
AppBastion: Protection from Untrusted Apps and OSes on ARM

Abstract—ARM-based (mobile) devices are more popular than
ever. They are used to access, process, and store confidential
information and participate in sensitive authentication protocols,
making them extremely attractive targets. Many attacks focus on
compromising the primary operating system – e.g., by convincing
the user to download OS rootkits concealed within seemingly in-
nocent apps. To partially mitigate the impact, device manufactur-
ers responded by offering hardware-rooted trusted environments
(TEEs). Yet, making use of TEEs, e.g., by securely porting existing
apps is not easy. Only a limited number of security-critical
applications currently make use of TEEs, leaving any others to
run within a potentially vulnerable OS, under the control of users
that only to often fall prey to cleverly disguised malware.

AppBastion is a general-purpose platform leveraging the
now ubiquitous ARM TrustZone TEE to secure application
data from untrusted OSes. AppBastion enables applications to
maintain confidential data in memory regions protected even
from a compromised OS. Only approved, signed applications
can access their associated protected memory regions. Data
never leaves protected regions unencrypted and applications
can communicate or declassify protected data through special
AppBastion channels only. AppBastion ensures that application
confidential data cannot be accessed, spoofed, or leaked by an OS.

I. INTRODUCTION

ARM devices have become a prime target for attackers
that can employ a wide range of compromising techniques to
obtain access and control over confidential data. Rootkits and
general software vulnerabilities are exploited to obtain access
to application data or illicitly escalate privileges.

To minimize the impact of such attacks, the multiple
privilege layers provided by modern CPUs enable hypervisors
and other monitors to isolate applications and OSes from
each other. For example, Overshadow [15] is a hypervisor
that protects applications running on a hostile OS. The OS
can access only encrypted application resources.

Further, newer hardware goes further and provides
hardware-backed mechanisms for constructing mutually-
isolated environments, wherein confidential data can be stored
and processed, e.g., TrustZone [5], SGX [18]. TrustZone
for example, isolates security-sensitive applications (“TAs”)
in a Trusted Execution Environment (“Secure World” –
implemented as a special CPU operating mode of higher
privilege), outside the reach of vulnerable OSes.

Secure World TAs are processes that execute in memory
isolated from the Normal World OS and applications, often
under their own small Secure World OS or micro-kernel. The
TAs typically provide security-critical services to the Normal
World, exposed through APIs. Normal World applications can
access these APIs by sending requests to the OS, which are

forwarded to the Secure World in the form of Secure Monitor
Calls (SMCs). Usually, the Secure World OS is designed
to forward SMCs to appropriate TAs. This SMC-based
communication between applications and TAs also represents
the main attack vector for Normal World adversaries to escalate
privileges to the level of TAs or even the Secure World OS.

Secure World OS and TA security is highly dependent
on the size of its Trusted Computing Base (TCB). Access
to the Secure World is tightly controlled by the device
manufacturer, which typically only allows small, verifiable
TA and kernel code to execute inside Secure World. Complex
OS functionality (e.g., networking, filesystems, I/O drivers)
are typically not provided inside Secure World to TAs, due
to the impact on the Secure World TCB. Further, each
TA introduced increases Secure World TCB and can be
leveraged to compromise Secure World security. For example,
a combination of vulnerabilities in Secure World TAs [40]
and kernel code [41] has been repeatedly used by Normal
World adversaries to escalate privileges into the Secure World
OS and obtain complete control over the device. Further, TAs
written by major manufacturers have been shown vulnerable
to leaking Secure World data [52], without even requiring
privilege escalation. Finally, in practice, Secure World TCB
restrictions on OS-provided functionality and TAs severely
limit the number of applications that can benefit from the
TrustZone TEE. As a result, in commercial TrustZone-enabled
devices most applications are constrained to run under a more
vulnerable TCB inside Normal World and have to rely on
isolation provided by a more vulnerable rich OS.

In this work we introduce AppBastion, a new platform
that enables (i) sensitive applications to run protected from
their OS and peer applications inside Normal World (and
benefit from the rich Normal World OS capabilities), while
(ii) security-critical applications can still run as Secure World
TAs isolated from the Normal World OS.

AppBastion runs a small amount of critical logic in Trust-
Zone’s Secure Monitor Mode. This logic ensure code integrity
of both the Normal World OS and a set of protected sensitive
applications applications dubbed “Shielded Apps”. Further,
it ensures confidential data inside Shielded Apps is protected
from unauthorized accesses within special address spaces that
are isolated for all other Normal World applications and the
OS. This isolation is maintained even in the presence of a
compromised OS or peer applications. AppBastion orchestrates
these address spaces as private application memory regions,
wherein all data is automatically encrypted and decrypted only
upon access by its corresponding verified application code.

Inside the Normal World, each AppBastion-protected
application can specify which data pages to protect, ensuring
only verified application code can access them throughout the
application life-cycle. Further, this data can be communicated
with trusted remote entities or I/O devices through AppBastion
provided channels that prevent data leakage (even under a
compromised OS) or declassified for other application usage.

AppBastion relies only on the execution integrity of a
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small amount of critical logic running at Secure Monitor Mode
level and is independent of the complexity of application
and OS code that executes at lower privilege levels inside
the Normal or Secure World. Crucially, the AppBastion TCB
does not increase when additional applications are protected
or OS functionality is introduced.

AppBastion contributions include:

(i) data confidentiality and integrity for apps running under an
untrusted OS, through TEE-based OS instrumentation and
process monitoring;

(ii) app control flow hardening, by TEE-based randomization
and app code concealment from other apps and the OS;

(iii) secure communication for sensitive data exchanges with
trusted remote servers and peripherals, through the Normal
World network and protected DMA channels.

II. THREAT MODEL

Software may contain vulnerabilities and be prone to
compromise. Attackers can obtain control over all Normal
World applications not protected by AppBastion and the
Normal World OS itself. Using compromised applications and
OS, attackers can attempt to launch various software attacks
(e.g., confused deputy attacks, SMC hijacking, execution
hijacking, etc.) on TAs and apps protected by AppBastion
(Shielded Apps). A number of assumptions underlie this work:

Hardware is trusted. TrustZone and Memory Management
Unit (MMU) hardware are free from defects. Software cannot
bypass either TrustZone hardware isolation, privilege levels
or MMU-imposed restrictions.

Secure Monitor Mode is trusted. Code running at the Secure
Monitor Mode privilege level is outside of the attacker’s reach
and free of exploitable vulnerabilities. Additionally, note that
the Secure World OS and Monitor Mode share the same priv-
ilege level (PL2) in the ARMv7 architectures. As a result, the
Secure World OS also is trusted to isolate and protect its own
TAs and assumed out of reach of attackers. Section VII-A de-
scribes how the trusted Secure World OS assumption can be re-
laxed under ARMv8 by leveraging the ARMv8’s EL3 privilege
level to exclude the Secure World OS from AppBastion’s TCB.

No Denial of Service Attacks. SMCs entering and leaving
the Secure World can be intercepted and altered by the OS.
Similarly, both local (e.g., OS) and on-the-wire attackers can
intercept Shielded App network communication. In both cases,
AppBastion protects against man-in-the-middle attacks. How-
ever, denial-of-service attacks need to be handled separately.

Shielded App code is position-independent and supports
execute-only. AppBastion requires Shielded App code to be
position-independent and not be mixed with data such that it
can be randomized at runtime and made execute-only. Code
is first randomized using fine-grained address space layout
randomization (ASLR) and then made execute-only. Furter, we
assume adversaries can not bypass either ASLR or the execute-
only memory (XOM) restrictions enforced by either hardware
or software (such attacks need to be handled separately).

No blind control flow hijacking. Shielded App execution
may be altered either directly by the OS or through
vulnerabilities within its own code. Blind alteration of Shielded
App code pages is assumed to lead to execution failure,
effectively a denial of service attack. We assume that without
knowing the location of useful gadgets inside randomized

unreadable (execute-only) execute-only code the adversaries
cannot meaningfully hijack Shielded App execution.

Correct Shielded App logic. AppBastion assumes Shielded
Apps are properly designed to store and process confidential
data in protected memory regions only. Additionally,
confidential data is only communicated to trusted parties (e.g,
remote servers, Shielded Apps or trusted I/O devices) without
undergoing declassification for public access.

No side-channels. AppBastion assumes that cache timing or
access-based monitoring side-channels cannot be used by used
by the untrusted OS or other applications to infer some infor-
mation about the confidential data. Additionally, we assume
Shielded Apps will not change public data or issue IPCs or
syscalls in a manner that leaks confidential data state. Miti-
gating such side-channels is not addressed under the current
AppBastion design and would require handing separately.

III. OVERVIEW

AppBastion provides protected regions inside Normal
World memory for use by Normal World Shielded Apps. These
regions are managed by a small Secure Monitor Mode TCB
that guarantees their confidentiality and integrity, even when
Shielded Apps execute under an untrusted OS. AppBastion
ensures that protected region data can be accessed (in clear-
text) only by its corresponding verified Shielded App code.

