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Private Badges for Geosocial Networks
Bogdan Carbunar, Radu Sion, Rahul Potharaju, Moussa Ehsan

Abstract—Geosocial networks (GSNs) extend classic online
social networks with the concept of location. Users can report
their presence at venues through “check-ins” and, when certain
check-in sequences are satis�ed, users acquire special status in the
form of “badges”. We �rst show that this innovative function ality
is popular in Foursquare, a prominent GSN. Furthermore, we
address the apparent tension between privacy and correctness,
where users are unable to prove having satis�ed badge con-
ditions without revealing the corresponding time and location
of their check-in sequences. To this end, we propose several
privacy preserving protocols that enable users to prove having
satis�ed the conditions of several badge types. Speci�cally, we
introduce (i) GeoBadge and T-Badge, solutions for acquiring
location badges, (ii) FreqBadge, for mayorship badges, (iii) e-
Badge, for proving various expertise levels and (iv) MPBadge,
for accumulating multi-player badges. We show that a Google
Nexus One smartphone is able to perform tens of badge proofs
per minute while a provider can support hundreds of million of
check-ins and badge veri�cations per day.

I. I NTRODUCTION

Location Based Services (LBS) provide users with infor-
mation and entertainment applications centered on their geo-
graphical position. A recently introduced but popular LBS are
Geosocial Networks (GSNs), social networks centered on the
locations of users and businesses. GSNs such as Foursquare [1]
and Yelp [2] allow users to register or “check-in” their
location, share it with their friends, leave recommendations
and collect prize “badges”. Badges are acquired by checking-in
at certain locations (i.e., venues), following a required pattern.

Besides keeping track of the locations of their friends,
users rely on GSNs to receive promotional deals, coupons and
personalized recommendations. For GSN providers however,
the main source of revenue is location-based ad targeting.
Boasting millions of users [3] and tens of millions of location
check-ins per day [4], GSNs can provide personalized, location
dependent ads. The more user information they are able to
collect, the more accurate are their predictions.

Thus, the price of participation for users is compromised
privacy, in particular, location privacy. Service providers learn
the places visited by each user, the times and the sequence
of visits as well as user preferences (e.g., the frequency
distribution of their visits) [5], [6]. The service providers may
use this information in ways the users never suspected when
they signed-up (e.g., having their location shared with third
parties [7], [8]).
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Opting out of GSN services seems to be a rational way
to avoid compromised privacy (allowing stalking, theft [9]).
In this paper however, we show that such radical measures
may not be necessary. To this end, we introduce a framework
that enables users to privately acquire GSN badges. In this
framework. users are responsible for storing and managing
their location information, and the provider's (oblivious) par-
ticipation serves solely the goal of ensuring user correctness.

We de�ne badges as aggregate location based predicates.
We propose solutions to support a variety of such predicates,
including (i) checking-in a pre-de�ned number of times at a
location or set of locations, (ii) checking-in the most number of
times (out of all the users) at a location, (iii) proving various
expertise levels, and (iv) simultaneously checking-in with k
other users at a location.

Given the recent surge of location privacy breaches and
the ensuing liability problems [10], implementing privacy
solutions may ultimately be in the service provider's best
interest.

The challenge consists of providing solutions that balance
three requirements. On one dimension, clients need strong
privacy guarantees. The service provider should not learn
user pro�le information, including (i) linking users to (loca-
tion,time) pairs, (ii) linking users to any location, even if they
achieve special status at that location and even (iii) building
pseudonymous user pro�les – linking multiple locations where
the same “unknown” user has checked-in. On the second
dimension, the service provider needs assurances of client
correctness when awarding location-related badges. Otherwise,
since special status often comes with �nancial and social
perks, privacy would protect users that perpetrate fraudulent
behaviors such as, reporting fake locations [11], duplicating
and sharing special status tokens, or checking-in more fre-
quently than allowed. On a third dimension, the provider needs
to be able to collect certain user information. Being denied
access to all user information discourages participation.

The use of client pseudonyms to provide client privacy
during check-ins and special status requests is vulnerableto
pro�le based de-anonymization attacks [12], [13]: Constructed
pseudonymous pro�les can be joined with residential and
employment datasets to reveal pro�le owner identities.

Instead, in a �rst contribution, we introduce essential prop-
erties that need to be satis�ed by private “badging” solu-
tions. Informally, we de�ne userprivacy in terms of indis-
tinguishability: an adversary controlling the service provider
and any coalition of colluding users, should be unable to
distinguish between any interactions with two registered (but
not controlled) users. We then de�necorrectness, to model
the inability of users to claim special status without satisfying
the associated spatial, temporal and frequency requirements.
Furthermore, we introduce aprovider usability property to
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model the ability of the provider to build popularity statistics
for the venues supported (e.g., per-site check-ins and issued
badges).

In a second contribution, we propose four solutions, for the
the aggregate location predicates described above, that satisfy
the de�ned properties. GeoBadge, allows users to privately
prove having performedk check-ins at one venue, wherek
is a prede�ned parameter. FreqBadge extends GeoBadge with
provably time-constrained check-ins as well as arbitrary values
for k. e-Badge extends GeoBadge with the notion of levels
of expertise, unlocked as the user performs more check-ins
at new venues. MPBadge extends GeoBadge with the notion
of simultaneous, co-located check-ins from multiple users.
The complexity of MPBadge lies in the seeming contradiction
between the ability of multiple clients to anonymously check-
in at the same location and the ability of rogue users to launch
Sybil attacks [14].

The solutions deploy cryptographic techniques such as
zero-knowledge (ZK) proofs, quadratic residuosity constructs,
threshold secret sharing and blind signatures. Clients collect
special, provider-issued tokens during check-ins, which they
either aggregate to build generic, non-traceable badges, or use
to build ZK proofs of ownership. Client correctness is partly
ensured by the use of blind signatures of single-use tokens.

Instead of publishing acquired badges, and relinquishing
privacy, our approach provides users with control over their
badges. Users locally store them on their mobile devices and
can prove ownership of their badges in a zero knowledge
manner, to other interested parties.

We have implemented and evaluated the performance of our
solutions on Google Nexus One smartphones and a 16 quad-
core server. Experimental results are extremely positive.The
GSN provider can support thousands of check-ins and special
status veri�cations per second, while a smartphone can build
strongly secure aggregate location and correctness proofsin
just a few seconds.

The paper is organized as follows. Section II summarizes re-
lated work. Section III describes the system model considered
and de�nes the associated privacy and security requirements.
Section IV describes the cryptographic tools used in our
solutions. Section V presents GeoBadge, the private location
badge solution and Section VI presents FreqBadge, the private
mayorship solution. Section VII presents e-Badge, the private,
multi-venue expertise badge solution and Section VIII present
the private multi-player badge solution. Section IX describes
our implementation results. Section X concludes.

II. RELATED WORK

This paper extends our previous work [15] with (i) an exten-
sively modi�ed FreqBadge solution, (ii) constructs supporting
a new badge type (e-Badge), (iii) an analysis of MP-Badge,
(iv) an extension of all the solutions with a protocol that
enables proofs of badge ownership (ProveBadge), and (v) a
better detailed system model.
Location cloaking: Anonymization, pseudonimization, loca-
tion and temporal cloaking techniques (introducing errorsin
location reports to provide 1-out-of-k anonymity) have been

initially proposed in [16]. Hoh et al. [17] proposed a location
cloaking approach based on the concept ofvirtual trip lines,
that when crossed, trigger a device location update. Olumo�n
et al. [18] propose a location cloaking based private infor-
mation retrieval algorithm that enables mobile device users to
privately retrieve points of interest around their location. Pan et
al. [19] and Ghinita et al. [20] identi�ed the important problem
of preventing attacks that link even cloaked successive location
reports. Pan et al. [19] rely on a trusted anonymizing proxy
to maintain cloaking sets of active users, and update them as
the users issue successive location reports. Ghinita et al.[20]
propose both off-line solutions that report temporally cloaked
pre-de�ned regions, and on-line solutions.
Private geographic algorithms. Eppstein et al. [21] intro-
duced data-oblivious algorithms for secure multi-party com-
putations (SMC) for location based services. The proposed
techniques are relevant to geometric problems – convex hull,
quadtrees, closest pair – and cannot be easily applied to solve
the privacy issues we consider in this work. Ghinita et al. [22]
propose a privacy robust geometric transformation for private
matches on spatial datasets (e.g., geo-tagged data items).
Location veri�cation: Saroiu and Wolman [23] introduced
the location proof concept – a piece of data that certi�es
a receiver to a geographic location. The solution relies on
special access points (APs), that are able to issue such signed
proofs. APs add their location to their presence beacons and
then generate location proofs upon client request, containing
the signed client identity, AP identity, location and timestamp.

