
DIMMer: A case of turning off DIMMs in clouds.

Dongli Zhang, Moussa Ehsan, Michael Ferdman, Radu Sion

Stony Brook University

{dozhang, mehsan, mferdman, sion}@cs.stonybrook.edu

Abstract

Lack of energy proportionality in server systems results in
significant waste of energy when operating at low utilization,
a common scenario in today’s data centers. However, even
during times of low utilization, servers cannot be powered
off because of unpredictable spikes in instantaneous demand
on some of the resources (e.g., file storage). To mitigate en-
ergy waste, unused processor cores transition into low-power
sleep states, power-gating non-critical components; memory
ranks (physical subdivisions of capacity) transition intoself-
refresh modes, where energy is spent only to maintain mem-
ory contents.

We propose DIMMer, an approach to entirely eliminate
the idle power consumption of unused system components.
DIMMer is motivated by two key observations. First, that
even in their lowest-power states, the power consumption
of today’s server components remains significant. Second,
that unused components can be powered off entirely without
sacrificing availability. We demonstrate that unused mem-
ory capacity can be turned off, eliminating the energy waste
of self-refresh for unallocated memory, while still allowing
for all capacity to be available on a moment’s notice. Simi-
larly, only one CPU socket must remain powered on, allow-
ing unused CPUs and attached memory to be powered off
entirely. Leaving a single CPU powered on allows the server
to remain fully operational and capable of rapidly ramping
up to peak capacity if needed. In this work, we demonstrate
the potential for DIMMer to improve energy proportionality
and achieve energy savings. Using power measurements of
a modern server system and data from a Google data center,
we show up to 50% savings on DRAM and 18.8% on CPU
background energy.

Acknowledgement: This research was supported in part by NSFgrants NSF CNS-
1161541, NSF CNS-1318572, NSF CNS-1223239, NSF CCF-0937833, by US ARMY
award W911NF-13-1-0142, and by gifts from Northrop GrummanCorporation,
Parc/Xerox, and Microsoft Research.

Submission to SoCC ’14, October, 2014, Seattle, WA, USA.

1. Introduction
To handle hundreds of millions of users and their associ-
ated transactions, companies such as Amazon, Facebook,
and Google run immense data centers with until-recently
unimaginable computation and storage capacities. As on-
line services become pervasive, projections indicate that
electricity consumed in global data centers worldwide in
2010 is more than 200B KWh, between 1.1% and 1.5%
of worldwide electricity use [20]. Three years ago, Google
announced that their facilities have a continuous electricity
usage equivalent to powering 200,000 homes [11].

Surprisingly, despite energy being one of the top three
data center operating costs [13], much of the data center en-
ergy is wasted because data centers cannot modulate capac-
ity according to demand. Even when experiencing frequent
periods of complete inactivity (idle periods upwards of one
second [25] during times of low utilization), servers are kept
operating at full capacity. Across data centers, hundreds of
thousands of servers remain idle or underutilized in anticipa-
tion of spontaneous demand spikes [6]. As a result, a report
by New York Times found energy waste upwards of 90% as
the facilities are operated at full capacity regardless of the
demand [12].

Industry has a number of energy saving principles and
mechanisms, such as consolidation, virtualization (for in-
creased utilization), decommissioning of unused servers,
and the purchase of energy-efficient hardware [3]. Such
mechanisms show promise and research demonstrates that
job consolidation and server power-off strategies can result
in up to 50% savings [34]. Nevertheless, despite their theo-
retical promise, these techniques are rarely used due to the
need for fast response times to instantaneous demand and
the increased failure rates of mechanical components such
as hard disks and fans due to frequent power cycling [27].