Importantly, AppBastion protects Shielded Apps without
altering the interaction between the (instrumented) Normal
World OS kernel and regular applications or the software stack
composed of TAs and Secure World OS that executes inside the
Secure World. Changes required to Normal World and Secure
World code consist of inserting several AppBastion-specific
SMCs in strategic kernel locations to perform additional verifi-
cations. These SMCs are directly processed by the AppBastion
monitor, replace security-critical privileged instructions in-
side the OS and provide AppBastion-specific system calls to
applications. Any SMCs not introduced by AppBastion are
forwarded by the monitor to the Secure World OS, retaining
the standard SMC-based communication across worlds.

AppBastion-imposed changes do not affect benign kernel
operations or standard communication between Normal and
Secure World software. AppBastion memory management,
SMC processing and page fault verifications are done transpar-
ently to OS operations. Normal World OS functionality that re-
quires issuing privileged instructions is performed by the mon-
itor, provided it does not threaten kernel code integrity or pro-
tected memory regions. For example, the monitor ensures that
physical memory corresponding to instrumented kernel code
or protected Shielded App regions can not be arbitrary mapped
by the Normal World OS in unprotected virtual memory.
Further, AppBastion prevents the Normal World from tricking
the Secure World into arbitrary writes to AppBastion-protected
physical pages. Specifically, the monitor receives all SMC
calls and inspects the passed physical address ranges (e.g., for
shared memory setup between applications and TAs) to Secure
World and ensures these ranges never overlap with Normal
World OS code or Shielded App protected data/code pages.

At application level, the monitor only affects the operations
of Shielded Apps requiring AppBastion protection and does
not impact the benign functionality of either unprotected
Normal World applications or Secure World TAs.
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Fig. 1: Relationship between the AppBastion monitor, the two OSes,
Shielded Apps, and TAs. Note, PL0-1 and EL0-1 are equivalent be-
tween the ARMv7 and ARMv8 architectures and host the applications
and OSes respectively in each world. The Secure Monitor mode hosts
the AppBastion logic and shares the Secure PL1 privilege level in
ARMv7 with the Secure OS. In ARMv8 the Secure Monitor Mode
is isolated in the higher privilege Secure EL3 level.

Figure 1 illustrates the AppBastion framework, highlight-
ing the interactions between AppBastion, the OSes and a
Shielded App running in the Normal World. By instrumenting
the Normal World OS kernel, the monitor intercepts all
page tables updates and active address space changes,
effectively taking control over the MMU. Using this control,
monitor tracks and manages all Normal World virtual memory
operations, tracking every Normal World executed process and
context switch. Additionally, the MMU control ensures that
the Normal World OS can only map physical memory post
monitor verification and approval. Effectively, AppBastion
leverages the power and isolation of Secure Monitor Mode,
running at the highest privilege level inside Secure World
to protect Shielded App confidential data, ensure Shielded
App and OS code integrity, mitigate control flow hijacking
of Shielded Apps and protect confidential data exchanged
with trusted remote servers and I/O devices. In the following
subsections we briefly describe each aspect, which is further
detailed in Section V. A comparison between the protection
provided by AppBastion to Shielded Apps and standard
Secure World executing TAs is presented in Section IV.

A. Normal World App and OS code integrity

AppBastion ensures that only verified signed code is ever
loaded and executed in the address space of a Shielded App.
Moreover, the kernel is also restricted to loading only code
verified by AppBastion. The integrity of both kernel and
Shielded App code is ensured by the monitor at runtime.

Verifying and locking code pages. The monitor verifies,
instruments and locks OS kernel code to prevent the untrusted
OS from bypassing imposed Secure World MMU restrictions.
This instrumentation cannot be bypassed even by a completely
compromised Normal World OS. Further, AppBastion also
protects Shielded Apps against code compromise by verifying
and locking all Shielded App code. Details in Section V-B1.

Identifying and tracking apps. The Normal World OS

can try to confuse the Secure World monitor into providing
access to confidential data. In order to prevent such “confused
deputy” attacks, the monitor must be able to uniquely identify
the address spaces of processes running in Normal World,
without relying on data under OS control. AppBastion solves
this problem by taking control over the ARM ContextID and
TTBR registers inside Secure world and leveraging them for
tracking Normal World processes.

B. Shielded App data confidentiality

AppBastion prevents the untrusted applications and OS
from reading or modifying clear-text confidential data.
Instead, only Normal World signed Shielded App code can
read and write its own clear-text confidential data (alongside
the monitor).

Confidential data regions. Shielded Apps designate the
memory regions inside their address space that will maintain
confidential data (i.e. confidential data regions). The monitor
ensures that data inside these regions will be accessible in
clear text only to their corresponding Shielded App code.
Prior to any potential unauthorized access (e.g., by context
switch into the OS or other apps), the monitor automatically
encrypts the contents of these pages. AppBastion controls
access into confidential data regions and prevents pages inside
from being mapped elsewhere. AppBastion also monitors
memory paged out in order to prevent Shielded App memory
page replay attacks.

Declassifying data. AppBastion ensures Shielded App
confidential data can only be shared with other apps or the OS
through a Shielded App-controlled declassification process.

C. Hardening app control flow

AppBastion can not guarantee the control flow integrity of
Shielded App executing under an untrusted OS. Adversaries
can leverage vulnerabilities inside the Shielded App or Normal
World OS in order to launch control-flow-hijacking attacks.

Mitigating control-flow-hijacking. In addition to ensuring
Shielded App code integrity, AppBastion aims to mitigate
control-flow-hijacking attacks by randomizing Shielded App
code using fine-grained ASLR(e.g., [44]) and rendering the
code pages execute-only using XOM [9]. Neither the OS or
other apps can change or read the contents of randomized
Shielded App or library code pages. Thus, adversaries will
have a hard time finding the locations of required gadgets
for launching meaningful control-flow-hijacking attacks. This
hardening step is not fully protective and is most potent for
disrupting complex control-flow hijacking logic.

D. Secure networked communication

Sensitive apps (e.g., DRM, messaging, etc.) often require
exchanging confidential data with remote entities. AppBastion
provides a protocol for securely exchanging Shielded App
confidential data through the Normal World network.

Remote attestation & key exchange. AppBastion enables
Shielded Apps and remote servers to mutually authenticate
each other and setup a shared key through an authenticated
Diffie-Hellman key exchange. The key exchange is only
performed once remote servers authenticate the hardware and
software configuration of Shielded Apps, based on Secure
World monitor provided attestation.
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Data transfers. Under the AppBastion provided protocol,
a shared encryption key is only setup between the monitor
and remote servers. Thus, Shielded Apps have to rely on the
monitor for the encryption and decryption. In short, Shielded
Apps trigger the AppBastion automatic encryption/decryption
process by moving data in and out of the protected data
regions. Confidential data encrypted by the monitor is
transferred by the Shielded Apps through the network.

E. Trusted I/O paths

The AppBastion monitor enables Shielded Apps to set up
DMA-based communication channels with trusted I/O devices.
These channels are protected from accesses by untrusted code
and enable direct exchange of confidential data.

Protected DMA comunication. AppBastion enables DMA-
capable I/O devices to directly read or write content inside
Shielded App confidential pages. Through OS instrumentation,
the Secure World hosted AppBastion monitor takes control
over the DMA controllers of I/O devices. Using its control
over DMA mapping, the monitor provides exclusive DMA
access to Shielded App on-demand. As a proof of concept for
Trusted I/O, we have implemented a secure trusted path with
a DMA-capable audio device.

IV. SHIELDED APPS

Inside Normal World, only Shielded Apps are protected
by AppBastion. Any application can become a Shielded App,
provided that its binary is signed and verifiable by AppBastion.

Each signed Shielded App binary maintains the following
details in a special meta-information region: (i) which memory
segments store confidential data; (ii) a cryptographic hash of
Shielded App code authorized to access them; (iii) a set of
remote server and dynamic library certificates and (iv) where
to map DMA buffers. AppBastion instruments the OS binary
loader and forces it to pass to the monitor each binary through
an SMC. Once the monitor verifies the binary signature, it
uses the presented details to determine the confidential data
ranges and verify the loaded Shielded App code integrity.

In the following, we describe the trade-offs between
protected Shielded Apps and Secure World TAs.

Attack surface. TAs run under a trusted Secure World
OS, while Shielded Apps are loaded and managed by the
untrusted Normal World OS. As a result, while TA execution
is isolated from direct untrusted OS access, Shielded Apps
can only be hardened against malicious Normal World
execution manipulation, as described in Section V-D. Further,
the execution inside Normal World also exposes Shielded
Apps to more side-channel attacks due to the Normal World
hardware shared with untrusted peer applications and OS.

TCB. Both TAs and Shielded Apps only contain Secure
Monitor Mode and Secure OS code running at the highest
privilege level as part of their TCB. However, Section VII-A
describes how an ARMv8 EL3 privilege level can enable
removing Secure OS code from Shielded App TCB.

Device security impact. TAs running in Secure World
impact the security of both Normal and Secure World due
to their direct access to Secure OS APIs. Thus, device
manufacturers must tightly control and scrutinize each TA
introduced. In contrast, Shielded Apps only have regular

Normal World application permissions and do not require
direct manufacturer verification.

