig

On the other hand consider a privacy sensitive appncatiglﬁtabase must be able to re-execute transactions. Thissmean
that maintains confidential documents, records document #tat database must have access and understand all ajplicati
cesses by its users and generates statistical or crossagatu l0gic. E.g., in Figure 1 if the database did not know that the
intelligence information. Once a documehtis to be purged [Rating statistic was computed as an average it would not be
it is important to properly erase all associated accessrdscoable to correctly remove the effects of deleted agemtpper .
& intelligence information deduced from, lest this would While often this can be alleviated by moving as much as
reveal its existence as well as leak information from threrei Possible from the application logic into the data layer, for

A third category of applications where an equivalentiof  fully external logic, things can get complicated.
traceable delet@peration is desired is not privacy but rathePelete vs Un-Traceable Delete. Note that the transaction
functionality-centric: economic data such as the Currem-P notations in Section |I-A and the definition afn-traceable
ulation Survey (CPS) [4] are permitted to undergo revisiondelete(definition 2) do not include traditional delete operations
A simple case for revision could be that an individuals (di). This is done for simplicity and also to differentiate
wrongly classified, which means deletion 8§ information between traditional delete operations (delete queriesh fan

from the data set and its effects on computed statistics (eUg-traceable deletionHowever, the inclusion of delete query
average earnings). operations are required and strongly supported.

C. Discussion Il. MoDEL

Adversary. We assume an adversary with full access to
today’s database. She can employ any mining or forensic
techniques and wishes to recover information about angsupl

deleted in the past.

3No non-uniform probabilistic polynomial time algorithmists that can ~ Suppose that a tuple expires and is made un-traceable at

distinguish between them [52]. Ficklebase in fact offersrgjer information tjme E,. Let D, denote the database state at timeThen
theoretic guarantees but we formulate this definition imteof computational ot

adversaries to allow for the deployment of cryptographyhmunderlying data the goal Ofur?'traceab_le deletlprrs tO. pre_vent the adversary
structures and mechanisms. from recovering any information (via side-effects) abaut

A database providingin-traceable deletionwill in certain
aspects function differently than a traditional databagbout
it. Here we discuss some of these differences.



—— i — i i | current Time ()
Vol Vo) (Va] - Vo] s, - ——
; P Time,
EBo | E1 | B2 | B3 |Epg| Ey
>< : i it Current Time (E;) / BEGIN \
i V E E;<E<E,
1 2 2 Queries for V,;
Tlme: Rewriting Queries for V, gxzcution
by P cees rder
X Queries for V,

Current Time (Ey) Consolidation

E,<E,<E
22700 = ' COMMIT
Time Original Client \ /
> Transaction (b) Rewritten Transaction

E

n+2

Fig. 3. Overview of (a) Architecture (b) Query Re-writing); =
Fig. 2. Version maintenance & expiration with progression of timeQuery;, V; = Versiory.

V; = Versiory. . . . L
! y The maintenance of future versions, transaction apptinati

(and expiration are entirely achieved using versioning and
runtime query re-writing.
ny) exemplify, recall from Section Il that tuples expire at
f?x d intervals of time (based on policy). We denote the end
H‘ne of each such interval &s;. For each time interval range
separate logical database versignis maintained (Figure

(including its existence), while having full access to any
all) of the database statds.,, wherec; > FE;.

Note that the case where the adversary gains access to
two database statd3.,, andD.,, wheret, € D, andc,, <
E; < ¢, is trivial, since the adversary can detect the deIeti&

of ¢; by merely computing the difference between the stat ) : S
D, andD, . 2) that contains only tuples with an expiration tlrgegz(vi),
Data Expiration. Tuples come with associated expiratiorwhereg””(vi) is the time when; will be fully "expired”. At

times, specified/computed at the time of their databasar—ins%'j?rl]t'gmevf?‘“_E(}ES ? T/El_ ‘?tzt:%s‘;;/ifsmﬁé to V, exist
tion (or generation). with £,(V1) = B, £:(V2) = E» .

: . ST Each client transactiofy; is thentransparentlyapplied to all
Itis at this expiration time that a tuple n_eeds 0 b_e delet?lqese versions with the following restrictions: (i) wherphbgd
(un-traceably). Moreover, tuples are expired at fixed t|n}% versionV.. onlv tuol ith o . :
) . . . 7, only tuples with expiration times: £,.(V;) are
interval granularities e.g., daily, weekly, monthly etc daily

policy of tuple expiration means that tuples are deletedhat tVISI.bI(.e to queries mz.qj’ gnd (.”) |nser_t|on of a tuple by T; n

O R V; is ignored if expiration time ot is < &,(V;—1). Both (i)
end of each day (say at midnight). For simplicity, we assuménd (i) are achieved through query re-writing (SectionG)-
expiration times of all tuples coincides with the end of such gh query g

. The net effect is that VersiofV; is a database version
a period. . . - :
o . . wherein all tuples with expiration times. &,(V;—1) were
Traditional (_jelete opgratlons (delete quenes-) can be Xfever inserted. As a result, their side-effects are nevapger
cuted at any t|me_ by clu_ants. However, a tuple is deleted uBéted to any transactions and data structureg; i(including
traceably only at its expiration. underlying indexes etc). In effect all such tuples undevegn
untraceable delete when versibn ; expired at timef,.(V;—1)
IV. ARCHITECTURE (see section V for proof).
The client application is not aware of the existence of
multiple versions (other than the current versigy) nor the
At an overview level, one of the main insights behinépplication of transactions to versions other than
Ficklebase is to maintain virtual “future” versions of the At any given timeE; only versionsV; where&,(V;) >E;
database in which the expired tuples are not supposed tb exegist (i > 1). A versionV; is expired (utilizing asecure delete
Ongoing transactions are then applied to all these (currergeration) at its expiration timé,(V;) (section IV-E).
and future) versions. This in effect constructs directlgnfir To illustrate, at any timeF,;, Ey < E; < E; versions
the untraceable deletelefinition (Section 1) in which if all 17, V5, ..., V,, exist, with V; being the current version visible
transactions are applied to a database instance excepidortd clients (Figure 2). Once the current time approaches
insertion of tuplet;, thent; has undergone aontraceable versionV; is deleted,V> becomeV;, V3 becomesl, and so
deletein that instance. on. Also, &, (V1) « Es, £,(V2) «+ E5 and so on.
This approach avoids two key problems: (i) keeping track Finally, a new versiorV,,, is created when a tuple with
of all system-wide side-effects, and (ii) retroactive baltks expiration time>E,, is inserted by any client transactidf).
of committed transactions & their re-execution. Components. Figure 3 (a) illustrates the main Ficklebase