Motivated by the fact that complete server power-off
strategies are not appropriate in many data centers, we pro-
pose an alternative that can modulate energy use based on
capacity demand by turning off independent hardware com-
ponents. In this paper, we envision DIMMer, a system to
provide an agile framework for workload-driven scalability
and power reduction in data centers. DIMMer turns off all
idle DRAM ranks (physical subdivisions of memory capac-
ity) in data center servers during low resource utilizationto

1

save DRAM background power. Prior work either applies
dynamic voltage and frequency scaling (DVFS) to DRAM
[9, 10], or maximizes the time that DRAMs spend in low-
power modes [17, 22, 33] (i.e., self-refresh mode). We ob-
serve that dynamic control of memorycapacity presents
an opportunity to reduce energy consumption and promote
power proportionality of server systems. While prior work
has reduced thetime that DRAMs spend in high-power
modes, we find that reducing the memoryspace available to
the system can yield even greater benefits: energy costs for
additional DRAM capacity are paid only when this capacity
is requested by the system. Current systems waste this en-
ergy, because even when the DRAM is in self-refresh mode,
the power consumption of a 4GB DIMM is approximately
1W (20% of the precharge-standby power [9]). Furthermore,
because self-refresh power is proportional to DRAM capac-
ity, the savings of DIMMer are likely to be even higher in
future systems. In this paper, we use publicly available traces
from production Google data centers to demonstrate the ef-
fectiveness of DIMMer.

A further benefit of DIMMer over switching DRAM to
self-refresh mode [33] is that freeing DIMM contents and
turning them off permits also powering down unused CPUs
to which these DIMMs are attached, whereas using self-
refresh modes and retaining memory contents forces keeping
the CPUs powered up, even if all cores in those CPUs are un-
used. Although DIMMer requires disabling DRAM channel
interleaving, migrating memory pages among DRAM ranks,
and reducing the memory available for disk cache, we find
that these requirements do not impact the effectiveness of
DIMMer. Moreover, while DIMMer requires modification
to the OS kernel and hardware, there are no modifications to
the applications [7, 23]. Finally, many of DIMMer’s prereq-
uisites are already implemented in prior work [7, 19, 23, 33].

Applying DIMMer to Google cluster traces [28] demon-
strates that background DRAM and CPU energy consump-
tion can be reduced by up to 50% and 18.8%, respectively.

2. Motivation for Powering off Components
2.1 DRAM Power Consumption

Figure 1 depicts our measurements of typical power con-
sumption of active DIMMs under nominal use in a server
rack. Measured DIMMs (Samsung 1600MHz Dual-Rank
ECC) were physically isolated in a dedicated socket – the il-
lustrated data is for one of the 8GB DIMMs, installed alone
at the second CPU of a PowerEdge M620 server. Power
consumption was measured with increasing throughput up
to 2GB/s, a reasonable upper bound for modern data center
workloads [24]. We find that simply keeping a DIMM pow-
ered on with near-zero memory traffic has a constant power
consumption of 2.3W, which constitutes more than 50% of
each DIMM’s power consumption observed at peak through-
put for cloud workloads.

Figure 1. 8GB server DIMM power consumption as a func-
tion of throughput. Power at near-zero throughput is more
than half of the power at peak utilization.

2.2 CPU Power Consumption

Our experience shows that individual core power consump-
tion varies significantly across different CPUs even within
the same server and is difficult to measure precisely and
consistently (it varies with the number of per-node DIMMs,
channels, utilization, etc.). For the purpose of this evaluation,
we chose to be conservative and consider power consump-
tion measured across CPUs rather than individual cores. The
measured power consumptions of our test system while com-
pletely idle are as follows: for 1 CPU (Intel(R) Xeon(R) CPU
E5-2650 2.00GHz) and 4 DIMMs: 32W; for 2 CPUs and 4
DIMMs: 48W; and for 2 CPUs and 8 DIMMs: 52W. We find
that keeping an idle CPU powered up only to maintain con-
tents of the 4 DIMMs attached to it consumes 16W, indicat-
ing significant opportunity to save energy by powering down
the CPU in addition to memory at times of low utilization.

3. DIMMer Benefits
In an ideal world, servers can be turned on or off at zero la-
tency and cost. In that world, one would strive to do exactly
that; components would be powered off as soon as a server’s
utilization can be reduced to zero through migrating appli-
cations and consolidation.

The real world however, imposes a set of rigid latency-
related constraints on this vision that cannot be ignored. Mi-
grating jobs and turning servers off and back on are high la-
tency and high cost operations. Additionally, often (as in the
case of the Google dataset [28] discussed below) individual
servers may participate in distributed services (e.g., fileserv-
ing) that preclude turning off machines because they must be
able to serve file contents on a moment’s notice. As a result,
clouds end up operating hundreds of thousands of servers at
full capacity even at periods of low load, in anticipation of
spontaneous demand spikes [6].