Development. Transforming an application into a TA
involves carving out the security-sensitive data and code
components and porting them to run under the Secure World
OS. Any application components not supported by the TA
(e.g., networking, disk access, etc.,) remain unprotected inside
Normal World. Additional communication logic between these
components and the TA is introduced in the form of SMCs and
shared memory. In contrast, regular applications can directly
become Shielded Apps, provided they provide the required
signed binaries, indicate their confidential data pages and
ensure their code can be randomized and made execute-only.
Additional porting might be required for complex Shielded
App operations (e.g., declassification, remote communication).

Overall, Shielded Apps are exposed to a larger attack
surface and do not benefit the Secure World execution
isolation. Instead, they represent an alternative solution
between an isolated TAs and unprotected application. Under
AppBastion, the most security-critical applications that require
TEE-execution isolation would execute as TAs, while the rest
could run protected inside Normal World as Shielded Apps.

V. DETAILS

Figure 2 depicts key AppBastion components and their
interaction. Each component is detailed in the following.
First, Section V-A describes how the monitor is instantiated
and the OS instrumented to enable monitoring and controlling
OS memory operations and process context switches. Next,
Section V-B describes how the monitor leverages its control
over the OS to verify both Shielded App and OS code
and ensure its integrity. Section V-C details the process of
constructing and protecting confidential memory regions
inside Shielded Apps which can only be accessed by the
protected Shielded App code. Section V-D presents how the
monitor mitigates Shielded App control-flow-hijacking by
randomizing its code prior to making it execute-only. Finally,
Section V-E and Section V-F describe how the protected
confidential data can be communicated between Shielded
Apps and trusted remote servers or DMA-capable I/O devices.

A. Building blocks

AppBastion relies on TrustZone and privilege level
isolation to prevent Normal World code from compromising
the Secure World monitor. In turn, the monitor identifies,
tracks and protects the address spaces of Normal World
Shielded Apps from untrusted apps and the OS.

1) Secure World monitor: Under AppBastion, Secure
Monitor Mode code is responsible for setting up both the
Secure and Normal World resources prior to loading the
Normal World OS kernel. The monitor configures resource
restrictions prior to relinquishing control to the Normal World
OS to prevent the Normal World from escaping monitor
oversight. The Secure World monitor integrity (both data and
code) alongside with encryption keys maintained inside the
Secure world are protected using Secure Boot [22].

Monitor setup At boot, the bootloader (e.g., U-boot [23])
starts and loads the AppBastion monitor code. The bootloader
then transfers control to the monitor, which starts with full
control over the TrustZone security registers. The monitor
proceeds to setup up the Normal and Secure World resources
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Fig. 2: Key AppBastion components and their interaction. Shielded
Application A is depicted processing confidential data, while Shielded
Application B is processing public data. The AppBastion monitor sets
up and controls the access permissions of data and code memory
pages belonging to applications, Shielded Apps and the instrumented
OS, enforcing the illustrated read/write/execute access permissions.
Further, only the monitor can directly access the MMU, TTBR and
ContextID registers to map memory pages, change their permissions
or context switch processes. As a result, to update these registers, the
OS is forced rely on the monitor for updating these registers (through
issued SMCs). The illustrated DMA device represents an I/O device
that is temporary locked for Application A usage by the monitor.

and OSes. First, a secure memory region is set up for the
Secure World OS and monitor code and data. Next, the
security-sensitive registers are then configured for only Secure
World access and Secure World OS is loaded. Finally, the
monitor loads and executes the Normal World OS kernel code.

SMCs represent the only entry point into the Secure
World. An SMC is identified by the value of the R0 register
and carries three parameters in registers R1, R2, and R3.
These registers can point to Normal World structures in order
to facilitate larger data transfers. In addition to the SMCs
used for communication between Normal and Secure World
OSes, the Normal World OS is instrumented to send SMCs
to the monitor on behalf of Shielded Apps as well as in the
case of exceptions caused by AppBastion instrumentation.

2) Normal World OS instrumentation: The TrustZone
architecture only allows access to the security-sensitive
registers through MCR instructions. AppBastion enforces
supervision of Normal World memory management by
replacing all such MCR instructions (inside the kernel binary)
that perform security-sensitive operations (e.g. changing
MMU state) with SMCs calling into the AppBastion monitor.
The instrumented code is ”locked” by preventing additional
mapping of kernel executable pages and ensuring the physical
code pages are never made writable. As a result, all OS
security sensitive operations are only performed by the
AppBastion monitor in the Secure World.

Replacing security-sensitive instructions. The MCR
instructions have special OP codes, and have the same format
under both ARM and Thumb [2] mode. Thus, they are easy to

identify and instrument due to the fixed length and alignment
of ARM ISA instructions. The monitor substitutes with SMCs
(calling into the AppBastion monitor) all MCR instructions
used for accessing the following registers: (i) Translation Table
Base Control Register; (ii) Translation Table Base Register
0 (TTBR 0); (iii) Cache operations Register; (iv) ContextID
Register. The untrusted OS kernel is thus prevented from
making any unauthorized change to its address space or Con-
textIDs. As a result, the OS can only use the provided SMCs
to perform MMU operations or update Translations Table
Base Registers (TTBR). This ensures that AppBastion monitor
has a consistent and uncompromised view of the memory.

Overseeing OS memory operations. The AppBastion
monitor enables the MMU prior to OS boot. This prevents
Normal World software from directly manipulating physical
memory. Instead, the OS can only access physical memory
through the MMU, which is under AppBastion control.

In order to set Normal World memory page in the
MMU, the instrumented OS is forced to issue an SMCs to
the AppBastion monitor. For each such SMC, the monitor
sets the corresponding entry in the MMU on behalf of
the OS and also collects a copy of the set page inside
Secure World. The monitoring of entries set in the MMU
enables the monitor to collect information regarding all OS-
specific virtual-to-physical memory mappings inside a Secure
Monitor Mode-hosted data structure. This structure is updated
alongside the MMU. Further, AppBastion also leverages its
control over the MMU in order to clear the present bits on
Shielded App executable code pages, in order enforce XOM.

In order to accurately track the virtual-to-physical layout
of Normal World memory, the monitor also maintains a copy
of the page table layout used by the Normal World OS. This
layout is constructed based on information extracted from
the signed kernel binary (e.g., page entry format, number
of levels, etc.). As a result, the monitor can reproduce the
page table walks in order to determine the physical memory
corresponding to addresses provided by the instrumented OS.

The monitor also controls the TTBR0 register assignments
in order to ensures the page table of processes do not overlap.
Additionally, the Normal World memory containing all page
tables is made read-only by the monitor. As a consequence,
the OS cannot modify its page tables directly. Instead it has
to issue the appropriate SMC to the monitor – this is done
automatically through instrumentation.

The control over physical memory mapping and TTBR0
register enables the monitor to analyze all Normal World
mapped physical pages. The monitor prevents malicious
manipulation of physical memory mapping, such as mapping
physical pages containing Shielded App code as writable,
or mapping physical memory used by one process into the
address space of another process.

B. Protecting app and OS code integrity

Hooks inside the Normal World OS boot-sequence and
binary loader enable the monitor to verify and lock all Normal
World pages pertaining to Shielded Apps or the kernel code.
These pages can only be mapped inside Normal World once
they have undergone monitor verification and instrumentation.
Further, the monitor tracks all Normal World processes and
ensures correct context switching. The monitor also sets the
Privileged Execute-Never bit on all process executable pages
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to ensure they cannot be mapped into kernel space. This
prevents attackers from inserting code containing privileged
instructions in attempts to bypass AppBastion control.

1) Verifying and locking code pages: The OS kernel
code integrity verification is triggered by SMC calls inserted
in the OS boot-sequence and binary loader. AppBastion
verifies code integrity of each kernel and Shielded App
code page by comparing its cryptographic hash against those
provided inside the signed kernel binaries forwarded by the
instrumented OS. Using the page table location provided
inside the TTBR register, the monitor traverses each page
table and verifies each executable page. The verified pages are
then made read-only prior to the execution of the first process.

Locking OS code. The integrity of kernel code pages is
verified and they are made read-only post OS instrumentation.
The OS can only load additional kernel code (e.g., kernel
modules) by issuing SMC requests (this is instrumented
transparently). Upon receiving such requests, the monitor
only loads the respective code after passing it through an
appropriate instrumentation step (e.g., to replace privileged
instructions with SMC calls, etc.) and making it read-only.

AppBastion only allows loading of additional Normal
World kernel code through an SMC provided for runtime
kernel module loading. Before mapping these modules,
however – similarly to OS boot-sequence code instrumentation
– AppBastion substitutes privileged instructions that can
bypass AppBastion protection with SMCs. Similarly, eBPF
[3] JIT compilation can be supported to allow introducing
instrumented signed user-space code in the kernel space.