A. Overview



components. The main query re-writing logic resides in tHanctionality (e.g. hourly) necessary modifications sllobé
Ficklebase proxy. The proxy intercepts all client queried a made.

communicates with the server on behalf of the clients. TheAlso, tuples are copied “on write” only, when an update
database server is an off-the-shelf DBMS. modifies an attribute value causing it to differ between ver-
Execution Model. A client transactiorl; is a set of serial- sions. The version attribute is then automatically modifigd
izable SQL statement®;={begin():,Q2.Qs.,...Qm,committ  query rewrites to indicate distinct tuple versions.

whereQ); is a DDL (create/drop), DML (insert/update/delete) As an example, consider the following tuple with

or a select query. k attributes —t; = {VERSION:0000..11, ATTR =values,
ATTR=values, ... ,ATTR,=value}. The VERSIONattribute
Algorithm 1 EXDT2VER has bitsb; & by set indicating that the same tuple copy
Input: sver INT, exdt DATE, policy INT is valid in both, versions/; & V; i.e. expiration time of
Output: version BIT(3,) t; < &;(Va). Now, suppose that an update query being applied
1: ver+ 0 to V2 modifiesATTR from value; to value). Then a new
2: ever< 0 copy oft; is created such that
3: switch(policy) t; = {VERSION-0000..01, ATTR =value1, , ATTR=values,
4: case 1: v s ATTR,=valuei } and
5 ever = datediff(exdt, curdate()) + 1 t’; = {VERSION-0000..10, ATTR =value’, , ATTR=value,
6: case 2: oo, ATTR.=valuey }
7 ever = perioddiff(extract(yearmonth from exdt),  The version fields of the original and copied tuples are ugatlat
extract(yearmonth from curdate())) + 1 (by query rewrites, Figure 5(b)) to correctly maintain afist
8. case 3: version copies.
9: ever = (perioddiff(extract(yearmonth from exdt), .
extract(yearmonth from curdate())) div C. Query Rewriting
3)+1 Ficklebase relies heavily on query re-writing within the
10 case 4: proxy. Each client query is transformed into a set of queries
11: ever = year(exdt) - year(curdate()) + 1 each of which is then classified asvarsion specifior con-
12: end switch solidationquery. Figure 3 (b) gives an overview of query re-
13: if ever> sverthen writing along the order of query submission by the client and
14:  ver « 2sver—1 the order of execution after re-writin@EGIN and COMMIT
15: end if statements are executed as is at the start and end of the re-
16: return ver written transaction.

Version specifioqqueries only affect the version that they
are applicable to whileonsolidationqueries ensure compact
B. Versioning storage by combining tuple copies across versions.

All versions are maintained within a single database in- Figures 4(a) - 5(b) detail the query re-writing operations.
stance. To limit storage overheads tuple copies are combiie briefly discuss them in the following.

i.e. if tuple attributes have the same value across multigRPL (Create/Drop) statements [figure 4(a)]. DDL state-
versions then only a single copy of the tuple is maintaindg€nts are re-written in order to (1) Transparently add the
for all such versions. VERSIONattribute to the relation being created. THER-

A specialVERSIONattribute is transparently added to eac®!ON attribute is also added (as the terminal field) on any
relation by query rewriting (section IV-C) and is not vigitb  indexes. (2) To create and drafersion Specifiziews which
clients. TheVERSIONattribute is a bit field of sizé, wherein are later used in rewriting select & DML (insert/update)
a bitb; (0<i<p,) is set iff the tuple is valid in versio; i.e. gueries applicable to each version.\&rsion Specifiocziew
expiration time of tuple< &,(V;) 4. on a relationR for a versionV; selects only the tuples from

Client queries only specify the tuple expiration times o that are valid in versiofv;. (3) Create additional indexes on
insertion via theEXPIRATION TIMBuple attribute. Rewriting the VERSIONattribute thereby improving overall performance
of insert queries (figure 5(a)) converts this expirationetimof the re-written transaction.
into the correct value of th&/ERSION attributé. This is Select statements [figure 4(b)]. A select statement is re-
accomplished using thEXDT2VERfunction (depicted in al- Written for each version. When applied to a versignit is
gorithm 1). Note that this is a sample function that impletsenensured that the select only reads tuples valid in that wersi

daily, monthly, quarterly & yearly expirations. For additial This is achieved by replacing all table references in thecsel
statement with the correspondikgrsion Specifiziews. Only
4T_he last bit §g,) is used for consolidation and does not represent arfhe results of the select statement executed on verkion
veison. o R are returned to the client. The remainder of the results are
Expiration times are only specified/computed in insert @se& cannot be fil d bv th Th h . f
updated at a later time — an almost pervasive requiremenbef imnformation litere Ou.t y _t e-proxy compqnent. .us_t e existence 0
life-cycle regulations. other versions is hidden from client applications.



<-ocp

~50 - —0

O tab\e (table-name) (' VERSION BIT{BV) O column def}r()r0
. 0 ndered.column VERGION
' thd ®

:Vl THED)-O-(0) |
@70 |7

(i)

— DD —

B

<-ocp

D <-"0oEpP A5 -—-—A 9o —

i
\
‘
+
‘ p(fme)-{aar;
- . H
T
:"i V] : i=170n m ordenn {ordering-term } o
¢ (||) H

@ (b)
Fig. 4. Query Rewrites for (a) DDL (Create & Drop) statements. (ble8estatement.