Luo and Hengartner [24] extend this concept with client
privacy, achieved with the price of requiring three independent
trusted entities. Note that both solutions rely on the existence
of specialized APs or cell-towers, that modify their beacons
and are willing to participate and sign arbitrary information.
Cellular providers are notorious for their unwillingness to
collaborate and modify their protocols. Most AP owners have
trouble setting up security features thus we envision that only
few APs (if any) will provide this functionality – defeatingthe
solution's applicability.

To address the central management problems, Zhu and
Cao [25] proposed the APPLAUS system, where co-located,
Bluetooth enabled devices compute privacy preserving loca-
tion proofs. While the p2p approach can solve the central
management problems (for a strongly Bluetooth-connected
network), not many users enable this interface, due to lack
of applications and associated power-drain.
Proximity alerts: Zhong et al. [26] have proposed three
protocols that privately alert participants of nearby friends.
Location privacy here means that users of the service can learn
a friend's location only if the friend is nearby. Manweiler
et al. [27] propose several cloaking techniques for private
server-based location/time matching of peers. Narayanan et
al. [28] proposed several other solutions for the same problem,
introducing the use of location tags as a means to provide
location veri�cation. Nielsen et al. [29] use secure multiparty
computation techniques to address a similar problem. Hu et
al. [30] address the problem of service providers delivering
authenticated LBSs, while preserving the data being queried by
clients. Our work is different, by enabling private and correct
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Fig. 1. Foursquare stats: (a) CDF of days out, check-ins and things done by
users. (b) Badge and friends evaluation.

aggregate location predicates in GSNs.
Summary: Existing work has focused on (i) hiding user
location from LBS providers and other parties and on (ii)
enabling users to prove claimed locations. Instead, in this
paper we focus on the next step, of anonymizing location
aggregates de�ned by geosocial networks.

III. M ODEL

A. The System

We consider a geosocial network provider,S, which
we model after the most popular in existence to date,
Foursquare [1]. Each subscriber (or user) has an account
with S. Subscribers are assumed to have mobile devices
equipped with a GPS receiver and a Wi-Fi interface (present
on most smartphones). To use the provider's services, a client
application needs to be downloaded and installed. Subscribers
can register and receive initial service credentials, including
a unique user id; letId A denote the id of userA. In the
following we use the termsuser and subscriberto refer to
users of the service and the termclient to denote the software
provided by the service and installed by users on their devices.

Besides users, the geosocial network also supports a set of
venues, which are businesses with a geographic location. Let
V denote the set of all the venues registered with the system.

Users report their location, throughcheck-insat venues of
interest, share it with friends (e.g., imported from Facebook or
discovered and invited on Foursquare) and are awarded points
and “badges”. A user with more check-in days at a venue
than anyone else in the past 60 days becomes the “Mayor”
of the venue. Foursquare has partnered with a long list of
venues (bars, cafes, restaurants, etc) to reward the Mayor with
freebies and specials. Foursquare imposes a discrete division
of time, in terms ofepochs. A user can check-in at one venue
at most once per epoch. This strategy has made Foursquare
quite popular, with a constantly growing user base, which we
currently estimate at over 20 million users.

B. Foursquare Data

In order to understand the need for our solutions, we have
collected pro�les from 781,239 randomly selected Foursquare
users. For every user, we have gathered the user pro�le
including the total number of friends, the total number of
check-ins, the total number of days the user was out (days
the user was actively performing check-ins) and the total
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Fig. 2. (a) Scatterplot check-ins vs. users in a small town. (b) Per-venue
check-in distribution over time for two random venues.

number of things done (e.g., reviews left for a venue). Our
�rst question was how active are Foursquare users. Figure 1(a)
shows the CDF of the number of check-ins, days out (days
the user was actively performing check-ins) and things done
(e.g., reviews left for a venue) by users. Note that 45% of
the collected users have between 80 and 950 check-ins, for
between 50 and 300 days of activity (at this time Foursquare
is 2 years and a half old). This shows that many Foursquare
users are very active. Our second question regards the pop-
ularity of badges in geosocial networks. Figure 1(b) shows
the cumulative distribution function (CDF) of the number of
badges earned by users as well as their friends. Note that 45%
of the users (between the median and the 95th percentile) have
between 10 and 50 badges and between 20 and 95 friends.
This, coupled with the large numbers of reported check-ins,
leads us to conclude that Foursquare is a system worthy to
evaluate our protocols.

To corroborate the check-in data in a location-aware fashion,
we used a Foursquare feature that allows users to query the
list of venues at a location using (latitude, longitude) pairs.
Speci�cally, we started with a seed latitude and longitude
(in our case, 40.000, -73.000, representing New York City).
We then generated 5000 random coordinates around this
coordinate pairs. For each newly generated coordinate pair, we
queried Foursquare to collect all the venues near that location.
Figure 2(a) shows the scatter plot of check-ins vs. users in one
of the most active locations in our dataset, the city of Babylon
in Long Island, NY. Each point on the plot denotes a venue,
the x axis shows the total number of check-ins recorded at
the venue and the y axis shows the total number of users that
have performed the check-ins. Note that a few venues record
1000-5000 check-ins, from more than 500 users. Most venues
however range from a few tens to a few hundred check-ins and
users. Finally, Figure 2(b) shows the evolution between August
2010 and February 2011 of the number of check-ins per day
for two randomly selected venues. The number of check-ins
range between 3 to almost 70 per day. Our conclusions are that
Foursquare users are actively checking-in and venues record
many daily check-ins. This data rich environment can be a
goldmine for rogue GSN providers. Moreover, the number of
recorded check-ins suggests that badges and mayorship are
likely to become objects of contention. Thus, devising private
and secure “badging” protocols becomes a problem of primary
importance for GSNs.
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C. Geo: A Framework for Private GSNs

A full-�edged private GSN solution is composed of a set
of protocols Geo = f Setup, RegisterV enue, Subscribe,
CheckIn, StatV erify , P roveBadgeg, described in the fol-
lowing. We use the notationP rot(P1(args1); ::; Pn (argsn ))
to denote protocolP rot run between participantsP1; ::; Pn ,
each with its own arguments.
Setup(S()) : Executed initially (only once) by the service
providerS. The server produces public informationpubS and
private informationpriv S . The server publishespubS .
RegisterVenue(O(V ); S(priv S )) : Executed by the ownerO
to register a new venueV with the provider.
Subscribe(C() ; S(pubS ; priv S )) : Executed once by any client
C that wants to register with the service. If the subscription
fails, the server returns -1. Otherwise, the client receives a
unique id and the server's public informationpubS .
CheckIn(C(Id; V; T; pubS ); S(priv S )) : Executed by a sub-
scribed client with identi�erId , to report locationV at time
T to the providerS. S veri�es the correctness ofV andT and
returns -1 in case of failure. Otherwise, the client is issued a
special token proving its presence atV during T.
StatVerify (C(Id; V; k; T k; pubS); S(priv S )) : After accumu-
lating suf�cient tokens, the client runsStatV erify with the
server, for a speci�c venueV, providing its entire set of tokens,
T k. If the tokens prove that special status has indeed been
achieved, the server issues a special status token (or badge),
BV , to the client. We support several badge types, introduced
by Foursquare [1] and SCVNGR [31]:

� Location Badge (GeoBadge/T-Badge). GeoBage is is-
sued after the client runsCheckIn during k different
epochs at a venueV . T-Badge is issued after the client
runs CheckIn at k different venues. GeoBadge and T-
Badge model Foursquare badges such as “Newbie”, “Lo-
cal”, “Adventurer”, “Explorer” and “Superstar”, see [32].

� Expert Badge(e-Badge). e-Badges support several levels
of expertise. To achieve level 1 of expertise, the client
needs to runCheckIn at k different, select locations,
with a common background. A user having expertise level
L for an e-Badge can reach levelL + 1 after performing
k more check-ins at similar (but different) locations.k is
a system parameter. This models several expertise badges
from Foursquare (e.g., “Swimmie”, “Wino”, “Pizzaiolo”,
see [33]), where the rules are the same for all the areas of
expertise: A user achieves level 1 for checking in at �ve
unique places. From there, every level up is �ve more
unique places.

� Mayorship (FreqBadge). Issued when the client has
performed the largest number ofCheckIns, at most one
per epoch, in the pastm epochs at a given venue.m
is a system parameter. FreqBadge models Foursquare
“mayor” badges.

� Multi-Player Badge (MPBadge). Issued when the client
runs CheckIn simultaneously withs other users at
the same location.s is a system parameter. The MP-
Badge models Foursquare badges such as “Player Please!
(Heart)”, see [34].