Locking Shielded App code. When a Shielded App is
executed, an SMC inside the instrumented OS binary loader
notifies AppBastion. The monitor verifies the Shielded App’s
code integrity (similar to kernel pages), randomizes its
pages and makes them execute-only. Further, the monitor
prevents additional pages from being mapped as executable
inside the Shielded App’s address space. Statically-linked
and dynamically-linked libraries are also supported inside
Shielded App code provided their code can be randomized
and made execute-only. In the later case, the libraries must
provide their own signed binaries that include their code
hashes and AppBastion approved certificates. Each signed
Shielded App binary includes the public keys for the dynamic
libraries which require loading inside their address space.
Only those libraries with certificates matching one of the
included keys are loaded into the respective Shielded App.

2) Managing context switches: To protect Shielded
Apps, AppBastion needs to track executed processes and
(re)identify them reliably over time. The monitor can not
rely on Normal World OS controlled and maintained data
structures for identifying processes. Instead, it uses the TTBR
and ContextID registers for this purpose.

Tracking running processes Each process has distinct page
table. In ARM processors, the MMU loads the page tables
of a process starting from its base address written inside the
TTBR register. Thus, each running process must have an
unique TTBR value. Further, each ARM processor core has
a ContextID register that stores an 8-bit ASID and a 24-bit
PROCID value. ASID values are also marked into TLB entries.
On context switches, the MMU only flushes the TLB entries
whose tag does not match the new ContextID ASID value.

The instrumented OS is compelled to rely on the monitor

for switching page tables on context switches. This allows the
monitor to identify both the previously running process (by
reading the ContextID) and the newly scheduled one (by its
TTBR). The monitor completes a context switch by setting
the OS-provided TTBR value and writing its corresponding
ASID and PROCID inside the ContextID register.

On each page table change, the monitor logs its
corresponding base address inside the Secure World. For
each base address it also generates, associates and maintains
unique PROCID and ASID values inside Secure World. On
each context switch the monitor updates both the TTBR and
ContextID registers. The page table address recieved from
Normal World is written into the TTBR, while the PROCID
and ASID inside the ContextID register are replaced with
monitor maintained values.

The values maintained inside both TTBR and ContextID
registers can not be changed by the instrumented OS. Control-
ling both registers is necessary for managing context switches.
The control over TTBR ensures the monitor is notified of
each context switch, while ContextID management ensures
that ASID values are appropriately changed alongside with
the TTBR. Note, tracking ASIDs is critical in order to ensure
all TLB caches are flushed correctly. Otherwise, a malicious
OS could write spoofed ASIDs in order to trick the MMU
into not flushing Shielded App pages from the TLB caches.

C. Protecting confidential app data

For each Shielded App, the monitor sets up a confidential
data region in memory. At runtime, access into these regions is
managed by the monitor in order to ensure that only Shielded
App code has access to confidential data. Prior to unauthorized
access from the OS or other apps, the confidential data pages
of each Shielded App process are encrypted using a unique key
generated by the monitor and stored in Secure World memory.
This key is generated from a Device Unique Secret Key
(DUSK) using a key derivation function. In turn, the DUSK is
provided by the device manufacturer in a read-only e-fuse, only
accessible to Secure World. AppBastion ensures that a compro-
mised Normal World OS can neither obtain the Shielded App
key, DUSK key or interfere with the encryption process. The
monitor also restricts all memory not marked as confidential
to be read-only while Shielded Apps process confidential data.
This prevents Shielded App from accidentally transferring
confidential data outside memory protected by the monitor.

Confidential data persistence Shielded App persistence
encryption key can also be generated by AppBastion from the
DUSK and signed Shielded App code hashes. In contrast to the
unique per-process Shielded App keys, these persistence keys
are only unique across Shielded App binaries and can always
re-derived from the persistent signed binaries and DUSK key.

A Shielded App can request AppBastion to encrypt
some confidential data pages using its persistence key.
The encrypted confidential data can then be declassified as
detailed in Appendix B and stored safely inside Normal
World persistent storage. This data is later only decrypted
inside confidential data pages of Shielded Apps loaded from
the same signed binary by AppBastion, upon Shielded App
decryption request. This process enables Shielded Apps to
persist confidential data safely in Normal World persistent
storage and is similar to the process used by TAs.
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1) Confidential data memory regions: When a Shielded
App is loaded, the monitor initially marks the memory pages
inside confidential data regions as not present, without read
or write permissions. When the Shielded App attempts to
access these pages, it triggers a page fault, which can not
be resolved by the instrumented OS. Instead, the respective
fault is forwarded to the monitor, which uses it to restore
permissions only when Shielded App code requires access.

Run-time data page protection During execution, the
Shielded App code can either process (i) confidential data
inside the confidential data regions or (ii) public data located
outside. When the Shielded App attempts access to confidential
data inside AppBastion protected pages, the monitor receives
a fault due to the no-read constraint. As a result, the monitor
first makes all public Shielded App pages read-only. Next,
it changes confidential data pages access permissions to
read-write. This process allows the Shielded App code to
transparently copy data from public pages into AppBastion
protected pages. When the Shielded App attempts to write in
read-only public data pages, the confidential data pages are en-
crypted and made read-only. At this point, all public data pages
permissions are restored to read&write. The confidential data
pages are only decrypted and made writable when Shielded
App code tries again to write data in confidential data pages.

When a Shielded App tries to write data in read-only
pages, a page fault is triggered. This page fault triggers a
context switch into the OS fault handler. The first line of
the instrumented fault handler issues an SMC, passing the
fault details to the monitor. At this point, the permissions
of Shielded App data pages are changed depending on the
Shielded App’s current state. Additionally, confidential data
pages are encrypted or decrypted as described previously. On
confidential data encryption, the monitor additionally encrypts
the general-purpose registers.

The dynamic change of page permissions enables the
monitor to transparently protect Shielded App confidential
data, while allowing the OS and other processes to access
Shielded App public data when needed (e.g., IPCs, signals,
shared memory pages, etc.). The encrypted data inside the
read-only confidential pages can also be used transparently
by the OS while the Shielded App is running (e.g., saved to
disk, sent through the network, etc.). Further, Shielded Apps
can exchange their public and encrypted confidential data
freely with remote servers and peer applications.

Note, sharing confidential data between Shielded Apps
and Normal World applications would directly leak the data
to the untrusted OS and thus explicitly prevented under
AppBastion without undergoing declassification (detailed in
Appendix B). However, sharing confidential data between
Shielded Apps or Shielded Apps and TAs is possible under
AppBastion by building carefully managed shared memory
pages. Setting up and managing such shared memory implies
further partitioning Shielded App memory regions to introduce
confidential data pages that do not undergo the automatic
encryption/decryption process previously described. Instead,
AppBastion would have to ensure only verified Shielded App
or TA code has read and write access to these pages. Further,
AppBastion management of physical pages mapping would
have to only allow careful mapping of these regions also
inside the set of TAs (data pages) and Shielded Apps (shared
confidential data regions) trusted by the Shielded App. For
simplicity and space limitations, the process of introducing
shared confidential data memory regions is omitted here.

Re-mapping protection. Only controlling confidential page
permissions is not sufficient against attacks from inside the
OS. The monitor also ensures these physical pages can not be
allocated in other address spaces or with different permissions
(e.g., double-mapping). Further, all access permissions (read
and write) are removed from these pages once the Shielded
App is de-scheduled. This prevents untrusted Normal
World software from directly accessing the contents within
and protects the content integrity and confidentially. The
permissions are restored upon Shielded App execution.

Page replay protection. The monitor also protects against
attempts to reload outdated swapped-out pages. The OS code
is instrumented to notify the monitor when memory pages are
swapped in and out. On OS attempts to page out AppBastion
protected pages, the monitor generates a version identifier
and appends it to the encrypted page. The identifier contains
a unique number concatenated with the ContextID of the
Shielded App process. A secondary encryption is applied to
the resulting content. The monitor maps this identifier to the
address of the swapped out page address. The mapping is
saved inside Secure World. On attempts to swap the page
back in, the monitor removes the second encryption layer
and verifies if the identifier within corresponds to the last one
saved inside the Secure World managed mapping. Only upon
successful verification, the page is swapped back in.

2) Declassifying data: AppBastion prevents the Shielded
App from directly disclosing the content of confidential
code pages to the untrusted applications or OS. However,
some Shielded Apps might require the declassification of
confidential information (similar to TAs). In consequence,
AppBastion provides a well-defined process for requesting the
disclosure of confidential information. This process is detailed
in Appendix B and ensures that declassification requests
cannot be spoofed or replayed by the OS or other apps.

D. Hardening app control flow

Shielded Apps execute inside the Normal World, under
the untrusted OS. Moreover, they can contain vulnerabilities
which could be leveraged by attackers into hijacking the
Shielded App control flow. A hijacked Shielded App could
be tricked into leaking or compromising confidential data.

Completely protecting the Shielded App execution inside
Normal World is unrealistic given the numerous attack vectors
(e.g., code vulnerabilities, direct kernel access, etc.). Instead,
AppBastion aims to mitigate such attacks by preventing
meaningful hijacking of Shielded App code.

The monitor protects Shielded App code from being
compromised and hijacked. First, it verifies its code integrity
prior to setting up the protected address space regions. Upon
successful verification, it randomizes the corresponding code,
locks its memory pages and makes them execute-only.