The case where a transaction is read-only (i.e. comprisesH#re, the client application desires that if no tuple is celé
only select statements e.g. a reporting application) igllegh by the first select query then the transaction be rolled back.
differently. In this case all queries within the transact@mre The ROLLBACK syntax is specially provided by Ficklebase
applied only to the current versidi (and the results of eachfor this purpose. Recall from Section Il that it is essential
statement returned to the client). This is sufficient sireadr for the database to posses the entire application logic. The
only transactions do not modify any tuples, and hence do MOLLBACKas shown in this example enables the specification
generate side-effects. of such conditions within transaction queries.

DML (insert/update) statements [figures 5(a),5(b)].Similar Now, it is entirely possible that when being applied to
to select, DML statements are also re-written to replachstinct versions a rollback may occur for certain versjons
table references witNersion Specifiwiews. DML statements but not for others. Query rewriting in Ficklebase handles
also create new tuples (or modify existing tuples in caghis at different levels (1) The clierROLLBACK statement

of updates), thereby bringing additional tuple copies infs also re-written for each version, including creation of
existence. These extraneous copies are combined togethesdparate copies (for each version) of user-defined vasable
consolidation queries which are generated for each relatiffike @d next o_id in the example above). (2) A savepoint is

in which either a tuple is inserted or modified by the clientreated on the database before execution of queries for each
transaction. Also, similar to select, only results of stegats version.

executed on current versidri are seen by clients. When a rollback occurs (i.e. the condition in tROLL-
_ - BACK statement evaluates to true) for any version the Fick-
D. Version Specific Rollbacks lebase proxy issues a SQROLLBACK statement to the

It is often desired by application logic that transactioes latabase, rolling back the transaction up to the previous
rolled back under certain conditions e.g. tuple not foundteN Savepoint. This undoes the effects of all queries executed o
that these are not error/failure conditions such as duplicey that specific version. The effects of queries on other vassio
or deadlock (in which case the transaction is implicitljedl rémain intact.
back by the DBMS) but rather a part of application function- This is not unlike the case of nested transactions [64] with

a||ty Eg consider the f0||owing two queries Subm|ttecpast a distinct sub-transaction for each version. Individuab-su
of a client transaction. transactions can be rolled back without affecting the paren

transaction.
SELECT @ _next _o id := d next_o_id, d_tax

FROM DI STRICT WHERE d id = 1 AND d_ w id = 1 E. Expiration
As illustrated in Figure 2 when the current timg,
ROLLBACK( | SNULL( @_next _o_id)) approachest, (V1), versionV; expires. Expiration involves



column-name Jr>( VERSION / >

‘ ‘ o /i=tTon
7 \“EXDTZVE‘RlL EXPR_DATE, EX?R}OUCY) W fYS VESON b VFFSION&”Z"‘ h
ST RV eomo =
rorae (R @)+ T oG i -0
‘ Lﬂ VERSION }»@ﬁ\vmow\zﬂ“

v
column-name }—(,)-+{ VERSION P@I
B ~ .

BIT_OR (~2" | VERSION)

weo—=ocO

So—-~mwa—-—0wvws3o00

{versona "] e
O +(ORETE) (50N}t ane)» W ERSONEZ oo : ‘ O

@) (b)
Fig. 5. Query Rewrites for (a) Insert statement. (b) Update statéme

the following (1) Physical delete of all tuples that wereny deleted tuples. We refer the reader to [69] for details.
valid only until versionV; i.e. tuples with expiration time  History Independence. Data structures such as B-Trees are
< E; = &:(V1). (2) Setting the next versiok; as the current commonly used by the underlying database storage engines.
versionV; visible to clients i.e.V; < V1,7 > 1 and thus The storage layout of B-Trees (or variations such asTBees)
Ex(Vi) < E:(Viga). is often a function of the (sequence of) operations perfarme
(1) + (2) are achieved by a scheduled task that executesdat them due to their deterministic insertion & deletions.
the expiration intervaf,; (V1)) a transaction comprising of theThus, even afteun-traceable delete& secure deletion(as
following queries for each relatioR;. above) an adversary gaining access to the database storage
that utilizes these structures can potentially (by analyzheir
layouts) still reveal deleted content. We note that altloug
, _ such deductions are difficult in practice [53,69] they are
DELETE FROM R WHERE VERSION = 0 nonetheless possible and in certain very specific casaaltriv

The next effect of the above queries is the deletion of dp3] (€.9. an index based on incrementing values). For B
tuples that were valid only in versior, and not in any other Trees in particular the amount of information regardingtpas
versionV;,i > 1. operations decreases as the fan-out increases and faimouts

Secure Deletion. However, the execution of the abovdYPical usages are usually large. Ideally a fan-ouno{N is
two queries is not sufficient to physically delete all tuple§€ total number of tuples) stores all index values sorted in
from the expired version for two reasons (1) Many databa8¢Single root node and is completelistory independenbut
systems do not physically delete (at time of execution oéiel Nt Practical since it affects performance.
statement) but rather mark tuples for deletion at a lateetim Such leakages from storage layouts of data structures can
This limitation of many popular database systems has beléd prevented using one of the below two approaches (1) By
analyzed in [69]. (2) Other database components such as @ adoption ofhistory independentersions of storage data
transaction log, temporary files etc may still reveal deletéstructures such as B-Treaps [42] or B-SkipLists [43]. (2) By
content. re-creation of index on expiration.

Thus deleted tuples will remain in existence even after ex-Although ready-to-use, well evaluated implementations of
piration. To avoid such leakage of deleted content we sugghbistory independenB-trees are not yet easily available, it is
adoption ofsecure deletiomechanisms from [69] wherein (1) nonetheless a promising direction to pursue.

During the execution of delete statement the space whele tup (2) is a rather simple technique to employ and can be
content resides is overwritten (by zeros). (2) Individuzd | achieved by executing the following queries (or equivalent
records in the transaction log are encrypted to avoid rewvgal operations) for each relatioR;

UPDATE Ri SET VERSION = VERSION >> 1



CREATE TABLE R _tnp LIKE Ri Let Fg denote the set of transactions successfully executed
(without being rolled back) on versianuntil time ¢.