In this paper, we show that DIMMer, which dynamically
provisions memorycapacity at the granularity of DRAM
ranks, represents an opportunity to reduce energy consump-
tion of server systems while having little to no impact on
performance. To demonstrate that DIMMer is a viable de-
sign in practical settings, we analyze the main trade-offs and

2

(a) Idle server memory, measured at rank granularity (b) Idle CPUs, measured at CPU socket granularity

Figure 2. Total number of idle DRAM ranks and CPUs cluster-wide in each5-minute time slot. DRAM capacities, rank, CPU,
and server counts are shown in Table 1.

show that: (i) idle power consumption of DRAM ranks is
high and warrants full power-off, (ii) existing clouds feature
numerous- and long-enough (per-server, per-rank) idle peri-
ods to justify the DIMMer overheads and latencies, (iii) the
resulting cloud power savings are significant.

3.1 Idle Resources in the Cloud

To justify the overheads and latencies incurred by DIMMer,
we must establish that real clouds feature numerous- and
long-enough (per-server, per-rank) idle periods.
Google Cluster Traces.We analyzed a cluster usage dataset
released by Google [28]. The dataset consists of workload
traces for over 12,000 servers collected at 5-minute granu-
larity over the course of more than one month. The traces
include detailed information about the servers and the work-
load jobs and tasks, including CPU, memory, and storage
per task, and machine resource utilization. This dataset has
spawned a number of seminal results [2].

We first compute the DRAM and CPU utilization of each
server in every 5-minute interval. Based on this, we derive
the total cluster-wide number of idle memory ranks and
CPUs for each 5-minute time slot. Figure 2(a) illustrates the
idle DRAM results. We find that up to50% of the cluster
DRAM ranks are unused and can be powered off.

Figure 2(b) illustrates the number of CPUs that can be
turned off in each 5-minute time slot. Unlike DRAM ranks
that can be turned off independently, a CPU can be powered
off only when all of its coresand all DRAM ranks attached
to its socket are idle. In the existing trace, on average, 20%of
the CPUs can be powered off across Google’s cluster, while
the aggregate CPU utilization is 50%. Changes to the cluster
resource management framework can mitigate this inconsis-
tency and maximize the number CPUs that can be powered
off. However, for the remainder of this study, we use the ex-
act data available in Google traces, showing DIMMer’s ef-
fectiveness with the existing job placement policies.

Figure 3 shows that DIMMer can save 30MWh (DRAM)
and 52MWh (CPU) for this cluster running for one month.1

Using the cost model from [14], we estimate the correspond-
ing cost saving over the Total Cost of Ownership (TCO),

1 Using DRAM power estimates from [9].

Normalized Frequency
Capacity Ranks Channels

Memory Capacity in Dataset
0.03 5 - Ignored -
0.06 1 - Ignored -
0.12 54 8G Ignored -
0.25 3990 16G 8 4
0.5 6732 32G 16 4
0.75 1002 48G 24 6

1 799 64G 32 8
Total Machines: 12583

Table 1. The dataset used for our study provides relative
memory capacities normalized to the maximum-capacity
machine present in the cluster. We estimate per-machine
DRAM capacity and number of DIMMs based on the dis-
tribution of the machine counts in the dataset, the approx-
imate date of cluster deployment, and the fact that Google
populated all server DRAM slots at that time [29]. Machines
with unusual memory capacities (likely due to partial mem-
ory failures) were ignored.

including data center construction, IT equipment, and oper-
ating cost at0.6% (over total cost),1.4% (over total power
cost) and3.1% (over total power cost, excluding power for
cooling), respectively.2 These energy savings also translate
to a significant reduction in environmental pollution. Ac-
cording to the EPA Emissions & Generation Resource In-
tegrated Database (eGRID) [1], this corresponds to a U.S.
annual non-baseloadCO2 output emission reduction of over
51 metric tons ofCO2.