ProveBadge(C1(pubS ; V; BV ); C2(pubS ; V ); S(priv S ; V )) :

This protocol enables clientC1 to prove ownership of a badge
BV for a venueV to another clientC2. In order to preserve
the privacy ofC1, following the ProveBadge execution,C2

should not learn additional information aboutC1 and should
not be able to prove ownership of the badge to another client.

D. Privacy and Correctness Properties

1) Server Side:We consider a providerS that follows the
protocols correctly. This implies for instance that the provider
will not hand out incorrect information to users. However, we
assume thatS is interested in collecting tuples of the format
(Id; V; T ), whereId is a user id,V is a venue andT is a time
value. In order to achieve this goal,S may collude with venues
and existing clients and generate Sybil clients to track users
of interest. The provider however does not collude with users
to issue badges without merit. We do not consider physical
attacks, such as, the server physically tracking individual users.

Intuitively, to achieve privacy, the provider should learn
nothing aboutGeo clients, including the venues and times at
which a user runs theCheckIn function, as well as her total
and per-venueCheckIn counts. We note that this necessarily
includes also hiding correlations between venues where a
given client has runCheckIn. We formalize this intuition
using games run between an adversaryA and a challenger
C. A controls the service provider, the set of venues and
any number of clients, thus controls the initial parameter
generation functionality (e.g., theSetup function). A shares
public parameters withC. C controls two clientsC0 and C1.
C initially runs the Subscribe function with A for the two
clients and obtains their unique identi�ers.

In a �rst CheckIn-Indistinguishability game, we model the
adversary's inability to distinguish between clients during
CheckIn executions, even when the adversary controls an
initial trace of CheckIn executions. We use the notation
Cb(args) or Cci to denote either clientC0 or client C1

(according to the value of the bitb or ci ), using input values
args.
CheckIn Indistinguishability (CI-IND). A generates pub-
lic information pubA (and corresponding private informa-
tion priv A ), generatesl bits c1; ::; cl , and l + 1 venue ids
V1; ::; Vl ; Vl +1 , Vi 2 V , i=1..l+1, and sends them toC. For
eachi = 1 ::l , Cneeds to runCheckIn on behalf of clientCci ,
at venueVi . C veri�es that the time between two consecutive
requests for the same client is suf�cient to enable the client to
travel the distance between the corresponding venues. If this
condition is not satis�ed,C ignores the request. Otherwise, it
executesCheckIn(Cci (Id ci ; Vi ; Ti ; pubA ); A (priv A )) . After
processing thel requests,C makes sure that the distance
between bothC0 and C1 's last check-ins to venueVl +1 can
be physically traversed between the time of their last check-
ins and the current time. If the veri�cation fails,C stops
the game. Otherwise,C generates a bitb 2 f 0; 1g and runs
CheckIn(Cb(Id b; Vl +1 ; Tl +1 ; pubA ; A (priv A )) . A outputs a
bit b0. A solution provides CI-IND if the advantage ofA in
the CI-IND game,Adv(A) = jP r [b = b0]� 1=2j, is negligible.
CI-IND Intuition. The above de�nition models the claim of
an adversary of being able to distinguish the client executing
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a CheckIn protocol. For this, the challenger allows the
adversary to request it to perform a number ofCheckIn
operations on behalf ofC0 andC1, two clients controlled by
the challenger. The adversary also speci�es the location where
the check-in is to take place. Then, the challenger chooses
privately one of the two clients and performs aCheckIn on
its behalf, at a venue chosen by the adversary. The adversary
wins if it is able to guess the client that has performed the
check-in, with probability signi�cantly higher than 1/2. We
note that the challenger veri�es the feasibility of the check-
ins: the fact that the adversary is not trying to win the game
by making it impossible for a client to succeed in a check-in
at a location.

In a second, StatVerify-Indistinguishability game, the adver-
sary (e.g., service provider) should be unable to distinguish
between clients runningStatV erify , even ifthe adversary is
able to trace clientCheckIn executions.
StatVerify Indistinguishability (SV-IND). A generates public
informationpubA and sends it toC but keeps the private infor-
mationpriv A secret. The game has two steps. In the �rst step,
A generatesk = 2 s new bitsc1; ::; ck such thats of them are
0 ands of them are 1.A also generatesk venue ids,V1; ::; Vk ,
Vi 2 V, i=1..k. A sendsc1; ::; ck andV1; ::; Vk to C. For each
i=1..k, C runs CheckIn(Cci (Id ci ; Vi ; T; pubA ); A (priv A )) ,
only if the time between the previousCheckIn of client Cci

andTi is suf�cient to enableCci to travel the distance between
the venue of the previousCheckIn and Vi . At the end of
this step,C veri�es that C0 andC1 have performed the same
number of check-ins at any venueV1; ::; Vk . If this veri�cation
does not succeed,C stops the game. In the second step,A
sends toC a venue idV 2 V , such that the distance between
the venue of the lastCheckIn of client Cj (j=0,1) andV
can be physically traversed from the time of thatCheckIn
to the current time.C generates a bitb 2 f 0; 1g and runs
StatV erify (Cb(Id b; V; T; pubA ); A (priv A ). A outputs a bit
b0. A solution is said to provide SV-IND if the advantage of
A , Adv(A) = jP r [b = b0] � 1=2j, is negligible.
SV-IND Intuition. The SV-IND game models the inability of
A , that controls the entire system with the exception of two
clients C0 and C1, controlled byC, to guess the identity of
the client (C0 or C1) performing aStatV erify operation. For
this, in an initial step,A is allowed to requestC to perform
CheckIn operations and specify the identity of the client and
the venue where the check-in is to be performed. At the end
of this step,C veri�es that the two clients are equivalent:
they have the same (badge) status at all the venues requested
by A. A secretly chooses one of the clients and executes
StatV erify on its behalf for one of the venues chosen by
A. A wins if it is able to guess the identity of the client with
probability signi�cantly larger than 1/2.

The following property models the ability of the server to
collect venue-based statistics:
Provider Usability. The service provider can count the
CheckIn executions for any venue as well as list the issued
badges and mayorships.

2) Client Side: The client is assumed to be malicious.
Malicious clients can be outsiders that are able to corrupt
existing devices or may be insiders, i.e., subscribers, users

that have installed the client. Malicious clients can try to
cheat on their location (claim to be in a place where they
are not [11]), attempt to prove a status they do not have,
or disseminate credentials received from the server to other
clients. The latter case includes any information receivedfrom
the server, certifying presence at a speci�c location.

Our solutions are not designed to handle private venues,
venues that uniquely identify the user performing a check-in
there (e.g., the user's home).

In the following game,k is a system parameter that denotes
the number of check-ins a user needs to perform in order to
acquire special status (a badge).
Status Safety.The challengerC controls the service provider
and the adversaryA controls any number of clients. The
challenger runs �rst theSetup protocol and providesA with
its public parameters.A runsSubscribeany number of times
to generate clients.A then runsCheckIn with C for any
number of venues, but at mostk � 1 times for any venue.A
runsStatV erify with C. The advantage ofA is de�ned to be
Adv(A) = P r [StatV erify (C(paramsC ); S(priv S )) = 1] .
We say that a solution is status safe ifAdv(A) is negligible.
Token Non-distributability. No client or coalition thereof can
use the same set of tokens more than once.
Token-Epoch Immutability. No client or coalition thereof can
obtain more than one token per site per epoch.

IV. TOOLS

Hash functions and HMACs. We use cryptographic hashes
that are easy to compute and are (i) pre-image resistant, (ii)
second pre-image resistant and (iii) collision resistant.Let
H (M ) denote the hash of messageM . Pre-image resistance
means that given a hash value h it is hard to �nd any message
M such thatH (M ) = h. Second pre-image resistance means
that given a messageM 1, it is hard to �nd another message
M 2 such thatM 1 6= M 2 and H (M 1) = H (M 2). Collision
resistance means that it is hard to �ndany two messagesM 1

andM 2 such thatM 1 6= M 2 andH (M 1) = H (M 2).
We also use hash based message authentication codes,