I NSERT INTO Ri _tnmp SELECT * FROM Ri Then, Ficklebase guarantees that each version does not

ORDER BY A see any tuples that already should have been expired by the
expiration time of the previous version. More formally:

DROP TABLE Ri Theorem 1:VV;, T; € F“{i iff. E.(tk) > E(Vi), (“un-
traceable deletiorof ¢;”) ©

RENAVE TABLE Ri _tnp TO Ri Proof: (summarized). This follows naturally by the con-

. . . struction of query rewriting. We enumerate all transaction
where; is a set of (any) attributes of Ri such thal;| > 1 that “touch” V;. First, for any incoming transaction, function

All indices of the newly created relation would not have an . : . S

delete operations performed on them and hence the effect%))gg-rszh\giﬁ (tgll?;:)e fgga;)agﬁ t(sarrgé?f(iecs \‘/’é?;i?ﬁfés ﬁftr:zr

delete operations will not be evident in their layouts. E.(tn) > E,(Vi). If not, t is ﬁwserted Withna. z.ero valued
: H : _ cx\k) = Cx\Vi). y Uk -

. Thus, as suggested earlier a comb|_nat|onseture delg VERSION attribute such that, is not visible to any subse-

tion & history independencplay a crucial role (along with quent query or;. In the end, all tuples with zero VERSION

Ficklebase) to ensure true erasure of deleted content. : L . f
Having adopted the above solutions the final component%trIbUtes are deleted by the consolidation queries befue
transaction commits (Figure 5(a)). Second, if the transact

tackle would be _the unde_rlymg f|Ie_ system (if the databas_e r'élls back onV; then the rollback mechanism of Section IV-D
not deployed using raw disks). A file system has mechanisms . : .
. ensures its queries have no effect ®h Third, when the
(also deterministic) to allocated free pages to the DBMSesn r . . .
. . o current time is> E,, all versionsV; where £(V;) < E,

guest (e.g. when aBTree node is full and requires splitting). . : .

. . will expire and be securely deleted (Section IV-E). The only
Hence not unlike the storage data structures this also mlz;rraVersions left would have expiration time E -
the use othistory independerfile systems. Although research P b

on history independendata structures clearly points out their VI. DISCUSSION

applicability to file systems providing usable implemeiotas Forensic Analysis. At first glance it may seem thain-

needs further investigation. An alternative approachil(tme : . ) .
S : : traceable deletiorrules out additional security mechanisms
easy availability of such file systems) is to use a separate di

partition when re-creating the index. The new partitionlwilSUCh as mglntenance O.f. audit logs to detect/prevent data
have no imprints of prior file system operations. tampering, since any additional recorded data opens uanot

avenue through which deleted content can be leaked. However
F. Storage Analysis this is not the case. The only aspect that must be considered
while recording any such information is making it non-
readable to the adversary (e.g. by using encryption) as7h [6
Buture Work. In section Il we laid down the requirement
that for un-traceable deletiorall application logic should
Be in possession of the database. Ficklebase requires all
storage is required appligation_ Iogig to b_e written as platabgse qugr_ie_s. Anothe

’ direction via which this can be achieved is by utilizing stbr

Now, suppose that each tuple is equally likely to eXpireS%trocedures [15]. Under this scenario re-writing of SQL dpeer

any Ei’ %/‘S Zt Sg "V?ni't;aﬁ_ﬁ'smzﬁt C(:p|es for eagh of 'tt|s insufficient, instead mechanisms are needed for exetutio
versionV; s.t. £,(V;) < Ei. Then the storage requiremen D arbitrary procedural code in the context of versioning.

areN - M . ,
2 " We note that although Ficklebase's approach of query re-

If we further assume a r_a_ndom distribution of _cIient q”eri%riting makes it independent of the underlying DBMS, it lim-
such that each tuple expiring df;,1 < i < n is equally 5 herformance for scenarios where large number of vession
likely to have Cog'fj)‘l < Jj < 1), then the average storagéeeq to be maintained. Hence, for greater performance we are
requirement ISV - === _ looking in to (1) moving parts of Ficklebase functionalitytb

This gives an overall storage complexity G{V - 7). the DBMS by modifying the storage engine and (2) designing
new data structures, that efficiently allow maintenance &
expiration of versions.

We now show that query rewriting and versioning indeed Finally, it is important to continue to integrate Ficklebas
achievesun-traceable deletioms defined (Section II). with the work on history independent file systems to ensure

Let T's denote the set of all transactions submitted by thgoss-layer, end-to-end assurances.
client until time/. Let tuplet,. with expiration timeZ; > ¢ be Limitations. The current implementation does not provide
inserted by a transactiol; whereT); € I's. The expiration support for re-writing user defined triggers and custom siew
of tuple ¢, will coincide with the expiration of some versionwe plan to implement these features in the future.

Vji.e. & (ty) = E:(V;) = E; (as per the expiration model in
Section 1lI). 8This can also be written a8}’ = I's — Tj when &, (Vi) > Ex (t).

Suppose the database comprised/dfiples and the number
of active versions is. Then in the worst case every tuple ha
a distinct copy in each versiovi, 1 < ¢ < n giving a overall
storage requirement a¥ - n. In the best case each tuple ha
the same attribute values for all of its versions and aNly

V. UNTRACEABILITY



600 versions. Updates to individual tuples can cause distiopiss
Osrf:c’ksiaes*; to be present in the database. However, these copies reside
500 New Order L close together and are very often located in the same storage
Delivery - ag node (i.e. leaf node of the underlyirdgf"-tree). Hence queries
400 Payment oee applicable to a specific version often locate their targplesi
an e in the database caches, where they were processed forysevio
300 " L versions.