3.2 Power-off vs. Self-refresh

Prior work proposed to maximize the time DRAM ranks
spend in low-power self-refresh mode [17, 22, 33]. Although
these techniques effectively reduce DRAM power consump-
tion, as shown in section 2, the background power of an 8GB
DIMM in self-refresh mode is actually higher than the sav-
ings achieved by self-refresh compared to the peak power
consumption of DRAM for a typical cloud workload.

Table 2 shows that DIMMer can significantly reduce
wasted power by turning off idle memory and CPUs. For

2 We assume $0.1/kWh, $50M facility cost, and 1.2 PUE for 12,583 servers.
Facility and IT capital costs are amortized over 15 and 3 years, respectively.

3

Case
Percentage of Time in ACTSTBY/PRESTBY CPU

(W)
Self Refresh

(W)
STBY
(W)

Total
(W)Node Rank 0/1 Rank 2/3 Rank 4/5 Rank 6/7

Self-Refresh [33]
(2 idle ranks)

Node 1 100 100 100 100 16 0 21.44
66.00

Node 2 100 100 0 0 16 1.84 10.72
DIMMer
(2 idle ranks)

Node 1 100 100 100 100 16 0 21.44
64.16

Node 2 100 100 0 0 16 0 10.72

Table 2. Sample system with 2 CPU sockets, each having two channels with 8 ranks. In an ideal case, the system would
consume 66W when consolidating hot memory pages on “hot” ranks and switching the “cold” ranks to self-refresh mode
(using [33]’s approach). Using DIMMer, if we instead turn off the “self-refresh”ed ranks we can save an additional 3% of the
background power consumption.

Case
Percentage of Time in ACTSTBY/PRESTBY CPU

(W)
Self Refresh

(W)
STBY
(W)

Total
(W)Node Rank 0/1 Rank 2/3 Rank 4/5 Rank 6/7

Self-Refresh [33]
(1 idle node)

Node 1 100 100 100 100 16 0 21.44
57.12

Node 2 0 0 0 0 16 3.68 0
DIMMer
(1 idle node)

Node 1 100 100 100 100 16 0 21.44
37.44

Node 2 0 0 0 0 0 0 0

Table 3. The main opportunity arises when turning off all of the ranks– this corresponds to 20% memory nodes in Google
cluster as in Figure 2(b). If all hot memory pages are migrated to the “hot” memory node and the “cold” node’s ranks are placed
in self-refresh mode, 57.12W is consumed. If “cold” ranks are turned off completely, the entire CPU socket can be turned off,
resulting in an additional saving of 35% of the totalbackground power consumption.

Figure 3. Energy saved by turning off the idle DRAM ranks
and CPUs, respectively.

example, a dual-socket server where each CPU is connected
to eight memory ranks (four dual-rank DIMMs) across two
memory channels, will consume 66W when using tech-
niques that arrange memory into “cold” and “hot” ranks, sav-
ing energy on “cold” ranks by putting them into self-refresh
mode [33]. If we turn off “cold” ranks entirely, DIMMer can
save additionally 3% of the DRAM power consumption.

Furthermore, the main opportunity for power savings
arises when all of the ranks attached to a CPU can be turned
off (e.g., as would be the case in the Google cluster, where
DRAM utilization of many servers often falls below 50%).
In this case, DIMMer can further reduce background power
consumption by turning off idle memory ranksand their
corresponding CPUs. As shown in Table 3, this results in
an additional 35% reduction in the background power con-
sumption when compared to the self-refresh approach.

4. Vision for Implementation
This paper presents DIMMer as a vision. However, actual
implementation is not complex. DIMMer requires modifi-
cations to the memory management subsystem of the OS
kernel. Unlike the traditional Linux kernel which maintains
a memory free list for each memory zone (ZONEDMA,
ZONE DMA32 and ZONENORMAL), DIMMer’s alloca-
tor creates a free list for each DRAM rank. Similar function-
ality has already been implemented in [7, 19]. The difference
in page allocation between DIMMer and standard Linux lies
in the total number of free lists. Besides an allocator, a page
migrator running as a kernel thread would be responsible
for on-demand memory page migration, moving cold pages
from “cold” ranks. Unlike prior work [7, 23], no libraries or
application would need to be modified.

