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Abstract—Government and commercial enterprises are in-
creasingly considering cloud adoption. Clouds improve overall
efficiency by consolidating a number of different clients’
software virtual machines onto a smaller set of hardware
resources. Unfortunately, this shared hardware also creates
inherent side-channel vulnerabilities, which an attacker can
use to leak information from a victim VM.

Side-channel vulnerabilities are especially concerning when
different principals are constrained by regulations. A classic
example of these regulations are Chinese Wall policies for
financial companies, which aim to protect the financial system
from illicit manipulation by separating portions of the business
with conflicting interests.

Although efficient prevention of side channels is difficult
within a single node, there is a unique opportunity within a
cloud. This paper proposes a low-overhead approach to cloud-
wide information flow policy enforcement: identifying side
channels which could potentially be used to violate a security
policy through run-time introspection, and reactively migrating
virtual machines to eliminate node-level side-channels.

In this paper we describe CloudFlow—an information flow
control extension for OpenStack. CloudFlow includes a novel,
virtual machine introspection mechanism that is orders of mag-
nitude faster than previous approaches. CloudFlow efficiently
and transparently enforces information flow policies cloud-
wide, including information leaks through undesirable side-
channels. Additionally, CloudFlow has potential uses for cloud
management and resource-efficient virtual machine scheduling.

Keywords-Cloud computing; Side-Channel Attacks; VM In-
trospection; Information flow control

I. INTRODUCTION

Cloud computing is an attractive way for companies to
flexibly and efficiently share in-house hardware resources
across all their users and applications. Unfortunately, clouds
also introduce new security concerns; one primary concern is
the introduction of side-channels through shared hardware.

When virtual machines (VMs) share hardware, they are
vulnerable to malicious side-channel attacks [20\ [30, [34, 135,
40], frustrating enforcement of information flow control poli-
cies. A major requirement for (in-house) clouds, however, is
that workloads from different units may need to be mutually
isolated for regulatory and security reasons. For instance,
financial companies are required to enforce Chinese wall
policies to segregate resources used by different internal
departments and provide proof that no information is leaked
between departments that could create a conflict of inter-
est. Over 10,000 IT-impacting regulations exist in the US
alone, including Sarbanes-Oxley Act [7], Health Insurance

Portability and Accountability Act [3], Gramm-Leach-Bliley

Act [4]], Federal Information Security Management Act [2],

Securities and Exchange Commission (SEC) rule 17a-4 [11]],

the e-Government Act [8]], and the Patriot Act [10]].
Unfortunately, adoption of cloud technology has outpaced

cloud-scale security tools, forcing businesses to deploy in-
efficient, ad hoc solutions such as manual segregation of in-
ternal networks and hosts. Overall, private cloud technology
is missing a security platform that can translate high-level
policies, such as role-based user and workflow isolation, into
runtime enforcement actions throughout the cloud.

We observe that many of these regulations can be modeled
as information flow control (IFC) policies, which should
be applied at cloud scale. Information flow control (IFC)
has been studied extensively at the programming language
level [28] OS level [22, 37], and, to some extent, in
distributed systems [36] and specialized hardware architec-
tures [33[], but has received less attention among VMs in
the cloud. Moreover, the side-channel problem introduced
by private clouds is a type of covert channel [23], which is
difficult for any IFC system to regulate Thus, an important
question in adapting any approach to IFC to the cloud is
how to limit or prevent node-level side-channels.

Initial work has tackled certain issues of side-channel
prevention in public clouds by allowing a tenant to verify
its VMs’ exclusive use of a physical machine [39], adjusting
the timing of access to shared resources [24]], or modifying
the OS to clean the L1 cache [41]].

This paper advances the state of the art by describing
CloudFlow, a suite of lightweight OpenStack [5] modules,
which automatically mitigate side-channels using VM mi-
gration. This work makes the following contributions:

o A new, fast, asynchronous VM introspection mechanism
for KVM-QEMU [13], several orders of magnitude faster
than previous libraries [25] [26]].

o The design of a cloud-wide information flow control
layer for OpenStack [5] that leverages the introspection
mechanisms to identify risky co-location and mitigate
information flow control risks in real time.

« An evaluation of CloudFlow using unmodified guest OSes
and applications.

II. BACKGROUND AND OVERVIEW

Chinese Wall policies and MLS: In order to explain
this work, we use Chinese Wall policies as a motivating



example of important regulatory policies. For instance, a
large financial institution may both advise the corporate
restructuring of company X and make investment decisions
for a mutual fund. The employees advising company X
are privy to non-public details that, if passed along to the
investment arm, would constitute insider trading. In order for
the same company to perform both functions, it must erect
a Chinese Wall to prevent employees with such a conflict of
interest from exchanging information, say in person or over
email, that might lead to illicit personal or corporate gain.