In addition, re-writing of create statements further eesur
this by adding theVERSIONattribute only as the terminal
field of primary keys or other indexes (Figure 4(a)). Thus
even if tuples are valid in different versions (and differ in
their VERSIONattribute) they will not be dispersed within
the storage indexes.

Stock leveland order statusare both read-only transac-
tions. Note from section IV-C that read-only transactions a
executed only on version one. Hence increasing number of
versions to not contribute any overheads on these trangacti

200

100 +-5-

Per Transaction Execution time (ms)

10 )
Number of versions

Fig. 6. Execution times for TPC-C transactions.

VIl. EXPERIMENTS VIIl. RELATED WORK

Benchmark. We evaluate the performance of Ficklebasgecure Deletion.Solutions providingSecure Deletioemploy

using the TPC-C benchmark [19]. The benchmark data is sgther (1) Overwritingor (2) Encryption to erase deleted

up with 16 warehouses giving a total database size (on dfsk)@ntent from storage media.

1.5 GB for each run. The database buffer pool size is 200MB. Methods to recover erased data from magnetic storage were

In the initial versioned database, tuples in relatimesder, originally presented in [45] along with schemes to make this

order line and new orderare given random expiration times.recovery significantly more difficult. In fact [45] suggesist

The tuples in other relations have fixed maximum expiratigdmay be necessary to overwrite deleted content up to 35stime

times. New tuples inserted during the benchmark transatiqo completely ensure non-recovery.

are also given random expiration times. Later [51,72] claim that at least software-based data recov

Setup. The database server runs on an Intel Xeon 3.4 GHgry can be made impossible by a single overwrite. [51] also

4GB RAM Linux box (kernel 2.6.18). The server DBMS isprovides extensions to the Ext3 file system that implement

off-the-shelf MySQL version 14.12 Distrib 5.0.45. The dlie overwriting not just of deleted file content but also of file

system is an Ubuntu VM running on an Intel core i5 at 1.6@eta-data (e.g. name,owner,group,size etc).

GHz with 2 GB RAM. The Ficklebase proxy is implemented [72] investigates the possibility of recovering deleted-co

in Lua [11] and runs within the mysgl proxy [12] componenfent utilizing an electron microscope concluding that ailtih

version 0.8.2. To simulate the TPC-C clients we use thecovery of an individual bit is possible, the likelihood of

BenchmarkSQL tool [1], modified so that all TPC-C logigecovering sizeable data using this technique is negégibl

is comprised in SQL queries. An extension for the Ext2 file system was made available

Measurements. To measure the TPC-C transaction executiagy [24]. Here an asynchronous overwriting mechanism is

times we execute ;nx 50 runs of each TPC-C transactioremployed which causes less interference with user tasks but

using a single client and record the average execution time §acrifices security for a short interval (from deletion titoe

is the target number of versions the test database instaset i overwrite operation).

up for). The multiplicative factor X 50) ensures that targets Many available off-the-shelf tools aid secure deletiof5].

of insert/update queries are distributed across all vess@f A survey of these sanitization & forensic analysis tools is

the test database instance. Figure 6 shows the resultsdor esrovided in [39].

of the TPC-C transactions with varying number of versions. [33] addresses identification and removal of deleted canten
We observe the following overheads for each added versifltom main memory. The goal here is to reduce the lifetime

New Order(~4.9 %), Delivery (=7.8 %), Payment(~6.7 %). of data in main memory (referred to ascure deallocation
Version maintenance and query-rewriting (section IV) ma@n deallocation the solution overwrites the heap/stackezun

initially give the impression that each added version irotlge with zeros to prevent recovery.

will result in an overhead of close to 1x i.e. if a transaction [54] posit that overwriting is insufficient and instead emypl

takes timet to complete execution on one version, then oencoding/decoding to protect sensitive data. AES encryp-

two versions it would require t2time, on three versionst¢3 tion/decryption is used (within a modified firmware) to piite

and so on. This is because each client transaction is applisleted content.

to all logical database versions. In practice however, ihis [56] designed a NAND flash file system based on YAFFS

not the case and actual overheads are far lower as seen abvsupportSecure DeletionEncryption is used to delete files,
This is due database caching and co-location of tuplehile a single block is allocated for storage of all keys. The



key store block is erased using overwriting and once this émables creation of views on multi-versioned data.

done all deleted(encrypted) content becomes un-recdeerab A summary of various multi-versioned data structures is
Encryption is also employed in [74] to dispose of relevaravailable in [47]. Commercial [13] and open source imple-

index entries when a record expireSecure deletiorfor a mentations [16, 18] are also available.

versioning file system is provided in [63]. Here, a speciabst Statistical Databases. Statistical databaselR7] are used for

is stored with each encrypted data block. On deletion onigaintaining statistics over data in an OLAP (online anabfti

the stub is overwritten which renders the associated bloek processing) model. The main security concern here is to

recoverable. prevent an adversary from deducing very specific infornmatio
For a more detailed survey arecure deletionve refer the by issuing statistical queries. Typical approaches to gwev
reader to [37]. such leakage include (but are not limited to) — only suppgrti

History Independence. Both secure deletionand history aggregate queries, refusal to answer queries with smailtres
independentiata structures [48] are complimentary to Ficklesets, returning ranges instead of specific values etc [31A36
base since all three are essential & need to exist in tandenfitet glance it may seem thatatistical databaseachieveun-
achieve complete erasure of deleted content. traceable deletiorat least for aggregates. E.qg. if a data item
Initial work on History Independencédocussed on hashis deleted then all aggregates will be updated to remove its
tables [25,26,61] and is not directly applicable to relasib effects. However, such databases are designed for the OLAP
databases (unless specific hash indices are used). model and are not intended for data modification operations
B-Treaps [42] and B-Skip-Lists [43] are promising altersuch as deletion.
natives for use in database storage engines. Both offer ffmrensic Analysis. Forensic analysid44], related research
same functions as a standard B-Tree and have the same dgg@h60, 71] and available tools [6, 14] serve to enable detec
O(logg n), where B is the block transfer size. The onlytion/prevention of tampering of system data. Several fsien
advantage of B-Skip-Lists over B-Treaps is their simpjicitalgorithms are discussed in [62]. In some ca$emnsic

making them easier to implement. analysiscan be complimentary to Ficklebase, e.g. [67] makes
A comprehensive survey and explanation of thbgtory audit logs unreadable by the adversary thereby closinghanot
independentlata structures is available via [41]. avenue of a possible leakage of deleted data items.