HMACs, that rely on cryptographic hashes and keys to au-
thenticate messages [35]. LetHMAC K (M ) denote the keyed
message authentication code of messageM . Two parties
sharing a keyK , can use the stringM; HMAC (K; M )
to authenticate messageM : only someone knowing keyK
can generateHMAC (K; M ) and verify its authenticity for
messageM .
Signatures and blind signatures.We rely on unforgeable
signature schemes. LetSigX (M ) denote the signature of a
messageM by participantX . Unforgeability is de�ned in
terms of security “against one-more-forgery”, where the user
engaged inl runs of the signature algorithm with the signer
cannot obtain more thanl signatures. We also make use of
blind signatures [36], [37] that have the standard (i) blindness
and (ii) unforgeability properties. Blindness means that the
signer cannot learn information about the signed messages.
Anonymizers. We assume the existence of a network
anonymizer,Mix , such as Tor [38]. Anonymizers or mix-
nets [38], [39] are tools that make communication untraceable
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and unlinkable. Untraceability implies the infeasibilityof
�nding the identity of the issuer of a given set of messages.
Unlinkability implies the infeasibility of discovering pairs of
communicating entities. Existing popular anonymizing tools
include onion routing Tor [38] and Crowds [39].
Anonymous authentication. The authentication step allows
the user to prove to the server that it is a subscriber. We rely
on anonymous authentication techniques with revocation and
identity escrow, e.g., [40], performed overMix , to enable
users to anonymously prove their service subscriber status.
The solutions proposed by Boneh and Franklin [40] allow a
user to prove in zero knowledge its membership to arbitrary
subsets of users while allowing an escrow agent to reveal the
identity of misbehaving users. We note that to minimize the
communication overheads, the ZK proofs can be made non-
interactive (e.g., the user computes the challenge based on
veri�able values such as the current time and server status).
The QR-Assumption.Given a large compositen = pq, where
p and q are safe primes and givenn but not p and q, it is
computationally hard to decide if any valuev, whose Jacobi
symbol(vjn) is 1, is a quadratic residue or not.v is a quadratic
residue if there exists a valuey such thaty2 = v mod n.
Symmetric Private Information Retrieval. A private in-
formation retrieval (PIR) protocol allows a user to retrieve
an item from a server in possession of a database without
revealing which item she is retrieving. Symmetric PIR (SPIR),
introduces the additional restriction that the user may notlearn
any item other than the one she requested [41], [42].
Zero knowledge (ZK) proofs. ZK proofs are protocols that
enable a prover, claiming to know that a statement is true,
to prove this fact to a veri�er, without allowing the veri�er
to learn any information that would allow her to prove the
statement to anyone else. A ZK proof protocol needs to satisfy
completeness, soundness and ZK properties. Completeness
means that if the statement is true, an honest veri�er will be
convinced of this fact by an honest prover. Soundness means
that if the statement is false, a cheating prover can convince the
honest veri�er that it is true only with negligible probability.
ZK means that if the statement is true, even a cheating veri�er
learns nothing except this fact.
Notation. x 2R X is the random choice ofx from setX .

V. GEO-BADGE

GeoBadge is a private protocol that allows users to prove
having visited the same locationk times (see Figure 3 for
a high level diagram). The set of supportedk values is pre-
de�ned, e.g.,k = 1 for “Newbie”, k = 10 for “Adventurer”,k =
25 for “Explorer”, etc, and is known by all client applications.
At the end of the section we show how to adapt this solu-
tion to support T-Badges. GeoBadge works as follows: each
subscribed client contacts the provider over the anonymizer
Mix , authenticates anonymously, proves its current location
and obtains a blindly signed, single use nonce and a share of a
secret associated with the current venue. Whenk shares have
been acquired, the client is able to reconstruct the secret,which
is the proof required for the badge. The single use nonces
prevent users from distributing received shares (or proofs).

Fig. 3. High level overview of a private badge protocol.

GeoBadge extendsGeo and provides the skeleton on which
we build the subsequent solutions. For instance, the anony-
mous authentication and location veri�cation functions are
only described for GeoBadge and inherited by FreqBadge and
MPBadge. Each client maintains a setT k, storing all the
tokens accumulated duringCheckIn runs. When the client
accumulates enough tokens inT k to achieve special status,
it runs StatV erify , aggregating the tokens inT k. In the
following we instantiate each protocol, executed between a
client C and the GSN providerS.
Setup(S()): Executed once in the beginning, byS. S generates
a large prime modulusp that will be used to compute secret
shares and publishesp. S generates a random keyK , that will
be used for authentication purposes.K is kept secret byS.

For each badge that requiresk check-ins,S generates two
large primespk andqk such thatqk j(pk � 1). Let Gqk be the
unique subgroup ofZ�

pk
of order qk . Let gk be a generator

of Gqk . S generates a fresh, random geo-badgeGBk and
computes the commitment valueCMT k = gGB k

k 2 Gqk . For
each supported badge,S publishespk , qk , gk andCMT k , but
keeps secretGBk .
RegisterVenue(O(V ); S(priv S )) : The ownerO that registers
venueV , sends toS its public key. For each new venueV ,
for which the service provider offers badges (afterk CheckIn
runs)S generates a secretM V randomly.S uses a threshold
secret sharing solution to compute shares ofM V , by generat-
ing a polynomialP ol of degreek � 1 whose free coef�cient
is M V : P ol(x) = M V + c1x + c2x2 + :::+ ck � 1xk � 1. S keeps
P ol's coef�cients secret but publishes the degreek and the
veri�cation value V erV = H (HMAC K (V )M V mod p). A
client that reconstructsV erV , has proof of having achieved
the special status (GeoBadge).S storesP ol's coef�cients for
V , along with the public key ofV 's owner.
Subscribe(C() ; S(pubS ; priv S )) : The communication in this
step is performed overMix , to hideC's location fromS. C
runs the setup stage of the Anonymous Authentication protocol
of Boneh and Franklin [40] to obtain tokens that allow it later
to authenticate anonymously with the server.
CheckIn(C(Id; V; T; pubS); S(priv S )) : Let (current) timeT
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be during epoche. The following actions are performed by a
client C and the service providerS:

� Anonymous Authentication: C runs the anonymous au-
thentication procedure of Boneh and Franklin [40] to prove to
S that it is a subscriber. This step is performed overMix .

� Location Veri�cation: C runs a location veri�cation pro-
tocol [43] to prove presence atV .

� Token Generation: C generates a fresh random value
R and sends the blindedR to S, as Obf (R) (obfuscated
for instance using a modular multiplication, see Chaum's
work [36] on blind signatures).S computesxe = H (e) mod p
and ye = P ol(xe) mod p. S sends to C the tuple
(xe; ce; SigS(Obf (R))) , wherece = HMAC K (V )ye mod p
and the last �eld denotes the blindly signedR. C “unblinds”
the signed nonce (see [36]), obtainsse = SigS(R) and stores
(xe; ce; se) into the setT k.
StatVerify (C(Id; V; k; T k; pubS); S(priv S ; k)) : Let T k =
f (x1; c1; SigS(R1)) , .., (xk ; ck ; SigS(Rk ))g. Let l j (x) =
� m =1 ::k;m 6= j

x � x m
x j � x m

mod p be the Lagrange coef�cients. The
following steps are executed, overMix :

� C computes SS = � j =1 ::k cj l j (0). C veri�es that
H (SS) = V erV (see the Correctness property in Sec-
tion V-A). If the veri�cation fails, C outputs -1 and stops.
Otherwise, it sendsSS, along with the set of signed nonces,
(SigS(R1); ::; SigS(Rk )) and the venueV to S.

� S veri�es that (i) thek random values are indeed signed
by it, (ii) that R1; ::; Rk are unique and have not been used
before and (iii) thatH (SS) = V erV . If either veri�cation
fails, S outputs -1. Otherwise,S stores the valuesR1; ::; Rk ,
then sends the badgeGBk (seeSetup) to C (over Mix ).
ProveBadge(C1(pubS ; GBk ; V; pk ; qk ; gk ),
C2(pubS ; V; pk ; qk ; gk ), S(priv S ; V; CMTk ): C2 retrieves
CMT k from S. C1 and C2 engage in a zero knowledge
protocol where C1 proves knowledge of theGBk , the
discrete logarithm ofCMT k , for instance, using Schnorr's
solution [44].

A. Analysis

We now prove several properties of GeoBadge.
Correctness.: The following holds due to Lagrange

interpolation:

SS =
kX

j =1

cj l j (0) = HMAC K (V )
kX

j =1

P ol(x j )l j (0)

= HMAC K (V )P ol(0) = HMAC K (V )M V

We consider modi�ed versions of the CI-IND and SV-IND
games of Section III-D, where all the venues (chosen byA)
are identical. We now introduce the following results:

Theorem 1:GeoBadge is CI-IND.
Proof: (Sketch) Following the CI-IND game,A 's view

consists of the outcome ofl + 1 anonymous authentication
procedures andl + 1 blinded random values. The blinded
random values are information theoretical secure. Then, ifA
can distinguish betweenC0 andC1 in the last step of the game,
we can build an adversary that has a non-negligible advantage

against either (i) the anonymous authentication solution of
Boneh and Franklin [40] or (ii) the untraceability property
of Mix .