For reliable deployment, DIMMermay also requires
hardware changes. Flikker [23] has already proposed to re-
duce the memory refresh power consumption by decreasing
DRAM refresh rate. Theoretically, we can remove most self-
refresh power by setting refresh rates to zero. However, to
reduce the total self-refresh power to zero, we hope hardware
manufacturers will expose registers that allowfull electrical
power-off for entire DRAM ranks in the next generation
DRAM controllers.3 Support for full electrical power-off of
CPU sockets may also be helpful.

3 We suspect the functionality already exists in modern DRAM controllers,
but the control registers to power off ranks are not publiclydocumented.

4

5. DIMMer Costs
5.1 Cost of Page Migration

Before powering off unused ranks, DIMMer migrates mem-
ory pages (generally of 4KB sizes) for consolidation onto the
active ranks. To estimate the energy cost of page migration,
we measured the energy consumption of migrating 8GB of
memory (4 DRAM ranks) from one NUMA node to another.
The node-to-node migration is the most expensive migration
that would happen in DIMMer.

The average measured energy cost to migrate a single
page is 102µJ. As Table 4 shows, if DIMMer migrates 8GB
every 30 minutes, the additional monthly energy cost of page
migration for the cluster is approximately 210KWh, a mere
0.26% of DIMMer’s total savings.

Migration Frequency Energy(KWh) Percentage over total saving
Every 5-min 1257.6 1.54%
Every 15-min 419.2 0.51%
Every 30-min 209.6 0.26%
Every 1-hour 104.8 0.13%

Table 4. Measured energy consumption of page migration,
expressed as absolute energy and as the percentage of DIM-
Mer’s energy savings.

We also measured the performance penalty of page mi-
gration. It takes at most 13.5s to migrate 8GB of memory
in our test system. Although the time is not trivial, it is an
upper-bound. Further, it is important to note that this penalty
occurs by design only at low CPU and memory utilization,
when DIMMer is engaged to power off components. This is
exactly the time when unused CPU and memory bandwidth
are available. During high utilization, DIMMer can be de-
signed to simply disable its allocator and migration thread.

Further, based on Google cluster traces, 30.2% of used
pages are cache pages and 11.2% are cache pages not
mapped into any processes. In many workloads [36], very
few disk cache pages are hot; it is only useful for DIMMer
to migrate hot cache pages and anonymous pages. During
times of low utilization, DIMMer applies a smart page allo-
cation policy that minimizes the total number of page migra-
tions that will be needed before ranks can be powered down.
To avoid perturbing live services, DIMMer migrates pages
in the background and at low priority.

5.2 Cost of Reduced Cache Capacity

Modern OSes liberally use large amounts of idle memory
as disk cache, following the mantra “free memory is wasted
memory.” Turning off DRAM reduces the disk cache capac-
ity and may impact performance and energy by forcing re-
read of disk contents.

To estimate the impact of reduced cache capacity, [18, 30,
31] suggest that cache miss rates follows “the 30% Rule”
(i.e., doubling the cache size decreases the miss rate by 30%
on average). Accordingly, hit cache benefits decrease with
larger cache size. Beyond a certain capacity that captures

an active working set, disk caches do not noticeably affect
system performance.

Experimental evidence with disk caches in cloud work-
loads support this estimate. Zhu et al. indicate that, for a web
server, a large decrease in cache capacity leads to minimal
changes in hit rate [36]. Sacrificing a few percent hit rate,
the cache costs can be reduced by almost 90%, without any
noticeable effects on users’ experience.

Furthermore, prior work offers mechanisms to mitigate
cache capacity concerns [35]. Cache entries can be dynami-
cally classified as “hot” or “cold”, and kept in separate ranks.
As certain cache pages become hotter, and their “cold” rank
host becomes a candidate to transition to low-power state,
the hot cache pages can be migrated to a “hot” rank.

Finally, note that any and all performance impact of DIM-
Mer mechanisms can be disabled on demand at high utiliza-
tion and only employed when the load (memory and CPU)
warrant their use.

5.3 Cost of Non-Interleaved Address Mapping

Rank-aware memory allocation can be achieved by disabling
both rank and channel interleaving [4], which may degrade
performance for some workloads. Channel interleaving is
used to improve memory bandwidth by interleaving physical
pages across DIMMs on multiple channels. Rank interleav-
ing reduces memory latency by spreading each page across
many ranks, enabling concurrent accesses by letting the con-
troller open a row in one rank, while another rank is being
accessed. However, for cloud workloads, the performance
reduction from disabling interleaving is negligible.