Compensating Transactions. A compensating transaction Data Degradation. Data Degradation [22] is a work-in-
on execution undoes the effect of a previously committgatogress to address removal of sensitive data. Here theigoal
transaction without resorting to cascading aborts. Heowe- to gradually degrade sensitive information over time evelhy
pensating transactions can potentially be utilized to undeaking it un-recoverable. Although comprehensive teahesq
the side effects of deleted tuples as in Ficklebase. Howevare yet to be designed [21] gives a simple introductory
Compensating Transactions are application-dependerjf [Solution. Here, a data item is degraded in steps from specific
need to be pre-defined and can only be minimally automated. more general values. E.g. an address field may initially
Ficklebase on the other provides support for-traceable contain the entire detailed address. In the next iteratien t
deletionat the database level. street part is removed, a following iteration removes tlagest
Guidelines for designing compensating transactions are d& zip leaving only the country code and so on.
cussed in [55]. [34] uses an example of an online bookshinformation Flow Control.  Although not dealing with
transaction to review several notations for compensatmn iremoval of side-effectinformation flow controland related
cluding their syntax and semantics. implementations [35, 66, 73] enable tracking of sensitiaéad
Sagas [28] is a flow composition language which achievasross system components. This can be used along with
atomicity based on compensation. In case of a long runnifitklebase to detect and later delete copies of data iteats th
transactions that fails to complete, compensation is eyaplo have crossed system boundaries (e.g. moved to another node
to undo its effects. [28] also addresses parallel compositi on a distributed system).
nesting and exception handling. In addition, compositamm-| Other. [23] enables application developers to specify destruc-
guages such as BPEL4WS [2] enable programmers to specife policies on business records. These policies are dtore
compensations for associated transactions. and later executed as stored procedures. The execution is
Multiversion Databases. On the flip side of deletion is the triggered by additional policies that define a critical view
requirement to record every single change made to data. Tivsich comprise of sensitive data. The destructive polibie®
may be required for historical queries or to document systameed to be predefined not unlike compensating transactions.
evolution. Research amultiversion databaseschieves this by
designing data structures that are efficient for both stp&n IX. CONCLUSION
retrieving versioned data. Here, no information is eveetsl In this paper we introducedn-traceable deletionwhich
but is rather made available for later querying by version atong withsecure deletiomndhistory independends integral
by time. in ensuring complete erasure of deleted content.
Designed data structures range from basic B-Trees [57]We provide insights into the new functional aspects of this
to transactionalB™-Trees [46] with concurrency support.new assurance in the context of databases and present the de-
In addition [49,50] address branched evolution while [58ign and evaluation of Ficklebase, a relational databasehwh



achievesun-traceable deletionvia versioning and query- [32]
rewriting.

(1]
(2]
(3]

[4]
(5]

[6]
(7]

(8]
El
[10]
[11]
[12]
[13]

[14]
[15]

[16]
[17]

[18]
[19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]

[29]

(30]

(31]

REFERENCES

BenchmarkSQL. Online at [33]
benchmarksql/.

Business Process Execution Language for Web ServicelnéDat http:
Iliww.ibm.com/developerworks/library/specificatiosilpel/.
Computer Forensics. Online at http://en.wikipedig/wiki/Computer.
forensics.

Current Population Survey (CPA). Online at http://wWsi8.gov/cps/.
Deleted but not gone. Online at http://www.nytimes.¢aa05/11/03/
technology/circuits/03basics.html?pagewanted=print.

EnCase. Online at http://www.guidancesoftware.cam@ifisic.htm.
EU’'s Data Protection Directive. Online at http://ec@pa.eul/justice/
data-protection/indexen.htm.

Family Educational Rights and Privacy Act (FERPA). @wliat http:
Iiww2.ed.gov/policy/gen/guid/fpco/ferpa/index.html

Federal Information Security Management Act (FISMAIDe at http:
Ilcsrc.nist.gov/groups/SMA/fisma/index.html.

Gramm-Leach-Bliley Act (GLB). Online at http://enkipedia.org/
wiki/Gramm-Leach-Bliley Act.

Lua programming language. Online at http://www.lug/o

MySQL Proxy. Online at http://forge.mysqgl.com/wiklySQL_Proxy.
Oracle Total Recall. Online at http://www.oracle.dosiproducts/
database/options/total-recall/overview/index.html.

Sleuth Kit. Online at http://www.sleuthkit.org/.

Stored Procedure. Online at http://en.wikipediahergi/Stored
procedure.

Tau BerkelyDB. Online at http://www.cs.arizona.guhafects/tau/tbdb/.
The Health Insurance Portability and AccountabilityctAof 1996
(HIPAA). Online at http://www.hhs.gov/ocr/privacy/.

TimeDB. Online at http://www.timeconsult.com/.

TPC-C Benchmark. Online at http://www.tpc.org/tmtefault.asp.

UK Data Protection Act 1998 (DPA). Online at http:/feikipedia.org/
wiki/Data_Protection Act_1998#Dataprotection principles.

Nicolas Anciaux, Luc Bouganim, Harold van Heerde, Pipié Pucheral,
and Peter M. G. Apers. Instantdb: Enforcing timely degradabf [43]
sensitive data. IfProceedings of the 2008 IEEE 24th International Con-
ference on Data EngineeringCDE '08, pages 1373-1375, Washington,[44]
DC, USA, 2008. IEEE Computer Society.

Nicolas Anciaux, Luc Bouganim, Harold van Heerde, Pipié Pucheral,

and Peter M.G. Apers. Data degradation: making private tkga
sensitive over time. IrProceedings of the 17th ACM conference or{45]
Information and knowledge manageme@tkKM '08, pages 1401-1402,
New York, NY, USA, 2008. ACM.