Theorem 2:GeoBadge is SV-IND.
Proof: (Sketch) At the completion of the SV-IND game

C can reconstruct theSS values for bothC0 and C1. A has
published a pre-commitment forSS – V erV . Note thatC's
veri�cation of H (SS) = V erV preventsA from guessing
b based on the valueC reconstructs duringStatV erify .
Thus, if the adversary has non-negligible advantage in the
SV-IND game then we can also build an adversary that has
non-negligible advantage against either (i) the untraceability
property of Mix , (ii) the blindness property of the blind
signature algorithm, or (iii) the information theoretic security
of the threshold secret sharing mechanism.

Theorem 3:GeoBadge provides Status Safety.
Proof: (Sketch) The use of a location veri�cation solu-

tion [43] prevents the attacker from falsely claiming presence
at V . Then, if there exists an adversary that has non-negligible
advantage in the Status Safety game we can build an adversary
that has a non-negligible advantage against (i) the pre-image
resistance property of hashes (invertingV erV = H (SS)) or
(ii) the information theoretic threshold secret sharing technique
(including combining shares generated at multiple sites).

GeoBadge also provides the Token Non-Distributability
property. The single use, server signed random nonces prevent
more than one run ofStatV erify for a given set of tokens.
The Token-Epoch Immutability property holds since the pair
(xe; ce) is a deterministic function ofe.

B. The Touring Badge (T-Badge)

The “adventurer” badge is unlocked when the user checks-in
at k different locations.GeoBadgecan be easily modi�ed to
support this functionality: the provider assigns one share(one
point of the polynomialP ol) to each participating venue. The
free coef�cient ofP ol is the secret which unlocks the badge.
Whenever a user checks-in at one venue, it receives the share
associated with the venue. After visitingk venues, the user has
k shares and can reconstruct the secret and unlock the badge.
Note that multiple check-ins at the same venue will retrievethe
same share, thus forcing the client to visitk differentvenues.
We note that multiple users could collude and combine their
shares to obtain an “adventurer” badge, while none of them
in isolation satis�es the condition. However, users may lack
incentives for this attack: only one of the participants would
receive the badge while the others waste their shares.

VI. FREQBADGE

Using the Foursquare terminology, the user that has run
CheckIn the most number of times, at a venueSV, within
the pastm epochs, becomes the mayor of the place. Let
Mr V denote the number of check-ins (atV ) performed by
the current mayor ofV .

We introduce FreqBadge =f Setup, RegisterV enue,
MaintainV enue , MaintainBadge , Subscribe, CheckIn,
StatV erify , P roveBadgeg, a solution that extendsGeo
with two protocols:MaintainV enue andMaintainBadge .
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Fig. 4. Example timeline of mayorship evolution.C1 andC2 denote
two clients that compete for mayorship at the same venue. Each bin
denotes one day. A black or gray rectangle overlapping a day denotes
a check-in performed by a client during that day.

FreqBadge allows clients to prove having performed any
number of check-ins, not just a pre-de�ned value. The check-
ins are time constrained: clients have to prove that all check-ins
have occurred in the pastm epochs. Furthermore, client issued
proofs can be published by the provider to be veri�ed by any
third party, without the risk of being copied and re-used by
other clients.

A. Overview

FreqBadge achieves these features in the following way. In
the MaintainV enue protocol, the service provider generates
exactly one fresh token per epoch, for each supported venue
V . When a client runsCheckIn at V , it receivesV 's token for
the current epoch. The client stores the tokens accumulatedfor
V in the setT kV . At any time, for any venueV , the provider
publishes and makes available upon request to any client, two
values, (i)Mr V , the number of tokens that the mayor ofV
has proved to have accumulated in the pastm epochs, and
(ii) CMTV , a badge commitment value whose true nature we
will reveal later.

If, during a CheckIn run, a client's number of tokens,
jT kV j, exceeds the currentMr V , StatV erify is invoked. The
provider maintains a queue ofStatV erify requests: each new
request is placed at the end of the queue and each request is
processed in the order in which it was received.StatV erify
succeeds only if the client is able to prove to the provider that
it knows at leastMr V +1 out of them tokens given in the past
m epochs for that venue. The proof is in zero knowledge. If
the proof succeeds, it is published by the provider, along with
an increasedMr V value, re�ecting the new mayor's number
of tokens. The provider then issues a private FreqBadge badge
to the client, and publishesCMTV , a commitment value for
this badge.

If multiple clients initiate theStatV erify protocol simul-
taneously, with the same number of tokens, only the �rst
becomes the mayor: after the completion of the �rst client's
StatV erify protocol, theMr V value is incremented. The
second client'sStatV erify will not succeed, since its number
of tokens does not exceed (but only equals) the newMr V

value. However, since the proof is in zero knowledge, the
second client can safely reuse its tokens - they have not been
revealed to the provider.

If a client needs to prove ownership of the FreqBadge
for a venueV , it invokes theP roveBadge protocol. The
P roveBadgeis used to prove knowledge of the badge against

Fig. 5. Diagram of FreqBadge.

CMTV , in zero knowledge, that is, without the client actually
revealing the badge.

The MaintainBadge protocol is executed once per epoch
by each active clientC. For each venueV where C has
performed aCheckIn, C removes from the token setT kV

any token it has receivedm epochs ago. It then contacts the
provider to obtain the updatedMr V value. If jT kV j > Mr V ,
C initiates theStatV erify protocol forV : it has become the
mayor ofV .
Example. Figure 4 shows an example of mayorship changes
for a venue where two clientsC1 and C2 contend for the
position. m, the number of days over which theCheckIn
tokens are counted, is set to 5. After the �rst 5 epochs
(Figure 4(a)),C1 is the mayor, with 3CheckIn executions
compared toC2 's only 2. Thus,Mr V is set to 3. At the
beginning of the 6th epoch (Figure 4(b)), the provider sets
Mr V to 2. When C1 is online, it runsMaintainBadge ,
detects it still has 3 tokens, thus exceedingMr V , invokes
StatV erify and maintains its FreqBadge.Mr V is then set
back to 3. During the epoch,C2 performs a newCheckIn.
However, since its number of tokens does not exceed theMr V

value, it does not become the new mayor.
We note that ifC1 is not online during the 6th epoch,C2

can become a mayor only after performing the newCheckIn
at V . At that time,C2 has 3 tokens andMr V = 2.

At the beginning of the 7th day (Figure 4(c)),Mr V is set
to 2 andC1 expires its least recent token. At this point,C1 is
still the mayor, since it hasMr V tokens: 2. However, as soon
asC2 comes online and runsMaintainBadge , it detects that
its number of tokens exceedsMr V , invokesStatV erify and
becomes the new mayor ofV .

B. The Solution

We now describe each protocol of FreqBadge, illustrated in
Figure 5.
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Setup: The server generates two large safe primesp and q
and the compositen = pq. Let N denoten's bit length. S
publishesn and keepsp andq secret.
RegisterVenue(O(V ); S(priv S ; Mr V )) : For a newly regis-
tered venueV , S generates a new random seedrV and uses
it to initialize a pseudo-random number generatorGV . S also
generates two large primespV andqV such thatqV j(pV � 1).
Let GqV be the unique subgroup ofZ�

pV
of orderqV . Let gV

be a generator ofGqV . S publishespV , qV and gV . S also
setsMr V to 0: the venue has no mayor yet.
MaintainVenue(S(priv S )) : The protocol is run by the
provider S at the beginning of each epochei . S generates
a fresh random tokent i , usingGV , and publishest2

i mod n.
S decrementsMr V := Mr V � 1.
MaintainBadge(C(Id; pubS ; ei ); S(priv S ; ei ): The protocol
is run at the beginning of each epochei by each active client
C, for each venueV whereC has performed aCheckIn. Let
T kV denote the set of tokens received byC at V . C performs
the following two actions:

� Remove fromT kV the token (if any) obtained during
epochei � m .

� Request from S the current Mr V value. To pre-
vent S from learning the venues whereC has checked-
in, this operation is done either overMix , or us-
ing a PIR protocol. If jT kV j > Mr V , C invokes
StatV erifyC (Id; V; jT kV j; T kV ; pubS); S(priv S )) .
CheckIn(C(Id; V; T; q; pubS ); S(priv S )) : Inherits the
Anonymous Authentication and Location Veri�cation steps
from GeoBadge. If they succeed, let timeT be within
epoch ei , when the provider's published token value is
t2
i mod n. S sends toC the valuet i , the square root of

the value published for the epochei , along with Mr V ,
the number of tokens of the current mayor ofV . C
stores t i in the set T kV . If jT kV j > Mr V , C invokes
StatV erify (C(Id; V; jT kV j; T kV ; pubS ; ei ); S(priv S ; ei )) .
All communication takes place overMix .
StatVerify (C(Id; V; k; T kV ; pubS ; ei ); S(priv S ; ei )) : All
communication in this step is done overMix . C sendsk to
S. If k � Mr V , S rejects the request and the protocol stops.
Otherwise, without loss of generality, letT kV = f t1; ::; tk g
be the set of all tokens retrieved byC from S for the venue
V in the pastm epochs. LetT 2 = f t2

1; t2
2; ::; t2

m g denote the
corresponding published values. Note that the membership of
T 2 changes during every epoch. The client and the server run
the following stepss times (ZK proof of the client knowing
k square roots of values fromT 2). If successful, at the end
of the s stepsS will be convinced with probability1 � 2� s.