The main insight comes from the fact that most cloud
workloads severely underutilize the available memory band-
width [24], even during peak times. Ferdman et al. show that
the per-core off-chip bandwidth utilization of MapReduce,
media streaming, web front end, and web search is at most
25% of the available bandwidth. As a result, the peak band-
width reduction associated with disabling channel interleav-
ing will not impact the performance of cloud applications.

Similar to turning off channel interleaving, turning off
rank interleaving will not incur an obvious performance re-
duction. For the niche of memory intensive workloads that
may get impacted, VipZonE [7] shows that turning off rank
interleaving results in only1.03% execution time overhead.

Further, DIMMer can be designed to reserve certain
interleaving-enabled DRAM channels (e.g., on CPU socket
0, which will always remain powered on) to service memory-
intensive workloads. Finally, it is also possible to retainthe
benefits of channel interleaving by only turning off parallel
ranks across channels.

6. Related Work
A number of works address energy proportionality at server
granularity. In [34], Zhang et al. dynamically change the
number of active machines in the cloud to save energy by

5

solving an optimization problem, finding the best trade-
off between the cost of reconfiguration and the amount of
energy consumed across the entire data center. Analyzing
Google cluster traces shows that this solution could have
saved 18.5% to 50% of the consumed energy. Krioukov et
al. [21] propose NapSAC, a power-proportional web cluster.
NapSAC provisions the number of machines needed for the
current workload and the observed response latency. Chen
et al. [8] also proposed an energy-aware server provisioning
approach for internet services by adaptively changing the
number of powered on servers. Unlike NapSAC, which con-
centrates on workloads with short-lived requests, Chen et
al. [8] handled workloads with long-lived connections (e.g.,
Windows Live Messenger). However, these approaches can-
not be used if cloud servers provide background services and
cannot be powered off, providing an opportunity for DIM-
Mer to achieve energy proportionality without losing avail-
ability. Moreover, instantaneous demand spikes and the in-
creased failure rates of frequently power-cycled components
such as power supplies, disks, and fans further discourage
such power-off approaches [27].

Servers reduce power consumption during times of low
utilization by putting components into low-power states.
CPU cores and private caches use dynamic voltage and
frequency scaling (DVFS) to adaptively tune the CPU fre-
quency to reduce its power consumption [15, 16]. When
completely inactive, CPU cores are power gated and mem-
ory DIMMs are placed into self-refresh states. DIMMer
takes this concept a step further, proposing to completely
power down entire CPUs when all cores and attached mem-
ories are unused.

Similar to the approaches that increase inactivity time
on disks, a number of proposals modify the OS page al-
location policy and DRAM controller logic to maximize
the time that DRAM ranks spend in low-power states [5,
22]. Sparsh Mittal has surveyed several techniques that effi-
ciently manage DRAM power consumption [26] (e.g., by re-
ducing the power consumption of memory activation, mem-
ory read/write, transition among different power modes, and
by the utilization of low-power self-refresh mode). DIM-
Mer extends these approaches to allow powering off unused
DRAM ranks.

Noting that data center workloads need high memory ca-
pacity, but under-utilize bandwidth, a number of approaches
improve memory energy proportionality by reducing per-
formance. Using power-efficient mobile DRAM devices re-
duces server energy costs [24]. MemScale [10] proposes a
scheme to apply DVFS to the memory controller and dy-
namic frequency scaling (DFS) to the memory channels and
DRAM devices. Unlike our work, these approaches assume
that all memory capacity contains useful data, resulting in
an energy cost to refresh the entire memory capacity, even if
much of it is unused.

Due to the bursty nature of data center workloads, “Pow-
erNap” proposes introducing low-power idle states into all
server components [25]. When work arrives, servers must
quickly transition to an operational state, perform work, and
return to the low-power idle mode. This work is complimen-
tary to ours, as we propose identifying and powering off en-
tirely unused cores and memory, further increasing the po-
tential energy savings.