Ahmed A. Ataullah, Ashraf Aboulnaga, and Frank Wm. T@nRecords
retention in relational database systems. Pimceedings of the 17th [46]
ACM conference on Information and knowledge managentetM

'08, pages 873-882, New York, NY, USA, 2008. ACM.

Steven Bauer and Nissanka B. Priyantha. Secure dagtiatefor linux

file systems. IrProceedings of the 10th conference on USENIX Security
Symposium - Volume 18SYM'01, pages 12-12, Berkeley, CA, USA,[47]
2001. USENIX Association.

Guy E. Blelloch. Strongly history-independent hashiwith appli-
cations. InIn Proceedings of the 48th Annual IEEE Symposium on
Foundations of Computer Sciengeages 272-282, 2007.

Guy E. Blelloch and Daniel Golovin. Strongly histonyeiependent [48]
hashing with applications. IfProceedings of the 48th Annual IEEE
Symposium on Foundations of Computer ScieR€CS '07, pages 272—
282, Washington, DC, USA, 2007. IEEE Computer Society.

Claus Boyens, Oliver Gnther, and Hans j. Lenz. Stat$tdatabases.
Roberto Bruni, Hernan Melgratti, and Ugo Montanari. hebretical
foundations for compensations in flow composition langsa§&GPLAN
Not. 40(1):209-220, January 2005.

Simon Byers. Scalable exploitation of, and responseiformation
leakage through hidden data in published documei$T Research
2003.

Brian Carrier. File System Forensic AnalysiAddison-Wesley Profes-
sional, 2005.

Francis Y. Chin. Security in statistical databasesdoeries with small
counts. ACM Trans. Database Sys8(1):92-104, March 1978.

http://sourceforge.net/pcts/

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[49]

[50]

[51]

Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin ChristophendaMendel
Rosenblum. Understanding data lifetime via whole systemukition.

In Proceedings of the 13th conference on USENIX Security Sioipe
Volume 13SSYM'04, pages 22—-22, Berkeley, CA, USA, 2004. USENIX
Association.

Jim Chow, Ben Pfaff, Tal Garfinkel, and Mendel Rosenhl®hredding
your garbage: reducing data lifetime through secure destilon. In
Proceedings of the 14th conference on USENIX Security Ssiompo-
Volume 14 SSYM'05, pages 22—-22, Berkeley, CA, USA, 2005. USENIX
Association.

Christian Colombo and Gordon J. Pace. A compensatiags#ction
example in twelve notations. Technical Report CS2011-Gdpdbtment
of Computer Science, University of Malta, 2011. Availablenf
http://www.um.edu.mt/ict/cs/research/technigaports.

Michael Dalton, Hari Kannan, and Christos Kozyrakis. akRha: a
flexible information flow architecture for software secyritSIGARCH
Comput. Archit. News35(2):482—-493, June 2007.

Dorothy E. Denning and Jan Schldrer. A fast procedurefinding a
tracker in a statistical databas&CM Trans. Database Sys6(1):88—
102, March 1980.

Sarah M. Diesburg and An-lI Andy Wang. A survey of confitign
data storage and deletion method€M Comput. Sury43(1):2:1-2:37,
December 2010.

Kevvie Fowler. SQL Server Forensic Analysis Addison-Wesley
Professional, 2008.

Simson L. Garfinkel and Abhi Shelat. Remembrance of gatsed: A
study of disk sanitization practicelEEE Security and Privagyl(1):17—
27, January 2003.

Tal Garfinkel, Ben Pfaff, Jim Chow, and Mendel Rosenhlurbata
lifetime is a systems problem. IRroceedings of the 11th workshop on
ACM SIGOPS European workshdpW 11, New York, NY, USA, 2004.
ACM.

Daniel Golovin.Uniquely represented data structures with applications
to privacy PhD thesis, Pittsburgh, PA, USA, 2008. AAI3340637.
Daniel Golovin. B-treaps: A uniquely represented ralé&tive to b-
trees. InProceedings of the 36th International Colloquium on Auttana
Languages and Programming: Part ICALP '09, pages 487-499,
Berlin, Heidelberg, 2009. Springer-Verlag.

Daniel Golovin. The B-skip-list: A simpler uniquely peesented
alternative to B-treesCoRR abs/1005.0662, 2010.

Mario A. M. Guimaraes, Richard Austin, and Huwida Saldatabase
forensics. In2010 Information Security Curriculum Development
ConferenceInfoSecCD '10, pages 62—-65, New York, NY, USA, 2010.
ACM.

Peter Gutmann. Secure deletion of data from magnetit satid-state
memory. InProceedings of the 6th conference on USENIX Security
Symposium, Focusing on Applications of Cryptography - ivielug
SSYM'96, pages 8-8, Berkeley, CA, USA, 1996. USENIX Assticia
Tuukka Haapasalo, Ibrahim Jaluta, Bernhard Seeg@p®&8ippu, and
Eljas Soisalon-Soininen.  Transactions on the multiversin--tree.
In Proceedings of the 12th International Conference on Btend
Database Technology: Advances in Database TechnplB®BT '09,
pages 1064-1075, New York, NY, USA, 2009. ACM.

Tuukka K. Haapasalo, Ibrahim M. Jaluta, Seppo S. Sigmd, Eljas O.
Soisalon-Soininen. Concurrency control and recovery faitigersion
database structures. IRroceedings of the 2nd PhD workshop on
Information and knowledge managemednrtKM '08, pages 73—-80, New
York, NY, USA, 2008. ACM.

Jason D. Hartline, Edwin S. Hong, Alexander E. Mohr, liafh R.
Pentney, and Emily Rocke. Characterizing history indepahdiata
structures. InProceedings of the 13th International Symposium on
Algorithms and ComputatiQdSAAC '02, pages 229-240, London, UK,
UK, 2002. Springer-Verlag.