� C generatesy1; ::; ym 2R f 0; 1gN and a random permu-
tation � 1. C computes the setM = � 1f t2

1y2
1 ; ::; t2

m y2
m g and

sends it toS. C needs not knowt1; ::; tm to computeM .
� C generatesz1; ::; zk 2R f 0; 1gN and a random permu-

tation � 2 and computes the setP roof = � 2f t1z1; ::; tk zk g,
which it sends toS.

� S �ips a coin b and sends it toC.
� If b=0, C sendsy1; ::; ym to S, which then veri�es that for

everyt2
i 2 T 2, t2

i (yi )2 occurs once inM .
� If b=1, C generates and sendsA = � 2f a1 =

z� 1
1 y1; ::; ak = z� 1

k yk g. S veri�es that for everypi 2 P roof
and correspondingai , (pi ai )2 occurs inM once.

If any step fails,S outputs -1 and stops. Otherwise,S
generates a fresh, random “mayor” badgeF B V for venueV
and computes a commitmentCMTV = gF B V

V 2 GqV . S sends
F B V and the signed commitment,SigS(CMTV ; ei ) to C and
publishesCMTV . Finally, S updatesMr V to the valuek.

To reduce delays, the ZK proof can be non-interactive – in
the standard way, by making the challenge bits depend in an
unpredictable way on the values sent to the server. This allows
C to send the entire proof at once.
ProveBadge(C1(pubS ; F B V ; V; pV ; qV ; gV ),
C2(pubS ; V; pV ; qV ; gV ), S(priv S ; V; CMTV ): This protocol
enables clientC1 to prove “mayorship” of a venueV to
another clientC2. C2 retrieves CMTV from S. C1 and
C2 engage in a zero knowledge protocol whereC1 proves
knowledge of the discrete logarithm ofCMTV , for instance,
using Schnorr's solution [44].

C. Analysis

Theorem 4:The StatV erify protocol of FreqBadge is a
zero knowledge proof system ofk square roots fromT 2.

Proof: (Sketch) To see that FreqBadge is a proof system,
we need to prove completeness and soundness.

Completeness– an honest server will be convinced by an
honest client of the correctness of the proof. Ifb=0, S is
convinced thatM is obtained fromT 2 by multiplication with
quadratic residues,y2

i . That is, for eacht i 2 T 2, t2
i y2

i 2 M .
If b=1, S is convinced thatC knows the square roots ofk
elements inM . This is becauseC can provideai values that
satisfy (pi ai )2 = ( t i zi z

� 1
i yi )2 = t2

i y2
i 2 M . In conjunction,

these two cases prove toS that C knows the square roots of
k elements fromT 2 with probability 1 � 2� s.

Soundness– if the statement is false, no cheating client
can convince an honest server that the statement is true,
except with small probability. Without loss of generality,let
us assume thatC knows only k � 1 square roots ofT 2,
t1; ::; tk � 1. If C expects the challenge to beb = 0 , C generates
y1; ::; ym as in the protocol, buildsM correctly but generates
P roof = � 2f t1z1; ::; tk � 1zk � 1; zk g, wherezk is random. If
the challenge ends up beingb = 1 , C has to produce oneaj

value that is equal toyj z� 1
j (t2

j )1=2, for one j 2 k::m. Due
to the QR-Assumption,C is unable even to tell whether any
t2
j is a quadratic residue or not. IfC expects the challenge to

be 1, it buildsM = � 1 = f t2
1w2

1 ; ::; t2
k � 1w2

k � 1; w2
k ; ::; w2

m g,
where thewi 's are random. It then build Proof to be
P roof = � 2f t1z1; ::; tk � 1zk � 1; zk g. If b = 1 , C can provide
square roots fork values inM . If b = 0 however,C has
to producem � k + 1 valuesyj such thatyj = wj (t � 2

j )1=2,
which contradicts again the QR-Assumption. The chance of a
cheating client to succeed afters repetitions is2� s.

Zero Knowledge. The proof follows the approach
from [45], [46]. Speci�cally, let S� be an arbitrary, �xed,
expected polynomial time server Turing machine. We generate
an expected polynomial time machineM � that, without being
given access to a clientC (or the square roots of any elements
from T 2), produces an output whose probability distribution
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is identical to the probability distribution of the output of
< C; S � > .

M � is built by usingS� as a black box. For each of thes
steps of the protocol,M � �ips a coin a and builds the sets
M andP roof anticipating that the challenge bitb will equal
a. It then feeds these values toS� , which then outputsb. If
b = a, M � outputs the transcript of the transaction and moves
to the next step. Otherwise, it repeats the current step.M �

terminates in expected polynomial time (each of thes steps
is executed on average twice). The probability distributions of
the output of< C; S � > and of M � are identical, which is
proved by induction.

Similar to the analysis of the GeoBadge protocol, here we
also consider modi�ed versions of the CI-IND and SV-IND
games of Section III-D, where all the venues (chosen byA)
are identical. We now introduce the following results:

Theorem 5:FreqBadge is CI-IND and SV-IND.
Proof: (Sketch) The CI-IND proof is inherited from

GeoBadge:CheckIn protocol differs solely in the provider's
issuance of a square root value. For the SV-IND proof:A
can learn user information through (i) the proof and (ii) from
the communication medium. However, Theorem 4 shows that
StatV erify is a ZK system. Furthermore,Mix provides com-
munication untraceability and unlikability (see Section IV).

Theorem 6:FreqBadge provides Status Safety.
Proof: (Sketch) Results directly from Theorem 4:

StatV erify is a proof system of havingk square roots from
T 2. A cheating client can succeed with probability2� s, where
s is the number of proof iterations.

FreqBadge trivially provides the token-epoch immutability
property, asS issues a single token per venue per epoch.
FreqBadge does not provide token non-distributability. Intro-
ducing the blindly signed nonces of GeoBadge in FreqBadge
to address this problem would not make sense:S would be
able to link two different runs ofStatV erify and break the
SV-IND property.

VII. E-BADGE

The level 1 e-Badge is unlocked when the user checks-in
at k different locations having a common background (e.g.,
“swimmie”, “wino”, “pizzaiolo”, see Section III-C). Each
subsequent level of the e-Badge is reached when the user
checks-in atk new venues.

Solution Overview.: For each e-Badge, supportingL
expertise levels, the provider generates2L � 1 secrets. Level 1
has only one secret, called theouter secret. Each levelL > 1
has 2 secrets, theouter and inner secret. The outer secret of
level L is the xor between the inner secret of levelL and the
outer secret of levelL � 1. To achieve expertise levelL , a
client needs to recover its outer secret.

The provider assigns a share of each of theL inner secrets
to each qualifying venue. Thus, a venue receivesL shares,
each of a different secret. When a user subscribes, it receives
k request tokens, blindly signed by the provider. The request
tokens enable the client to contactk different venues and
collect k shares for the next desired level. Request tokens
cannot be reused, thus preventing a user from collecting more

than k shares. Since they were blindly signed, the provider
cannot link the request tokens to clients.

During CheckIn, the client uses a symmetric PIR protocol
to privately collect a single share, without leaking the level
desired. When the client recoversk shares of the inner secret of
the next level, it reconstructs the inner secret. It then combines
it with the outer secret of its current level of expertise and
recovers the outer secret of the next level. When the client
reaches levelL , it receives a new set of blindly signed request
tokens, to enable it to acquire the next level (L + 1) of
expertise. We now detail each protocol of e-Badge.
Setup(S(L)): L is the number of expertise levels supported by
the provider.S chooses a large primep and generates a random
keyK . Similar to theSetupof GeoBadge,S generates a group
G, with generatorg. S publishesp, g and G and keepsK
secret. For each supported e-Badge,S generates a list of outer
secretsL V = f M 1; ::; M L g, one for each supported expertise
level, as follows:

� For level 1, generate a random valueM 1. Use a threshold
secret sharing solution to compute shares ofM 1: generate a
polynomial P ol1 of degreek � 1 whose free coef�cient is
M 1. Generate a random e-Badge for level 1,eB1 and the
commitmentCMT1 = geB 1 2 G. Keep P ol1's coef�cients
and eB1 secret. Publish the degreek and the veri�cation
value V er1 = H (M 1:HMAC K (V ) mod p). Store P ol1 's
coef�cients. PublishCMT1.