1) Preventing control-flow-hijacking: In order to prevent
meaningful control-flow hijacking, AppBastion makes all
Shielded App code execute-only when executed. From that
point, neither the OS or applications can change these
permissions or read contents of Shielded App code pages.
Once the pages are execute-only, the monitor also randomizes
them using a fine-grained ASLR (e.g., [44]).

XOM in conjunction with ASLR hides the layout of the
Shielded App executing code. In other words, the location of
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useful gadgets can not be learned by neither malicious appli-
cations or the OS itself. Control-flow hijacking attacks require
chaining such gadgets in order to successfully leak or com-
promise confidential data. Blind control-flow hijacking would
likely only lead to Shielded App crashes and denial-of-service.

Enforcing XOM. The current AppBastion design uses the ap-
proach introduced by XnR [9] to make code pages XOM. From
the Secure World, the monitor controls both the MMU and all
privileged instructions through instrumentation, as described
in Section V-A2. This enables AppBastion to mark Shielded
App executable pages as not present. Through instrumentation,
the monitor intercepts all page faults and ensures that only
a Shielded App code page is made present on instruction
fetches that originate from Shielded App code. Once another
page fault or context switch is triggered, the respective page
is again set as not present. XOM ensures that Shielded App
code pages are hidden from reads, as detailed in XnR.

Execution leaking pointers. Removing read permission
of code pages makes locating gadgets much harder under
AppBastion. However, it is still possible for attackers to lever-
age the untrusted OS in order to guess the location of function
addresses. The OS can still observe the PC counter and the reg-
isters and try to infer what instruction was executed. As an ex-
ample, it is possible to have a profile of the execution of func-
tions and try to map it to execution under AppBastion by forc-
ing context switches. Aggressive profiling of Shielded App is
not prevented under current AppBastion design. However, the
monitor’s control over memory management, page fault han-
dling, context switches and security-sensitive registers places it
in an ideal position to detect anomalies in Shielded App execu-
tion (e.g., forced context switches, excessive page faults, etc.).

E. Protecting network communication

AppBastion provides a protocol for Shielded Apps
and trusted remote servers to establish trust and exchange
encrypted messages without requiring the introduction of a
full network stack inside Secure World. The protocol protects
confidential data of Shielded Apps both from remote and
local adversaries and prevents replay-attacks using nonces.
Next we present the protocol’s key aspects. The full protocol
is detailed in Appendix A.

1) Remote communication protocol: Connections between
Shielded Apps and trusted servers are established by using
the Secure World monitor as an intermediary. The monitor
verifies the server identity and provides it with the keys
required for decrypting Shielded App data.

Connection setup. During execution Shielded Apps can
request the monitor to establish a secure connection with a
remote server. This connection is established by the monitor as
described in Appendix A. Once the monitor and remote server
setup a shared encryption key, Shielded app confidential data
is re-encrypted under the shared key, enabling the Shielded
App and server to exchange confidential data.

Data transfers. In order for a Shielded App to send
confidential data remotely, it must first copy it outside
the confidential data pages. Cleartext confidential data is
automatically encrypted by the monitor using the shared key.
The Shielded App can then use the Normal World network
to send the encrypted data. The server decrypts this data with
the AppBastion provided key and verifies its freshness.

When Shielded Apps receive incoming data, they are
running with their confidential data pages encrypted and read-
only. In order to access received confidential data ciphertext,
the Shielded Apps have to first explicitly copy it into
confidential data pages. When they attempt to write into read-
only confidential data pages, a page fault is triggered. As result,
the monitor automatically decrypts confidential data pages and
makes them writable (also turns public pages read-only). Now
the data can be transferred inside confidential data pages and
the Shielded App can request the monitor to decrypt it using
an SMC. Once decrypted, this data is automatically protected
alongside the other Shielded App confidential content.

F. Trusted I/O paths

I/O devices capable of native encryption (e.g., Bluetooth
devices) can participate in in the remote communication
protocol described in Appendix A. Such devices can setup
connections though attestation and key exchange with
AppBastion, similar to remote servers. For DMA capable
devices, AppBastion provides a faster alternative for secure
communication.

1) Protecting DMA I/O: AppBastion enables DMA-
capable I/O devices to directly read or write content inside
Shielded App memory. Through OS instrumentation, the
monitor takes control over the DMA controllers of Normal
World I/O devices inside Secure World. Using its control over
DMA mapping, the monitor provides exclusive DMA access
to Shielded App when necessary.

Controling DMA access. First, the monitor maps the memory
mapped register corresponding to the DMA controller inside
Secure World memory. Then, the monitor replaces the
accesses inside OS code inside Normal World with SMCs. As
a result, the monitor takes control over the DMA controller of
the device. From this point, the Normal World can only access
the trusted I/O device under the supervision of AppBastion.

Requesting Secure I/O access. A Shielded App can request
access to a trusted I/O device by issuing an SMC to the
monitor. Upon receiving such a request, the monitor sets up a
new memory region inside the Shielded App’s address space,
the SecIO region. This region operates a set of special rules
and cannot contain either public or confidential data pages.

SecIO region rules. Similar to confidential pages, AppBastion
only allows the DMA buffers to be mapped inside the SecIO
region. Pages inside this region are granted read&write
permissions alongside the confidential pages, in order to
enable direct transfer of data (without encryption). However,
both read and write permissions are removed from SecIO
region pages when the confidential data pages are encrypted
and made read-only. This difference is necessary because the
I/O devices would not be able to handle the encryption of
data. Instead, the content of SecIO pages is always cleartext
that can only be copied inside confidential code pages directly.
Once inside confidential code pages, it can be exchanged
similar to other content located inside.

Protecting DMA transfers. The I/O device DMA buffers are
mapped by into the SecIO region during Shielded App execu-
tion. The monitor will refuse any requests to map DMA buffers
of the respective I/O device into other locations. This prevents
other apps or the OS from obtaining access to the DMA chan-
nel used by the Shielded App. Once a SecIO memory region
is mapped to the DMA buffers of an I/O device, Shielded
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App and I/O device can transfer data directly. AppBastion can
(optionally) notify the user (e.g., using a Secure World reserved
LED) whenever the trusted I/O device is reserved for Shielded
App usage. Additionally, AppBastion only allows configuring
the DMA devices to use a fixed predefined physical memory,
reserved for mapping their DMA buffers. This prevents the OS
or applications from using DMA access to change code pages
or leak and alter confidential data of Shielded Apps.

2) Example: Securing Shielded App audio: Using the
approach described in Section V-F, we enable Shielded Apps
to setup an AppBastion protected audio channel to a GTL5000
[50] sound interface. This channel enables Shielded Apps to
securely record and playback audio to users.

The SGTL5000 interface uses the serial device interface
(SSI1) to provde DMA buffers for capturing or playback
audio data to the sound card codec. AppBastion restricts
the access to the SSI1 interface for Secure World. In our
IM.X6 development board this is done by simply configuring
and locking the corresponding entry inside the Central
Security Unit (CSU) register at boot time. In consequence,
the untrusted OS can only access the SSI1 interface though
AppBastion controlled SMCs.

Configuring DMA. AppBastion reserves a 4KB portion of
Normal World physical memory for exclusive mapping of the
SSI1 interface DMA buffers. Arbitrary attempts to map virtual
pages into this physical memory are detected and prevented
by the monitor. Upon Shielded App requests (through SMC),
AppBastion removes any existing virtual mappings to the
SSI1 DMA buffers and creates a new mapping in the Shielded
App’s SecIO memory region instead. The location and size
of the SecIO memory region is extracted by AppBastion
from the Shielded App’s signed executable. The rest of
the SGTL5000 interface is configured by the Shielded App
though the untrusted OS. Only the DMA controller and
buffer mappings are under monitor control, which is sufficient
for protecting the exchanged data. Once both DMA buffers
and the sound interface is configured, the Shielded App
and sound card codec can start exchanging data though the
SecIO-mapped sound DMA buffers.

Testing audio. In order to test the effectiveness of the
proposed approach, we have developed a simple Shielded
App that plays and records audio files. This app can exchange
confidential audio messages with a remote server, while
running under the untrusted OS. This Shielded App only relies
on SecIO mapped DMA buffers and the AppBastion remote
communication protocol for playing audio data received from
a remote server and send back the responses that it records.

TABLE I: LMBench micro-benchmark results(µs)

Linux App
Bastion Overhead Trust

Shadow
Null 1.02 1.02 0% 101%
Open/Close 21.25 21.25 0% 40%
Mmap (64M) 4093 15380 275% 40%
Read 0.80 0.80 0%
Write 1.52 1.52 0%
Fork 1066 5842 448% 136%
Fork/exec 1166 5596 401% 137%
Page fault 1.41 16.70 1084% 66%
Signal handler
install 1.60 1.60 0 % 136%

Signal handler
delivery 42.46 42.46 0% 11%

Context
switch 2p/0k 19.95 24.64 23% 8%

VI. EVALUATION

We implemented and evaluated AppBastion on an i.MX6
Nitrogen6X Max board. This board features a hardware
configuration similar to a typical mobile device, an ARMv7
Cortex-A9 CPU and 4GB of DDR3 memory. On device boot,
AppBastion starts in the Secure World and uses the U-boot
[23] boot-loader to load an instrumented 32-bit Linux 4.1.15
OS in Normal World. Prior to handing over control to this
untrusted OS, AppBastion sets up the Secure and Normal
World configuration and load the Secure World OS. For now,
for simplicity, both the Secure World and the Normal World
run in a single-core environment. However, AppBastion’s
design is not constrained to this environment.