Similarly, in intelligence and defense scenarios, informa-
tion flow control is subject to Multilevel security (MLS)
policies. MLS policies generally apply to data with different
classification levels, and prevent things like writing classified
data “down” to a public output. One popular example is the
well known Bell-LaPadula confidentiality policy model [1].

Previous work on cloud-wide policy enforcement has
focused either on MLS for hypervisors [27, 31] or on
network isolation and scheduling jobs for better perfor-
mance [14, [15, 16, 29, 32, 38]. In comparison, CloudFlow
provides policy-enforcement across the cloud by leveraging
dynamic migration abilities.

Side Channels: In a side channel attack, an attacker
gains information from a system when the attacker and
victim share a resource, such as disks, memory cache, or
power conduits. Side channel attacks have been demon-
strated which leverage shared caches of physical cloud
machines to extract private information such as RSA and
AES keys [30, 134, 140]

Approach and Goals: This paper observes that cloud-
level side-channel mitigation is a practical alternative to
node-level approaches, which sacrifice performance or in-
troduce constraints on the OS or application program-
mer. CloudFlow uses runtime introspection [18l 21} [26] to
identify policy-relevant data usage, and migrates VMs on-
demand to avoid the risk of policy violations. For example,
in the case of Bell-Lapadula/MLS enforcement, a policy may
specify that no VM running applications classified/labeled
as “confidential” can be hosted on the same physical node
as a VM running an application handling “top secret”
labeled data. No application and guest OS changes should be
required. Naturally, the granularity at which guest state can
be monitored via introspection can vary vastly depending on
the depth of data extracted from the monitored kernel.

We acknowledge that any reactive system can be subject
to residual side channels—i.e., the attacker may observe
that a policy enforcement action is occurring. In the case
of regulatory compliance, residual side channels are not an
issue, as the policies themselves and actions of the cloud
provider need not be kept secret.

Threat Model & Assumptions: We trust the hyper-
visor, cloud administrators, and policy designers. All other
users are not trusted. Of major concern are insiders who will
benefit from cross-VM side channels.

We expect attackers to deploy a malicious VM, through
which they will attempt to exploit a known hardware side
channel and extract sensitive information from am unsus-
pecting target VM. We assume that the adversary is not
fully in control of the underlying hardware and is unable
to bypass hypervisor-enforced isolation of resources such as
physical memory or devices.

Our ultimate goal is not to trust guest OSes to participate

in policy enforcement; unfortunately, this is not possible
with existing introspection techniques, and solving this prob-
lem is beyond the scope of the paper. Recent work [12]]
demonstrates that a malicious guest kernel can deceive
hypervisor introspection; thus, the guest must be trusted
not to actively subvert the introspection mechanisms. Other
approaches to acquiring guest state [17, [19] face similar
issues with trust, so the CloudFlow design is independent of
how the guest state is acquired, enabling adoption of more
robust techniques in the future.
Limitations. No reactive system can be provably secure.
CloudFlow provides best-effort minimization of the period
during which a side-channel attack can be mounted against a
target. In CloudFlow, this window is reduced to <5ms (,
sufficient to prevent existing and foreseeable side-channel
attacks, which are usually low-bandwidth and require a
much longer window (>hours) [30} 34, 140].

III. ARCHITECTURE & IMPLEMENTATION

CloudFlow provides a cloud-wide policy enforcement
mechanism, integrating with cloud management software to
deploy policies to cloud nodes and relocate VMs on demand.
The overall CloudFlow design is illustrated in Figure [Ia]
CloudFlow adds asynchronously connected modules to each
node in the cloud and the management interfaces. CloudFlow
only requires VM images and policies as input, and policies
are propagated to nodes as appropriate during runtime.

During execution, each VM has a set of application-
specific labels associated with its running tasks. If an ap-
plication accesses policy-sensitive data, or the application
exits, the label on the VM will change. When a VM’s label
changes, this is evaluated against cloud-wide policies in the
policy module (§III-C). Label changes that could create a
side channel then trigger the migration of one or more VMs
to mitigate this risk.

CloudFlow can naturally enforce different types of in-
formation flow policies including Chinese Wall and Bell-
LaPadula MLS models. In the case of MLS policies, the
runtime labels can be thought of as MLS classification labels
and CloudFlow as a runtime MLS enforcement mechanism.