� For each subsequent levelL , generate a random value as
the outer secretM L . De�ne the inner secretM L = M L �
M L � 1. That is, the outer secret of levelL is the bitwise xor
of the inner secret of levelL and the outer secret of levelL � 1.
Use a threshold secret sharing solution to compute shares of
M L (generate a polynomialP olL of degreek � 1 whose free
coef�cient is M L . Keep P olL 's coef�cients secret. Publish
the veri�cation valueV erL = H (M L :HMAC K (V ) mod p).
StoreP olL 's coef�cients. Generate a random e-Badge for level
L , eBL , and the commitmentCMTL = geB L 2 G. KeepeBL

secret but publishCMTL .

RegisterVenue(O(L; V; pubO ); S(priv S )) : The ownerO that
registers venueV sends toS its public key,pubO . S stores
pubO along with V . If V quali�es to provide an e-Badge,
S generates a share of a secret from each expertise level:
GeneratexV = H (V ) mod p and yi = P oli (xV ) mod p,
for all i = 1 ::L . S stores[xV ; yi ], 8i = 1 ::L , the shares of the
secretsM 1; M 2; ::; M L along withV .
Subscribe(C() ; S(pubS ; priv S )) : The communication in this
step is performed overMix , to hideC's location fromS. C
runs the setup stage of the Anonymous Authentication protocol
of Boneh and Franklin [40] to obtain tokens that allow it later
to authenticate anonymously with the server. Furthermore,
C generatesk randomrequest tokensrt 1; ::; rt k . C and S
engage in a blind signature protocol whereS blindly signs
each request token forC. C storesSigS(rt 1), .., SigS(rt k )
associated with the corresponding badge.
CheckIn(C(Id; V; T; pubS ; L ); S(priv S )) : Let us assume that
C has an e-Badge at levelL � 1 and needs to acquire level
L . The communication between the check-in clientC and S
takes place overMix . If the venueV quali�es for an e-Badge,
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C sends a yet unused, provider signed, request token toS. S
veri�es its signature on the token and the fact that the tokenhas
not been used before (at any other venue). If the veri�cations
fail, S returns -1. Otherwise,C andS engage in a symmetric
private information retrieval protocol [41], [42], allowing C to
retrieve a single share of the e-Badge, for the levelL : (X V ,
yL ). C stores the share (X V , yL ) along with the current secret
for the levelL � 1 of the e-Badge,M L � 1. The setT k stores
these values.
StatVerify (C(Id; V; k; T k; pubS; L ); S(priv S )) : Let us as-
sume thatC holds expertise levelL � 1 for the e-Badge and has
performedk more check-ins at qualifying venues. Thus,C has
a setT k storingk shares of the inner secretM L . C repeats the
steps ofStatV erify of GeoBadge (overMix ) to reconstruct
the inner secretM L . It then retrievesM L = M L � M L � 1 and
presents the value toS. S veri�es the correctness of the value.
If correct, it sendseBL to C, certifying e-Badge expertise level
L . S and C engage in a protocol enablingS to blindly sign
k new request tokens forC.

Due to lack of space, we omit the details ofP roveBadge
that trivially extends the corresponding protocol of GeoBadge,
with the exception that each expertise level has a different
secret badge and corresponding commitment value.

A. Analysis

Correctness is straightforward: a client at expertise level
L � 1, following the protocol correctly is able to retrievek
shares ofM L and then recoverM L .

Theorem 7:e-Badge is CI-IND.
Proof: (Sketch) The communication betweenC and S

during CheckIn takes place overMix . C reveals a blindly
signed request token not used before in order to perform this
operation.C uses a SPIR protocol to retrieve only one share
of the secret needed. An adversaryA with non-negligible
advantage in the CI-IND game has the same advantage against
either (i) the untraceability property ofMix , (ii) the blindness
property of the blind signature algorithm, or (iii) the SPIR
protocol in guessing the level accessed byC with probability
higher than1=L.

Theorem 8:e-Badge is SV-IND.
Proof: (Sketch) At the completion of the SV-IND game,

C is able to reconstruct the secrets of both clientC0 and C1

(for the same level). According to CI-IND, the adversaryA is
unable to identify clients performingCheckIns. During the
�nal StatV erify run of the SV-IND game,Creveals only the
outer secret of the level it wants to achieve, but no intermediate
values. Thus, ifA has an advantage in the SV-IND game, it has
the same advantage against the (i) untraceability propertyof
Mix or (ii) the information theoretic security of the threshold
secret sharing solution and the xor operation.

Theorem 9:e-Badge provides Status Safety.
Proof: (Sketch) The use of a location veri�cation pro-

tocol [43] preventsA from retrieving a share without being
present at the venue. The use of the threshold secret sharing
solution preventsA from reconstructing the secret of a level
without completingk additionalCheckIn operations.

VIII. M ULTI -PLAYER : MPBADGE

The multi-player badge is issued when a user presents a
proof of co-location and interaction withk � 1 other users at
a venueV. k is a parameter that may depend on the venueV .
This models a simpli�ed form of the “Player Please!” badge
of Foursquare, that is acquired when the user checks-in at the
same location with 3 members of the opposite sex. We now
present MPBadge, a privacy preserving solution that provides
the co-location functionality of “Player Please! (Heart)”but
without modeling the gender of the participants.

MPBadge relies on threshold secret sharing, where each
client is able to provide a share of the secret.k unique shares
generated at the same venue in the same epoch (see protocol
MP CheckIn ) can be combined to produce a signed co-
location proof. An additional dif�culty here lies in the ability
of an anonymous user to cheat: runCheckIn multiple times
in the same epoch, obtaink signature shares and generate by
itself the co-location proof. We solve this issue by allowing a
user to runCheckIn only once per venue per epoch - using
the blind signature generation,BSGen, protocol (see below).
Setup: The serverS generates two large safe primesp and
q and the compositen = pq. Let N denoten's bit length.S
publishesn and keepsp andq secret.
RegisterVenue(O() ; S(priv S )) : Perform the following steps:

� S stores a key tableKT , indexed by venues and epochs.
KT [V; e] contains a unique key, used only for signing values
for a venueV during epoche. Let v denote the total number
of venues supported.

� For each venueV and epoche, S generates a value
M V;e 2R f 0; 1gN and a random polynomialP olV;e with
degreek � 1, whose free coef�cient isM V;e. M V;e andP olV;e

are secret.

Subscribe(C() ; S(pubS ; priv S )) : Inherited from GeoBadge.
BSGen(C(Id; e; pubS); S(priv S )) : Executed once per epoch
e by each clientC (when active) with providerS, over an
authenticated channel.C generatesv random values, one for
each venue in the system,R1; ::; Rv . C and S engage in a
blind signature protocol, where eachRi is blindly signed by
S with KT [Pi ; e]. S records the epochs whenC has executed
this step and returns -1 ifC attempts to run this step twice for
the same epoch. Otherwise, the client obtainsSigKT [P i ;e](R),
8i = 1 ::v.
CheckIn(C(Id; V; T; n; pubS); S(priv S )) : C and S run the
Anonymous Authentication and Location Veri�cation steps of
GeoBadge. If they succeed,C sendsR; SigKT [V;e](R) to S
over Mix – the values correspond to the venueV and epoch
e whereC runsCheckIn. S veri�es that (i) R has not been
used before and (ii) the validity of its signature. If eitherstep
fails, S returns -1. Otherwise,S storesR and generates a share
of M V;e: (xe; ye), wherexe is random andye = P olV;e(xe).
S sends(xe; ye) to C as a reply overMix , andC stores them.
MPCheckIn(C1(Id 1; V; T; xe;1; ye;1),..,Ck (Id k ; V; T; xe;k ; ye;k )) :
This step is executed whenk clientsC1,..,Ck are co-located.
It enables them to build a co-location proof forV during
epoch e (containing current timeT). After performing
a CheckIn at venue V and epoche, let (xe;i ; ye;i ) be
Ci 's share of M V;e. Each deviceCi generates a random
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MAC and IP address which it uses to setup an ad hoc
network with co-located devices and also during subsequent
communications. Each deviceCi generates the message
M = (\ MP Badge00; V; e). Ci generates� e;i = M ye;i mod n
and sends a multicast packet to all other devices containing
the tuple(xe;i ; � e;i ; Ri ; SigV;e(Ri ) mod n). Ri is the value
that Ci has had the server blindly sign,SigV;e(Ri ). Each
client stores received tuples in its setT k.
StatVerify (C(Id; V; k; T k; e; pubS); S(priv S )) : Without loss
of generality, letT k = f (xe;i ; � e;i ; Ri ; SigV;e(Ri )g, 8i =
1::k. C andS run the following steps:

� C computes� =
Q k

i =1 � l i (0)
i = M � i ye;i l i (0) = M M V;e .