Multi-core setup. The ARM CoreLink TZC-400 TrustZone
Address Space Controller [1] enables restricting individual
processor cores from accessing specific physical memory
regions. In the context of AppBastion, each such region could
correspond to a Shielded App’s confidential data memory
region. Under this multi-core processor design, AppBastion
would be constrained to protecting only contiguous private
memory regions. TZC-400’s hardware limitation would only
allow it to protect eight Shielded Apps simultaneously.

TCB. AppBastion takes approximately 3.6K code running the
Secure World. Further, only around 150 LOC inside Normal
World OS kernel are instrumented. The instrumentation
replaces security-critical operations with SMC calls to the
AppBastion monitor, as described in the previous section.
The 150 LOC also contain the syscalls introduced to allow
Shielded Apps to issue AppBastion-specific SMC requests.

A. Micro-benchmarks

In an AppBastion-protected system operations like OS
page fault handling and virtual memory management require
additional monitor verification. This process introduces addi-
tional context switches and affects the performance of kernel
memory management. This section presents how AppBastion’s
protection of Shielded Apps affects system performance.

Similar to prior work (TrustShadow [26], InkTag [27],
VirtualGhost [19]), we evaluate the impact of introducing
context switches and Secure World verification on the key OS
operations performance (memory operations, file I/O, signal
handling). We issued system calls and measure their latency
using default LMBench 3.0 [38] micro-benchmarks. Table I
presents a comparison between various native Linux 4.1.15
system services and their AppBastion instrumented versions.
For context switching, we measured the latency of switching
between two processes with no work performed by each.

Table I results indicate that AppBastion introduced security
checks mainly impact memory operations, specifically those
requiring additional Secure World inspection (i.e. page faults,
memory mapping). The highest impact on page fault handling
is due to the extra page permission checks to ensure physical
memory containing Shielded App confidential data is only
ever mapped in the Shielded App’s address space.

Table I also contrasts the overhead imposed by AppBastion
with TrustShadow, a previously-proposed solution that
instruments the kernel in order to protect application data.
In contrast to AppBastion that focuses on protecting Normal
World applications, TrustShadow [26] aims to reduce the
Secure World OS TCB by running TAs under a kernel that
forwards all system calls to the Normal World OS. While
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TABLE II: Application benchmark results

Linux App
Bastion Overhead

PostgreSQL 10.3 (TPS) 116.28 112.89 2.9%
PHPBench 0.8.1 (Score) 29797 29713 0.2%
Optcarrot 1.0.0 (FPS) 6.36 6.36 0%
OpenSSL 1.1.1 (Signs/s) 8.10 8.10 0%
Java-JMH 1.1.2 (Score) 218M 217M 0.3%
Geekbench 4.3.0 872 851 2.4%
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Fig. 3: Web server performance overhead

AppBastion mostly impacts memory mapping operations,
TrustShadow’s instrumentation imposes a more uniform
overhead on similar operations (mmap, fork, page fault).
Critically, AppBastion overheads are incurred only on
infrequent operations – large mmap operations, fork and
exec calls only typically happen during application launch.
There, a difference in thousand of milliseconds is not critical.

While micro-benchmarks permit the precise identification
of overheads, they can obscure practical considerations. For
a practical perspective, Table II presents several realistic
application benchmarks drawn from running Geekbench [46]
4.3.0 and standard Phoronix Test Suites [45] compatible with
our development board prototype. The benchmarks indicate
the performance of regular applications running under
an AppBastion-protected OS is minimally affected.

B. Shielded server performance analysis

We further evaluated the impact of running the popular
Nginx [47] server as a Shielded App. To do this, we altered
Nginx 1.8.0 to start execution as Shielded App and mark
all its initial writable data sections as confidential. In our
configuration, these sections included eight writable pages
(32KB), mainly related to SSL/TLS keys.

Benchmark setup. Similar to other related work (e.g.,
TrustShadow), we used ApacheBench 2.3 [4] to determine
the impact on Nginx’s file processing speed. ApacheBench
is configured to send 10000 HTTP file requests using 10
concurrent connections. Each resulting throughput for file
sizes between 1 and 1024 KBs is presented in Figure 3.

Data transfer overhead. Our web server evaluation shows
that AppBastion introduces only a 6-8.6% throughput overhead
on requests for file sizes between 1-32KB. For files larger than
32KB, overhead rapidly decreases to a negligible amount,
smaller than 0.1%. This is an effect of the transfer duration
overshadowing the impact of AppBastion on protecting the
32KB of memory containing confidential data. On larger
files, most processing time is spent on read and write data
operations rather than context switching and page faults. As
indicated by Table I, these operations are not affected by
AppBastion. The sudden overhead decrease at the 32KB mark

is a function of the current AppBastion implementation, which
treats the protected 32KB memory as a whole. AppBastion
changes permissions for all confidenttial data pages, regardless
of the fact that not all might store confidential data. Setting up
appropriately-sized protected memory regions can minimize
overhead. Figure 3 shows that AppBastion’s impact on HTTP
throughput is comparable to TrustShadow.

Transferring confidential data through unprotected HTTP
connections exposes it to network attacks. HTTPS are
typically used instead for security-sensitive transfers. The
HTTPS throughput overhead for the same 1-32KB files is also
shown in Figure 3. These files are sent using a using TLS v1.2
with a ECDHE-RSA-AES256-GCM-SHA384 cypher. The
overhead introduced by AppBastion is negligible compared
to computationally intensive TLS cryptographic operations.

C. Bitcoin wallet performance analysis

We also evaluated the impact of a protecting a security-
critical Bitcoin [42] wallet app, Bitcoin Knots 0.16.3 [20]. In
this section we present how the performance of such an app is
affected when executing as a Shielded App under AppBastion.

Configuration. We configured the Bitcoin Knots binary to re-
quest protection of all its sensitive data sections. These sections
contain eleven 4KB-sized pages. Then we evaluated key wallet
operations by running the wallet in regression test mode. The
resulting execution times for common commands are presented
in Table III. The commands are sent from the command line in
order to eliminate any delays introduced when using a GUI. In
each test, the operations are performed on a freshly-generated
wallet containing 1000 blocks and the average execution
time of 1000 runs is presented. Results indicate that most
wallet commands are most executed a millisecond slower (e.g.
checking balance, sending money). Such an effect is likely not
noticeable to the user, especially in a GUI.

Performance evaluation. Our experiments indicate that
applications like Bitcoin Knots can be slowed down slightly
under an AppBastion-instrumented OS. Simpler operations
(checking balance, sending money) are most affected (1.15-
3.7%). In absolute terms, an increase of 1-2ms. However, the
impact is diminished for process intensive operations (e.g.,
encryption). Also, turning an app into a Shielded App only
slows their operation slightly (by 1%).

The evaluation of this wallet suggests AppBastion can
harden the security of Normal World applications by just in-
troducing a few lines of code and paying a minor performance.

D. Minimizing overheads

Optimizations. AppBastion imposes an overhead on the entire
system it protects, and not only the Shielded Apps. The over-
head can be reduced by: (i) optimizing the Secure World veri-
fications performed, or (ii) TrustZone hardware advancements
that enable faster switches between the two worlds. The kernel
instrumentation performed to maintain code integrity is based
on the security mechanism described in TZ-RKP [8]. More re-
cently, an optimized version of TZ-RKP was deployed in com-
mercial phones running Samsung KNOX [49], which shows
that hardware vendors can reduce these overheads significantly.

On-demand Instrumentation. In ongoing work, dynamic on-
demand ON/OFF toggling introduces AppBastion instrumenta-
tion only when required, at the expense of a higher startup cost.
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TABLE III: Lite Bitcoin wallet benchmark (msec)
Command Linux AppBastion Application Overhead AppBastion Shielded App Overhead
Check Balance 8.55 8.87 3.7% 8.95 4.6%
Send money to 1 account 73.19 74.3 1.52% 74.71 2.0%
Send money to 10 accounts 94.63 95.72 1.15% 96.83 2.3%
Encrypt wallet 40238.44 40483.02 0.6% 40634.22 0.9%

Instrumentation involves mainly replacing specific kernel privi-
leged instruction with SMCs, or simply introducing additional
SMCs to enable AppBastion to interact with Shielded Apps
or handle page faults. Because the changes are performed on
read-only code pages, page copies are saved prior to instrumen-
tation, at boot time, and switched back to in the OFF phase.