The CloudFlow prototype extends the OpenStack [JS]
framework, version 2012.2. OpenStack offers a variety of
services including computing and storage nodes, and works
with a wide range of hypervisors. This paper uses KVM-
QEMU [13]], but works with any hypervisor supported by
OpenStack.
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Figure 1: CloudFlow architecture and introspection design

A. Introspection Module

CloudFlow deploys VM introspection to extract runtime
labels from key guest kernel data structures. In the ini-
tial prototypes, we found that the high-latency of existing
introspection libraries created unacceptably large windows
for attack (detailed in §IV). Upon further investigation, the
generality of these libraries comes at a cost of several,
expensive layers of indirection. Thus, a key contribution of
this work is a library that more efficiently hooks into KVM-
QEMU internals, significantly reducing VMI overheads.

CloudFlow adds a specialized introspection thread to each
hypervisor. KVM-QEMU schedules this thread in the same
class as internal hardware I/O threads that implement hard-
ware 1/O virtualization (Figure [Tb). The introspection thread
also uses KVM-QEMU-internal locking and coordinates
with internal events, permitting seamless inter-operation
with other internal I/O threads. From this vantage point, our
introspection module has fast access to guest memory.

The introspection thread periodically monitors two key
guest kernel data structures for changes: the task list and
the SELinux hash table containing policy information for
all running tasks. The policy module gives the introspection
thread a set of policy-relevant labels, which the introspection
thread continuously searches for in the guests. If the intro-
spection thread notices a relevant label change inside the
guest, this information is sent to the policy module within
a few milliseconds.

B. Policy Language Model

The CloudFlow policy language is a simple, XML-based
grammar, illustrated in Figure 2] although any arbitrary
Turing-complete language would suffice. Each policy list

<policy-list> = <policy> | <policy> <policy-list>
<policy> = <p>if <label> in <locality> then <action></p>
<label> = {Set of target runtime labels}

<locality> = <co-resident> | <self>

<action> = <migrate> | <halt> | <resume>

Figure 2: Subset of CloudFlow Policy Language

is made up of one or more policies. Each policy expects
a label, the locality of the target virtual machine and an
appropriate action to perform in case of a positive match
for the provided label.

Our prototype uses SELinux labels [9]] in order to leverage
the rich ecosystem of existing policies. We hasten to note
that our policies are much simpler to write than SELinux
policies. Our design is not tightly coupled with SELinux,
and could be extended to use other labeling schemes, OSes,
and security frameworks.

Intuitively, the policy symbols outline the action that
needs to be taken if a VM contains the label specified
by the policy. All label symbols form terminal symbols in
the policy grammar. The set of localities is formed of two
terminal symbols <co-resident> and <self>>. As all policies
are written from the viewpoint of a particular VM, this part
of the policy outlines whether the label should be searched
for in the VM itself (self) or in all the VMs co-resident to
it (co-resident). Finally the set of actions is formed of three
terminal symbols <migrate>, <halt> and <resume>.

For example, suppose users Alice and Bob are supposed to
be separated by a Chinese Wall policy—the corresponding
policy for Bob is illustrated in Figure [3] In this example,
processes run by Alice are marked as “Alice” by SELinux in
each guest, which would then be observed by introspection,
leading to a VM migration as needed.



<p> if <Alice> in <co-resident> then <migrate> </p> ‘

Figure 3: Example policy

C. Management Module

The management module is the administrative interface
to CloudFlow, integrated with the OpenStack platform. The
administrator inputs a VM image along with a list of security
policies. In addition to the usual management tasks, such as
deploying and tracking VMs, the CloudFlow management
module stores and propagates policies to nodes, and handles
policy-related call-backs for events such as VM migration.

D. Policy Module (Daemon, Master)

The CloudFlow management module propagates policies
to the policy enforcement infrastructure. CloudFlow runs a
cloud-wide policy master module (PolicyM) and a policy
daemon on each node (PolicyD). PolicyM coordinates all
running instances of PolicyD, as well as tracking which
physical hosts are running VMs with a given label. At each
node, PolicyD maintains policy lists and compares these
policies with the output of the introspection module.

When PolicyM passes a new policy to PolicyD, PolicyD
updates the introspection module’s list of labels to search
for. PolicyD also notifies PolicyM when a new VM is started
or stopped on its node. If the introspection module finds a
label of interest, the introspection module notifies PolicyD
to take action, as specified in the policy. Actions include
“halt”, which calls the management module, or “migration”,
which calls PolicyM to identify a suitable destination.

When PolicyM needs to migrate a host, it selects a node
that, at least in the immediate future, will not risk further
side channels. PolicyM first checks its cache of cloud-level
state, looking for suitable destinations. Before migrating a
VM to a node, PolicyM queries the node’s PolicyD to ensure
that the set of labels is still suitable. PolicyM then returns
the selected node to PolicyD, which calls the management
module to request VM migration.