7. Conclusions
It is long-recognized that most server hardware exhibits dis-
proportionately high energy consumption when operating at
low utilization [32]. To mitigate this effect, low-power op-
erating modes have been introduced. Moreover, techniques
have been developed to maximize the time spent in low-
power states. DIMMer builds on this work and observes
that dynamic control of memorycapacity presents an ad-
ditional opportunity to reduce energy consumption of server
systems. Just as servers experience times of low CPU uti-
lization, they also experience times of low memory capacity
demand. While prior work has concentrated on reducing the
time that components such as CPU and memory spend in
high-power modes, we find that reducing the memoryspace
available to the system can yield even greater benefits.

By dynamically reducing the memory capacity available
to the OS, we are able to consolidate unused memory on
DRAM ranks that can beentirely powered off rather than
simply being placed into a low-power state. Controlling ca-
pacity in this way enables true power proportionality for the
memory system, where the energy costs for memory capac-
ity are paid only when this capacity is requested by the sys-
tem. Moreover, turning off unused memory capacity enables
even greater energy savings on CPUs, as unused CPUs can
be powered off when all memory capacity attached to their
sockets is unused. DIMMer allows the server to remain fully
operational and capable of rapidly ramping up to peak capac-
ity if needed, but saves significant energy by entirely pow-
ering off components rather than placing them into a low-
power state. Using publicly available Google cluster traces
and power measurements on a modern server system, we
demonstrated that applying the DIMMer approach can re-
duce DRAM and CPU background energy consumption up
to 50% and 18.8%, respectively. This corresponds to a U.S.
annual non-baseload CO2 output emission reduction of over
51 metric tons of CO2.

References
[1] EPA Emissions & Generation Resource Integrated

Database (eGRID).http://www.epa.gov/cleanenergy/
energy-resources/refs.html.

[2] Publications based on Google cluster trace.https:
//code.google.com/p/googleclusterdata/wiki/

Bibliography.

6

[3] Top Twelve Ways to Decrease the Energy Con-
sumption of Your Data Center. Online athttp:
//www.energystar.gov/index.cfm?c=power_mgt.

datacenter_efficiency.

[4] BIOS and Kernel Developer Guide (BKDG) for AMD Family
15h Models 00h-0Fh Processors. 2012.

[5] Ahmed M. Amin and Zeshan A. Chishti. Rank-aware cache
replacement and write buffering to improve dram energy effi-
ciency. InProceedings of the 16th ACM/IEEE International
Symposium on Low Power Electronics and Design (ISLPED
’10), 2010.

[6] Luiz Andr Barroso and Urs Hlzle. The case for energy-
proportional computing.IEEE Computer, 40, 2007.

[7] Luis Angel D. Bathen, Mark Gottscho, Nikil Dutt, Alex
Nicolau, and Puneet Gupta. Vipzone: Os-level memory
variability-driven physical address zoning for energy savings.
CODES+ISSS ’12, 2012.

[8] Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas,
Lin Xiao, and Feng Zhao. Energy-aware server provision-
ing and load dispatching for connection-intensive internet ser-
vices. InProceedings of the 5th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI’08, 2008.

[9] Howard David, Chris Fallin, Eugene Gorbatov, Ulf R. Haneb-
utte, and Onur Mutlu. Memory power management via dy-
namic voltage/frequency scaling. ICAC, 2011.

[10] Qingyuan Deng, David Meisner, Luiz Ramos, Thomas F.
Wenisch, and Ricardo Bianchini. Memscale: Active low-
power modes for main memory. InProceedings of the Six-
teenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
XVI, 2011.

[11] James Glanz. Google Details, and Defends, Its
Use of Electricity. The New York Times, online at
http://www.nytimes.com/2011/09/09/technology/

google-details-and-defends-its-use-of-electricity.

html?_r=0.

[12] James Glanz. The Cloud Factories Power,
Pollution and the Internet. The New York
Times, online at http://www.nytimes.com/

2012/09/23/technology/data-centers-.

waste-vast-amounts-of-energy-belying-industry-image.

html.

[13] A. Greenberg, J. Hamilton, D.A. Maltz, and P. Patel. Thecost
of a cloud: research problems in data center networks.ACM
SIGCOMM Computer Communication Review, 2008.