Using the information maintained inside the Secure World,
AppBastion can detect when no Shielded Apps are running. At
this point AppBastion can be toggled OFF by switching back to
original uninstrumented kernel code pages and for kernel mem-
ory operations. Only the kernel-instrumented page containing
the AppBastion specific system calls would need to be main-
tained, to re-enable AppBastion protection in a two stage pro-
cess: (i) re-verifying kernel integrity, and (ii) switching back to
the instrumented code pages. Further, for increased switching
speed, and to eliminate stage (i), verified kernel code pages are
maintained in the Secure World to avoid multiple kernel in-
tegrity verifications. On-demand instrumentation is extremely
promising and can reduce overheads by an order of magnitude.

VII. DISCUSSION

This section first presents how ARM introduced privilege
levels enable AppBastion to protect its monitor from a com-
promised Secure World OS and even harden the TAs running
under it. Next, AppBastion’s protection against typical Normal
World attack vectors targeting Shielded Apps is analyzed.

A. Running AppBastion inside ARMv8’s EL3

As depicted in Figure 1, the highest privilege level
available in the ARMv7 architecture represents Secure
Privilege level 2 (PL1), where both Secure Monitor Mode and
the Secure OS are executing. Further, any instrumentation of
Secure OS could be bypassed through control-flow-hijacking
attacks that jump directly into monitor code. Thus, under
ARMv7 the Secure World OS can not be isolated from
the monitor and they have to trust each other. However,
the introduced Secure Exception Level 3 (EL3) in ARMv8
architecture can be leveraged by AppBastion to (i) remove
Secure OS code from its TCB and (ii) harden the TAs and
OS running inside Secure World at Secure EL0-1.

An AppBastion monitor running at EL3 can leverage its
higher privilege level to instrument the Secure World OS
and take exclusive control over MMU, TTBR and ContextID
operations (by replacing their privileged instructions with SMC
calls). This control enables the monitor to manage Secure
World memory operations and ensure the integrity of Secure
OS code, as described in Section V-A2 for the Normal World
OS. Further, by tracking and controlling both Normal World
and Secure World memory operations the monitor can ensure
no OSes, TAs or Normal World applications can perform
operations that would bypass its protection of Shielded Apps or
OS code. Thus, an EL3-running monitor would not have to rely
on the Secure World OS for isolating sensitive Normal World
components from Secure World access. Finally, additional Se-
cure World OS instrumentation and process monitoring could
also enable hardening TAs (e.g., code integrity, control-flow

hardening, confidential data regions) and protect them in case
of Secure World OS compromise, similarly to Shielded Apps.

Effectively, an isolated EL3 monitor could leverage
a minimal Secure Monitor Mode TCB (free of OS and
application code) to protect data confidentiality and code
integrity of applications running in both Normal and Secure
World from peer applications and OSes.

B. Attack vectors

Secure World access monitoring. TrustZone devices
running AppBastion protect Shielded Apps under a rich OS in
the Normal World, while a small set of security-critical TAs
are isolated inside Secure World. The Secure OS is trusted
to protect the TAs and prevent them from arbitrary accessing
Normal World memory. Further, AppBastion controls
the SMC-based communication and prevents attackers
from directly overrunning Secure World memory buffers.
Additionally, Shielded App and kernel information maintained
by AppBastion are used to detect if the Normal World OS
provides any malicious memory addresses and prevents Secure
World confused deputy attacks targeting the protected pages of
Shielded Apps and Normal World code. AppBastion controls
and verifies all SMC communication and prevents malicious
SMC requests that would bypass AppBastion protection.

Hijacking Shielded App control flow. In an AppBastion-
protected system, once a malicious user identifies an ex-
ploitable vulnerability in the untrusted OS or Shielded App,
it can try to use this vulnerability to hijack the Shielded
App execution and trick it into leaking sensitive information.
AppBastion harderns Shielded App control flow against such
manipulation by randomizing the Shielded App code and mak-
ing is code pages execute-only when the Shielded App starts.
In consequence, attackers would be forced to either leverage
additional attack vectors in order to learn the new gadget loca-
tions or only rely on blind control-flow hijacking. We assume
that blind control-flow hijacking is not sufficient for compro-
mising or leaking Shielded App’s confidential data. Vulnera-
bilities that directly lead to confidential data access (e.g, side-
channels), without requiring the hijacking of Shielded App ex-
ecution are out of scope. However, AppBastion’s manipulation
of permission bits prevents the Shielded Apps from acciden-
tally copying cleartext confidential data into public memory
pages. On such events, the monitor automatically encrypts
the respective data. AppBastion also prevents a malicious OS
from jumping Shielded App execution into gadgets located in
libraries (e.g., libc) by ensuring all Shielded App libraries are
randomized alongside Shielded App code.

Disclosing execute-only memory contents. Enforcing XOM
from Secure World ensures that attackers can not directly read
gadget locations from memory. Under AppBastion, even OS
vulnerabilities would not enable disabling the execute-only
restriction imposed by the monitor. Thus, attacker require
alternative means to disclose their contents or access the
physical memory directly. Further, the monitor prevents the
disabling of the MMU and can monitor DMA access in
order to detect any attempts to read physical memory made
execute-only. Thus, attackers would need to use aggressive
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monitoring techniques (single step debugging, forced context
switches, etc.) in order to identify function pointers executed.
However, all key memory management operations are under
the control of the monitor, allowing the detection of such
aggressive monitoring attack.

In terms of techniques for achieving execute-only
memory, AppBastion enforces XnR due to its cross-platform
compatibility and only dependency on controlling MMU
operations and page faults. However, more efficient hardware
based approaches (e.g., XOM [35] under ARMv7-M and
ARMv8-M) could be enforced by leveraging the monitor’s
control over key memory management operations. Finally,
addressing the limitations of XnR and XOM is out of scope.

Malicious memory mapping. Under a vanilla compromised
OS, attackers can map physical memory pages belonging to
target applications into the address space of other processes or
the kernel, a process named ”double-mapping”. Such attacks
are stopped under the AppBastion instrumented OS. Here, all
memory operations are verified by the Secure World monitor.
AppBastion ensures physical pages containing Shielded App
code and confidential data are only ever mapped into Shielded
App address spaces, with the correct permissions. Swapped
out pages are also monitored by AppBastion through tags
maintained inside Secure World.

Side-channel attacks. As described in the threat model
(Section II) the current design does not directly address
side-channel attacks. For example, one possible attack is
the untrusted OS monitoring cache-line accesses (either at
Level 1 or Level 2). As demonstrated by SecTEE [57],
the Secure World can prevent such monitoring by locking
sensitive pages in cache line and employing page coloring
schemes. Such techniques can also be used by AppBastion
however implementing evaluating and analyzing resistance
to side-channel attacks is out of this paper’s scope. Further,
naturally, the more isolated Secure World TAs are also
susceptible to Normal World side-channel attacks [16, 33, 56].

Malicious DMA mapping. Adversaries could try to
leverage the Direct Memory Access (DMA) of peripheral
devices in order to bypass the MMU and directly modify
physical memory. Such attacks would enable them to read or
modify both data and code pages. To prevent such attacks,
AppBastion monitors the DMA mappings and does not
allow DMA mappings into code pages or unauthorized DMA
mappings into Shielded App confidential data pages. A more
efficient alternative could be provided by the introduction
of System Memory Management Unit (SMMU) and ARM
Architecture Virtualization Extensions [11].

VIII. RELATED WORK

A. Virtualization based approaches

Virtual machines built using hypervisors (VMMs) aim to
constrain vulnerable OSes from accessing the entire device,
protecting user data in smaller, more secure environments.
However, anecdotal evidence [48] indicates that commercial
hypervisors like VMware [54] maintain huge TCBs and
CVE reports [43] indicate exploitable vulnerabilities are
periodically introduced and fixed. For example, VENOM
[39] allows attackers to escape the VMs and leverage the
hypervisor into executing malicious code. As a result, VMMs
merely shift the burden from protecting vulnerable OSes to
protecting hypervisors.

Protecting apps from untrusted OS. InkTag [27] relies on
a hypervisor to isolate application contexts from an untrusted
OS. Virtual Ghost [19] provides trusted services for apps.
These services include performing operations like memory
management, encryption and key management. Overshadow
[15] proposes using the hypervisor to protect application
data from a hostile OS. Similar to AppBastion, Overshadow
automatically encrypts application data upon OS access. How-
ever, Overshadow relies on a shim running in the application
address space to cooperate with a hypervisor to enforce the
encryption. To bypass Overshadow protection, attackers can
either compromise the underlying hypervisor or the shim
(containing above 1.3 KLOC) introduced by Overshadow in
the address space. Additionally, Iago attacks [14] can also
be used to bypass Overshadow’s protection and compromise
application integrity. That is why AppBastion considers the
system call interface completely untrustworthy and protects
Shielded App data confidentiality using only Secure World
Monitor Mode code and non-bypassable kernel hooks.

B. Trusted execution environments

Intel. On Intel processors, SGX enclaves can run isolated
applications and protect them from other host software.
However, code running in SGX enclaves still relies on a
extensive interaction with an untrusted OS to perform various
tasks (e.g. I/O, thread management, fault handling). Recent
SGX research (Haven [10], Graphene-SGX [13], and SCONE
[6]) has focused on inserting a library component (small OS,
C Standard library) inside the enclave. This component runs
along with the application and handles most system calls,
reducing reliance on the untrusted host OS. However, such
approaches significantly enlarge the enclave TCB. Ryoan [29]
uses a similar approach to build enclave-backed “sandboxes”.