E. Illustrative Scenario

Figure [] illustrates a law firm with representing clients A
and B in a suit against each other, handled by employees
Alice and Bob, respectively. State and federal laws prevent
Alice and Bob from sharing any information to ensure both
clients are fairly represented. In this scenario, CloudFlow
prevents an information leakage as follows:

o A policy is created outlining the fact that workloads run
by users Alice and Bob should not be co-resident, such
as the one in Figure

« Alice starts a VM in the cloud.

o Bob uses the same cloud as Alice, and the cloud scheduler
places Bob’s VMs on the same physical machine before
they start their security-critical workloads.

o After some time Alice’s VM launches an Alice-labeled
workload.

2. Policy does
not allow co-
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Cloud

Offices
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3. Migration
triggered to
suitable target

Figure 4: CloudFlow performs dynamic policy-triggered VM
relocation based on input policies. An example policy is one that
disallows two users (Alice and Bob) from being co-resident on the
same physical node based on runtime labels.

« The introspection thread will raise a flag as soon as it
notices Alice’s label. This event is sent to the node’s
PolicyD, which checks the current policies. Although
PolicyD finds a policy that involves Alice, it knows that
currently there are no other VMs on the same machine
running workloads from Bob, hence no action is taken.

e« Bob’s VM then launches a Bob-labeled workload. The
introspection thread reports the presence of label *Bob’
to PolicyD.

o PolicyD identifies a policy violation: One of the two
conflicting VMs is picked at random (in this case Alice’s
VM) and frozen to prevent any security breach.

o Because the policy specifies migration, PolicyD asks
PolicyM for a suitable target.

« PolicyM identifies a potential target for Alice’s VM,
which does not currently run any of Bob’s VMs. PolicyM
returns a node name to PolicyD.

o PolicyD issues a migration request to the management
module for Alice’s VM.

« The OpenStack module migrates Alice’s VM, using the
same infrastructure designed for load balancing, where the
VM resumes.

IV. EVALUATION

We evaluate CloudFlow using a set of 5 nodes with a

2.90 GHz Intel i7-3520M CPU and 4GB memory running
64-bit Ubuntu 12.04.1. The VMs are running 64-bit Fedora
16 with 2GB of memory. We exercise the system with the
Phoronix Test Suite [6].
Vulnerability Window. An essential goal of CloudFlow
is minimizing the window of vulnerability during which an
attack can be mounted against a target VM. The size of this
window is precisely the time it takes from the moment a
security critical workload starts to run until the moment an
appropriate policy action is executed. Whenever a runtime
label matches a policy that needs to be enforced CloudFlow
freezes the VM. As CloudFlow performs continuous intro-
spection, the vulnerability window is exactly the wall-clock
time it takes to do a complete introspection cycle over the
required kernel data structures.
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We initially adopted libvirt [25] and then libVMI [26]

for KVM-QEMU introspection. As illustrated in Figure [3]
these libraries are not designed for low-latency data structure
searches, rendering them unsuitable for our purposes. Thus,
we wrote a faster introspection interface for KVM-QEMU
which sheds all unnecessary indirection, running within
KVM-QEMU. Figure[5|measures the time to read all running
tasks and SELinux labels with >50 guest processes running.
CloudFlow’s introspection module requires only 4.7ms wall
clock time (less than 2% of which is CPU time) to perform
one complete pass over all the desired kernel structures.
This is orders of magnitude faster than the alternative
libraries. This execution time does not vary significantly with
increasing number of processes.
Performance. CloudFlow’s most CPU-intensive component
is the introspection module, and thus the most likely to affect
guest performance. Figure [§] shows the runtime performance
of the our benchmarks, with both introspection on and off
(lower is better), averaged over 3 runs.

The maximum observed slowdown caused by CloudFlow

introspection is less than 4% of baseline performance. All
other components run separately and do not cause any
performance impact for guest workloads.
Migration Cost. Finally, the guest VM is also subject to
dynamic migration in the case of a policy conflict. In our
testbed, a migration adds a 20 second delay, although this
number will vary widely depending on the cloud hardware
and load. Although frequent migration of VMs harms the
user experience, we note that, in most policies, migration
only occurs when necessary to uphold security policies. We
expect that our design provides a more efficient alternative
to dedicated hardware.

V. CONCLUSION AND FUTURE WORK

This paper describes CloudFlow, a system which lever-
ages a novel, low-latency introspection mechanism to en-
force best-effort, cloud-wide information flow policies in the
OpenStack framework. Future work includes introspection
mechanisms that are resilient to a malicious guest OS,
as well as CloudFlow extensions to permit policies on
additional guest abstractions, such as I/O and IPC.
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Figure 6: CloudFlow introduces under 4% overhead into guest
workloads.
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