[14] J. Hamilton.http://perspectives.mvdirona.com.

[15] Jenifer Hopper. Reduce Linux power consumption, Part
1: Tuning results. Online athttps://www.ibm.com/
developerworks/library/l-cpufreq-1, 2009.

[16] Jenifer Hopper. Reduce Linux power consumption, Part
3: Tuning results. Online athttps://www.ibm.com/
developerworks/library/l-cpufreq-3, 2009.

[17] Hai Huang, Kang G. Shin, Charles Lefurgy, and Tom Keller.
Improving energy efficiency by making dram less randomly
accessed. ISLPED, 2005.

[18] Bruce Jacob, Spencer Ng, and David Wang.Memory Systems:
Cache, DRAM, Disk. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2007.

[19] Gangyong Jia, Xi Li, Jian Wan, Liang Shi, and Chao Wang.
Coordinate page allocation and thread group for improving
main memory power efficiency. HotPower, 2013.

[20] Jonathan G. Koomey. My new study of data center electricity
use in 2010. www.koomey.com/post/8323374335, 2011.

[21] Andrew Krioukov, Prashanth Mohan, Sara Alspaugh, Laura
Keys, David Culler, and Randy H. Katz. Napsac: Design
and implementation of a power-proportional web cluster. In
Proceedings of the First ACM SIGCOMM Workshop on Green
Networking, Green Networking ’10, 2010.

[22] Alvin R. Lebeck, Xiaobo Fan, Heng Zeng, and Carla Ellis.
Power aware page allocation. InProceedings of the 14th Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS IX), 2000.

[23] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and
Benjamin G. Zorn. Flikker: Saving dram refresh-power
through critical data partitioning. ASPLOS, 2011.

[24] Krishna T. Malladi, Benjamin C. Lee, Frank A. Nothaft,
Christos Kozyrakis, Karthika Periyathambi, and Mark
Horowitz. Towards energy-proportional datacenter memory
with mobile dram. InProceedings of the 39th Annual In-
ternational Symposium on Computer Architecture (ISCA ’12),
2012.

[25] David Meisner, Brian T. Gold, and Thomas F. Wenisch. Pow-
ernap: Eliminating server idle power. InProceedings of the
14th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
XIV), 2009.

[26] Sparsh Mittal. A survey of architectural techniques for dram
power management.International Journal of High Perfor-
mance Systems Architecture, 2012.

[27] S.M. Mueller. Upgrading and Repairing PCs. Pearson Edu-
cation, 2011.

[28] Charles Reiss, John Wilkes, and Joseph L. Hellerstein.Google
cluster-usage traces: format + schema. Technical report,
Google Inc., 2011.

[29] Stephen Shankland. Google uncloaks once-secret server.
CNET, online at http://news.cnet.com/8301-1001_
3-10209580-92.html.

[30] Alan J. Smith. Disk cache—miss ratio analysis and
design considerations.ACM Trans. Comput. Syst., 1985.

[31] Alan Jay Smith. Cache memories.ACM Comput. Surv., 1982.

[32] Dimitris Tsirogiannis, Stavros Harizopoulos, and Mehul A.
Shah. Analyzing the energy efficiency of a database server. In
Proceedings of the 2010 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’10, pages 231–242,
New York, NY, USA, 2010. ACM.

[33] Donghong Wu, Bingsheng He, Xueyan Tang, Jianliang Xu,
and Minyi Guo. Ramzzz: Rank-aware dram power manage-
ment with dynamic migrations and demotions. SC, 2012.

[34] Qi Zhang, Mohamed Faten Zhani, Shuo Zhang, Quanyan Zhu,
Raouf Boutaba, and Joseph L. Hellerstein. Dynamic energy-

7

aware capacity provisioning for cloud computing environ-
ments. InThe 9th International Conference on Autonomic
Computing, ICAC ’12, 2012.

[35] Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand
Raghuraman, Yuanyuan Zhou, and Sanjeev Kumar. Dynamic
tracking of page miss ratio curve for memory management. In
Proceedings of the 11th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, 2004.

[36] Timothy Zhu, Anshul Gandhi, Mor Harchol-Balter, and
Michael A. Kozuch. Saving cash by using less cache. Hot-
Cloud, 2012.

8