C sends� , Ri , SigV;e(Ri ), for all k R i values received from
co-located clients toS over Mix .

� S veri�es that (i) the time when the communication of the
previous step has been initiated is within epoche, (ii) that
(\ MP Badge00; V; e)M V;e = � and (iii) that all SigV;e(Ri )
signatures verify for venueV during epoche. S checks
that the exact set ofk revealed blind signatures has not
been used before more thank-1 times:S records the set of
k blind signatures and allows it to be used onlyk times.
Subsequent uses of the tokens are allowed, as long as the
newly revealed set contains at least one fresh blind signature.
If any veri�cation fails, S outputs -1 and stops. Otherwise,S
generates an MPBadge:SigS(\ MP Badge00; V; e; Tc), where
Tc is the time of issue, and sends it overMix to C.

A. Analysis

We extend the CI-IND game to also include the
MP CheckIn procedure: the adversary controlsall clients
except two clientsC0 and C1, that are controlled by the
challenger. The challenger then �ips a coinb and runs
CheckIn followed by MP CheckIn with A for client Cb.
A 's advantage is de�ned the same, as the advantage over 1/2
in guessing the value ofb. We introduce the following results.

Theorem 10:MP Badge is CI-IND.
Proof: (Sketch) The blind signature generation step of

CheckIn, executed at most once per epoch by any challenger
controlled client, over an authenticated channel, retrieves a
server signed nonce for each site registered in the system.
During the subsequent token generation step, performed over
Mix , the challenger reveals one signed nonce, along with the
site of interest. If the adversary can link the blind signature
and token generation steps with a non-negligible advantage
(thus linking client to location) we can build an adversary that
has the same advantage against (i) the blindness property of
the blind signature scheme or (ii) the untraceability property of
Mix . During MP CheckIn , the challenger sends an “identity
neutral” message overMix to A . Thus, any advantage of
A can be converted into a similar advantage against the
untraceability ofMix .

Theorem 11:MP Badge is SV-IND.
Proof: (Sketch) Since we just proved thatMP Badge

is CI-IND, the adversary's advantage can only be from the
StatV erif function. The communication inStatV erif is
performed overMix and contains an “identity neutral”�
value along withk pairs of random nonces and associated
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Fig. 6. GeoBadge dependence on (a) modulus size, (b)k, the check-in count.

adversary generated blind signatures. Thek pairs have been
generated duringMP CheckIn step, thus the adversary has
no advantage from them. If at least one nonce is fresh (never
used before), an adversary with an advantage in the SV-IND
game following theStatV erif run can be used to derive an
advantage against either (i) the blindness of signature scheme,
(ii) the untraceability ofMix or (iii) the secure threshold
signature scheme.

MPBadge is safe: If an adversary controls at mostk � 1
clients at a venueV , its advantage in the Safety game
can be transformed into advantage against the information
theoretical secure threshold secret sharing solution usedto
generate threshold signatures. MPBadge provides Token Non-
Distributability, sinceStatV erify succeeds only ifC pro-
vides a set of blindly signed nonces, at least one of which has
never been used before.

IX. EVALUATION

We have implemented GeoBadge, FreqBadge and MPBadge
in Android and Java and have tested the client side on the
Nexus One smartphone and the server side on a 16 quadcore
server featuring Intel(R) Xeon(R) CPU X7350 @ 2.93GHz
and 128GB RAM. We have stress-tested the server side by
sequentially sending multiple client requests. All the results
shown in the following are computed as an average over at
least 10 independent runs.
GeoBadge:We study the most compute-intensive functions
of GeoBadge:Setup, the GSN provider side ofCheckIn,
the client and provider sides ofStatV erify . We investigate
�rst the dependence on the modulus bit size. TheSetup cost,
a one time cost for the GSN provider, ranges from 277ms for
512 bit keys to 16.49s for 2048 bit keys.

Figure 6(a) shows the performance of the remaining three
components in milliseconds (ms) using a logarithmicy scale.
The x axis is the modulus size, ranging from 512 to 2048
bits. The value ofk, the number ofCheckIn runs required to
acquire the badge is set to 50. On a single core, theCheckIn
cost is 13ms even for a 2048 bit modulus size. The cost of the
provider side ofStatV erify is almost constant for different
key bit sizes, also around 13ms – on an OpenSSL sample,
the cost of performing one signature veri�cation for 2048
bit is 0.1ms, thus dwarfed by the cost of string operations.
Thus, the provider can support more than 4800CheckIn
or StatV erify runs per second, or more than 412 million
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operations per day. The client side ofStatV erify takes 16.5s
for 2048 bit keys, on Nexus One.

Figure 6(b) shows the performance dependency of the same
protocols onk, the number of check-ins required, when the
key size is set to 1024 bits. The clientStatV erify takes up to
21s whenk = 100. The provider components are much faster:
the StatV erify takes less than 27ms, allowing the provider
to support more than 2400 such operations per second (more
than 207 million ops per day). TheCheckIn cost is even
smaller, less than 10ms fork=100, allowing more than 6500
simultaneous check-ins, or more than 560 million check-ins
per day. In conclusion, GeoBadge imposes small overheads on
the GSN provider – thousands ofCheckIn andStatV erify
can be performed per second. The client side overhead is
reasonable as achieving special status is not a time constrained
operation and can be performed in the background.
FreqBadge: In the next experiment we studied FreqBadge.
We have �rst tested key bit sizes ranging from 512 to 2048.
A one time occurrence for the GSN provider, theSetup cost
ranges from 227ms to 1.5s and is negligible. Figure 7(a) shows
the performance ofCheckIn (server side) andStatV erify
(client and server side) in ms, as a function of the key bit
size. They axis shows the time in ms, in logarithmic scale.
s, the number of proof rounds is set to 40,m, the number
of past epochs is set to 60 andk, the number ofCheckIn
runs is set to 30. The client sideStatV erify , executed on
the Nexus One platform , requires between 1.7s to 7.5s.
Since the provider is the bottleneck, the sensitive operations
are CheckIn and the provider side ofStatV erify . These
operations are fast: Requiring one table lookup and a signature
generation,CheckIn takes 4.8ms. On a 16 quadcore server,

the provider can support more than 13,000 check-ins per
second - more than 1.1 billion ops per day. The provider side
of StatV erify is less compute intensive than the client side:
it ranges from 36ms to 309ms (for 2048 bit keys).

We further evaluate the dependency ofStatV erify (client
and server side) on the value ofk when the modulus sizeN
is 2048,m=60 ands=40. Figure 7(b) shows that the server
side exhibits small linear increases withk, and is only 372ms
when k = m = 60. The server can support roughly 170
simultaneousStatV erify runs per second or 14.5+ million
per day. The client side overhead is around 13.8s even for
60 check-ins. Finally, Figure 8(a) shows the dependency of
StatV erify on the value ofs, the number of proof sets.N
is set to 2048,m is set to 60 andk is set to 30. Even for 100
proof iterations, the cost is 633ms for the provider, enabling
6+ million daily runs. A client requires 21.2s to generate 100
proofs.
MPBadge. Finally, we study the dependence of the overhead
of several MPBadge procedures onk, the number of partic-
ipants. We set the modulus size to 2048 bits and rangek
from 5 to 25. Figure 8(b) shows the performance of the server
side CheckIn, the client and server sides ofStatV erify
and the client side ofMP CheckIn . On a single core the
server sideCheckIn overhead is around 1.6ms and the server
sideStatV erify is 37ms even for 25 participants. Thus, the
provider can support 10,000CheckIns and 432StatV erify s
per second. TheMP CheckIn overhead on a smartphone is
around 290ms, while the client sideStatV erify ranges from
230ms for 5 participants to 6.9s for 25 participants.

X. CONCLUSIONS

In this paper we have studied privacy issues concerning
popular geosocial network features, check-ins and badges.
We have proposed several private protocols including (i)
GeoBadge and T-Badge, for acquiring location badges, (ii)
FreqBadge, for mayorship badges and (iii) MPBadge, for
multi-player badges. Furthermore, we have devised e-Badge,
a novel protocol that allows users to privately build expertise
badges. We showed that GeoBadge, FreqBadge and MPBadge
are ef�cient. The provider can support thousands ofCheckIns
and hundreds ofStatV erify s per second. A smartphone can
build badges in a few seconds.
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