Linan Jiang, Betty Salzberg, David B. Lomet, and Man&elrrena
Garcia. The bt-tree: A branched and temporal access metHod
Proceedings of the 26th International Conference on Vemgédata
Bases VLDB ’'00, pages 451-460, San Francisco, CA, USA, 2000.
Morgan Kaufmann Publishers Inc.

Khaled Jouini and Genevieve Jomier. Indexing muitien databases.
In Proceedings of the sixteenth ACM conference on Conferemce o
information and knowledge manageme®KM '07, pages 915-918,
New York, NY, USA, 2007. ACM.

Nikolai Joukov, Harry Papaxenopoulos, and Erez Za&gcure deletion
myths, issues, and solutions. Rroceedings of the second ACM
workshop on Storage security and survivabjli§torageSS '06, pages
61-66, New York, NY, USA, 2006. ACM.



[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

J. Katz and Y. Lindell.Introduction to modern cryptographyChapman
& Hall/CRC cryptography and network security. Chapman &IFERC,

2008.

Peter Kieseberg, Sebastian Schrittwieser, Martin adzdni, Markus
Huber, and Edgar Weippl. Trees cannot lie: Using data strastfor
forensics purposes. IRroceedings of the 2011 European Intelligence
and Security Informatics ConferendelSIC '11, pages 282-285, Wash-

[63]

ington, DC, USA, 2011. IEEE Computer Society. [64]
Marek Klonowski, MichatPrzykucki, and Tomasz Strumski. Informa-

tion security applications. chapter Data Deletion withvaidle Security, [65]
pages 240-255. Springer-Verlag, Berlin, Heidelberg, 2009

Henry F. Korth, Eliezer Levy, and Avi Silberschatz. Arfieal approach [66]
to recovery by compensating transactions. Technical tepostin, TX,

USA, 1990.

Jaeheung Lee, Junyoung Heo, Yookun Cho, Jiman HongSamg Y. [67]

Shin. Secure deletion for nand flash file systemPmceedings of the

2008 ACM symposium on Applied compufitBAC '08, pages 1710- [68]
1714, New York, NY, USA, 2008. ACM.
David Lomet and Betty Salzberg. Access methods for iwerion data. [69]

In Proceedings of the 1989 ACM SIGMOD international confeeean
Management of dataSIGMOD '89, pages 315-324, New York, NY,
USA, 1989. ACM.

Claudia Bauzer Medeiros, Marie-Jo Bellosta, and Gi&wev Jomier. [70]
Multiversion views: constructing views in a multiversioatdbaseData
Knowl. Eng, 33(3):277-306, June 2000. [71]

Daniele Micciancio. Oblivious data structures: apations to cryptog-
raphy. InProceedings of the twenty-ninth annual ACM symposium on
Theory of computingSTOC '97, pages 456—-464, New York, NY, USA,
1997. ACM.

Soumyadeb Mitra, Marianne Winslett, Richard T. Snedgr Shashank [72]
Yaduvanshi, and Sumedh Ambokar. An architecture for regota
compliant database management. Rroceedings of the 2009 IEEE
International Conference on Data EngineerjngDE '09, pages 162—
173, Washington, DC, USA, 2009. IEEE Computer Society.

Moni Naor, Gil Segev, and Udi Wieder. History-indepentl cuckoo
hashing. InProceedings of the 35th international colloquium on
Automata, Languages and Programming, Part ICALP '08, pages
631-642, Berlin, Heidelberg, 2008. Springer-Verlag.

Kyriacos E. Pavlou and Richard T. Snodgrass. Forensalyais of

[73]

[74]

database tampering.ACM Trans. Database Syst33(4):30:1-30:47,
December 2008.

Zachary N. J. Peterson, Randal Burns, Joe Herring, AS&ubblefield,
and Aviel D. Rubin. Secure deletion for a versioning file syst In
Proceedings of the 4th conference on USENIX Conference lerakd
Storage Technologies - VolumeFAST'05, pages 11-11, Berkeley, CA,
USA, 2005. USENIX Association.

R. F. Resende and A. El Abbadi. On the serializabilitediem for
nested transactiondnf. Process. Lett.50(4):177-183, May 1994.
James M. Rosenbaum. In defence of the delete Réye Green Bag
3(4), 2000.

Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathr$. McKinley,
and Emmett Witchel. Laminar: practical fine-grained deadized
information flow control. SIGPLAN Not. 44(6):63—74, June 2009.
Bruce Schneier and John Kelsey. Secure audit logs tpatigpomputer
forensics.ACM Trans. Inf. Syst. Secu(2):159-176, May 1999.
Jitesh Shetty and Jafar Adibi. The enron email dataattldise schema
and brief statistical report, 2004.

Patrick Stahlberg, Gerome Miklau, and Brian Neil LexinThreats to
privacy in the forensic analysis of database system$rtteedings of
the 2007 ACM SIGMOD international conference on Managenaént
data, SIGMOD '07, pages 91-102, New York, NY, USA, 2007. ACM.
Latanya Sweeney. Protecting job seekers from idertigft. |IEEE
Internet Computing10(2):74—-78, March 2006.

Maolin Tang and Colin Fidge. Reconstruction of falsifieomputer
logs for digital forensics investigations. roceedings of the Eighth
Australasian Conference on Information Security - Volurdg, AISC
10, pages 12-21, Darlinghurst, Australia, Australia, @0Australian
Computer Society, Inc.

Craig Wright, Dave Kleiman, and Shyaam Sundhar R.S. r@xgéng
hard drive data: The great wiping controversy.Froceedings of the 4th
International Conference on Information Systems Secul@SS '08,
pages 243-257, Berlin, Heidelberg, 2008. Springer-Verlag

Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kommjeand David
Mazieres. Making information flow explicit in histaCommun. ACM

54(11):93-101, November 2011.

Qingbo Zhu and Windsor W. Hsu. Fossilized index: thechipin of

trustworthy non-alterable electronic records. Mmoceedings of the
2005 ACM SIGMOD international conference on Managementatd, d
SIGMOD 05, pages 395-406, New York, NY, USA, 2005. ACM.