AMD. AMD SEV [32] can protect VM data confidentiality
hostile hypervisors. However, [24] shows AMD SEV memory
encryption can be bypassed from a compromised VM OS.

C. TrustZone

ARM processors provide an alternative solution in the form
of TrustZone, which can run systems like Open-TEE [37].
Existing work (DroidVault [34], TrustOTP [53] and TrustPay
[58] ) present a set of security sensitive operations that can be
placed inside the TEE for protection. Compromising sensitive
operations is more difficult under TrustZone, as attackers
first need to obtain access inside the TEE, typically through
issuing malicious SMCs that target TA vulnerabilities.

To prevent a Normal World OS and apps from issuing
malicious SMCs, SeCReT [31] proposes authenticating SMCs
and providing them only to approved applications. However,
restricting SMC access does not prevent attackers from hi-
jacking these applications in order to send spoofed SMCs.
Moreover, the Normal World OS can always start its own
sessions in order to target vulnerabilities inside TAs, leading to
Boomerang [36] or horizontal privilege escalation attacks [52].

Protecting the OS. The TrustZone-provided TEE can
also be used to improve the security of Normal World
software. SProbes [25] and TZ-RKP [8] discuss protecting OS
code integrity, while [17] shows how to introduce additional
memory separation layers, orthogonal to the application/kernel
separation.

More specifically, TZ-RKP and SProbes ensure OS code
integrity by taking over the MMU and TTBR registers through
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OS code instrumentation. AppBastion is inspired by TZ-RKP
in particular when ensuring instrumented OS code integrity.
However, in AppBastion OS code integrity only represents
the first step towards protecting Shielded Apps. Next,
AppBastion introduces a monitoring mechanism that protects
application code integrity. Further it introduces Secure World-
enforced ASLR for applications. Then, AppBastion provides
application data protection using a new memory access-based
mechanism that automatically encrypts and decrypts memory
containing confidential data. Finally, AppBastion demonstrates
the Secure World can ensure that confidential data can be
declassified and securely communicated with trusted remote
servers and I/O devices by introducing protocols for data
declassification, remote communication and DMA-based
transfers. Overall, while TZ-RKP and Sprobes protect the OS
code from untrusted applications, AppBastion also protects
applications from untrusted OSes.

Kenali [51], SKEE [7], PerspicuOS [21] propose leveraging
MMU control to isolate a portion of the kernel’s address space
from application and kernel access. This isolated space is then
used to protect and monitor kernel execution (e.g., provide
code integrity, perform CFI and DFI checks). In contrast,
note that AppBastion also takes over kernel MMU control, to
protect and manage accesses to Shielded App confidential data.

Protecting apps running under untrusted OSes. Trust-
Shadow [26] aims to enhance TA protecting by reusing
Normal World OS system calls in order to reduce TEE
kernel code, while vTZ [28] and PrivateZone [30] provide
entire isolated, Normal World execution environments for
applications and OSes running them. vTZ uses hypervisor to
isolate TEEs in virtual machines. PrivateZone builds TEEs
by running in HYP mode. However, these isolated execution
environments still expose vulnerabilities in application and
kernel code executing within though various communication
channels (e.g., IPC, memory sharing, remote communication,
etc.). In AppBastion, applications can still run isolated as
TAs inside Secure World. However, AppBastion also focuses
on hardening the applications that can only execute under the
rich OS and protects their confidential data.

TrustZone-based enclaves. Recent work has also focused
on building isolated environments similar to SGX enclaves on
ARM processors. To this end, SecTEE [57] leverages Trust-
Zone isolation, the Secure World OS and a cache coloring-
mechanism. These enclaves run similar to TAs inside the
Secure World and present SGX-equivalent trusted comput-
ing features. Running logic inside SecTEE enclaves protects
it against side-channels attacks from both Normal and Se-
cure World, yielding a better isolation opposed to tradition
TAs, with a very significant cost in performance (over 40X
slowdown). While protecting all sensitive applications under
SecTEE enclaves would be ideal, it is unfeasible in practice.
SecTEE enclaves are ideally suited for protecting small Secure
World security-critical logic against side-channel attacks. In
contrast, AppBastion provides code and data protection to
sensitive applications that do not need to be (or can not be)
ported inside Secure World enclaves (or as TAs) e.g., due to
complexity, impact on Secure World TCB or dependency on
Normal World OS functionality and I/O access.

Sanctuary [12] cleverly leverages TZC-400 hardware
features to partition memory across cores and create enclaves
inside Normal World that are isolated from each other and the
Normal World OS and applications, similar to TAs. Opposed
to protecting applications as AppBastion Shielded Apps

through OS instrumentation, isolating enclaves has a smaller
impact on OS operations and makes it more difficult for a
compromised Normal World OS to hijack enclave execution
and launch side-channel attacks. However, enforcing Sanctuary
enclave isolation also presents significant drawbacks.

Firstly and most importantly, each executing enclave
requires an exclusive CPU core during its lifetime. This
imposes an obvious severe penalty on multi-core application
performance and limits the number of concurrent enclaves and
their execution time. In contrast, Shielded Apps do not have
this limitation, and can be context switched in/out on demand.

Secondly, enclaves require setting up shared memory with
TAs and untrusted Normal World apps to access I/O devices,
storage, networking, etc. The enclave dependency on TAs
often results in (sometimes significantly) enlarging the Secure
World TCB (by introducing TAs) and the Secure World attack
vectors due to their cross-world communications. In contrast,
Shielded Apps require no Secure World components, have
direct access to all untrusted OS functionalities and can directly
communicate with trusted DMA-capable I/O devices securely.

Thirdly, porting complex applications into enclaves
implies partitioning the app into unprotected Normal World
components, the enclave and TAs, which can require a
difficult development process. Further, these components
have to communicate with each other without leaking data.
In contrast, Shielded App confidential data is automatically
protected provided a correct setup of sensitive memory regions.

Overall, Sanctuary provides enclaves suited for hosting
a few custom-written security-critical applications that can
be tied to specific cores. AppBastion focuses on general
applications designed to run under the untrusted OS.

Fine-grained data protection. Ginseng [55] also uses
a Secure World enforced encryption mechanism to protect
application data confidentiality. Under Ginseng, the Secure
World prevents annotated confidential data from leaving CPU
registers un-encrypted. However, due to limited availability
of registers, Ginseng can only protect tiny pieces of data
without severe overhead. Further, Ginseng also requires ac-
cess to application source code and manual identification of
”sensitive” functions that process confidential data. In contrast,
AppBastion is able to protect entire sets of pages and identifies
the confidential data memory based developer provided signed-
binary metadata, without requiring source code access or data
annotations.

IX. CONCLUSIONS

In TrustZone-based commercial devices only a small
set of security-sensitive TAs are protected by the Secure
World. Most applications run unprotected on the Normal
World OS, which is relatively easy prey for rootkits and
malware. AppBastion provides a Secure Monitor Mode-
hosted protection mechanism for Normal World applications
to directly protect sensitive data from a compromised OS in
special memory regions accessible only to their corresponding
signed application code. Sensitive application data can only be
communicated or declassified through AppBastion-protected
channels to/from peripherals or authorized remote parties.
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[43] Serkan Özkan. Cve details. {https://www.cvedetails.com}, 2010.

14



[44] Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis.
Smashing the gadgets: Hindering return-oriented programming using
in-place code randomization. In 2012 IEEE Symposium on Security
and Privacy, pages 601–615. IEEE, 2012.

[45] Phoronix. Phoronix test suite. Online at http://www.phoronix-test-
suite.com/.

[46] PrimateLabs. Geekbench. Online at http://primatelabs.ca/geekbench/
index.html.

[47] Will Reese. Nginx: the high-performance web server and reverse
proxy. Linux Journal, 2008(173):2, 2008.

[48] Rippleweb. Vmware vs kvm. https://www.rippleweb.com/vmware-vs-
kvm/, 2017.

[49] SAMSUNG. Whitepaper: An overview of the samsung knox platform.
November 2015.

[50] NXP Semiconductor. Sgtl5000: Ultra-low-power audio codec.
https://www.nxp.com/products/media-and-audio/audio-converters/
audio-codec/ultra-low-power-audio-codec:SGTL5000, 2017.

[51] Chengyu Song, Byoungyoung Lee, Kangjie Lu, William Harris, Taesoo
Kim, and Wenke Lee. Enforcing kernel security invariants with data
flow integrity. In Proceedings 2016 Network and Distributed System
Security Symposium. Internet Society, 2016.

[52] Darius Suciu, Stephen McLaughlin, Laurent Simon, and Radu Sion.
Horizontal privilege escalation in trusted applications. In 29th
{USENIX} Security Symposium ({USENIX} Security 20), 2020.

[53] He Sun, Kun Sun, Yuewu Wang, and Jiwu Jing. TrustOTP. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security - CCS '15. ACM Press, 2015.

[54] Brian Walters. Vmware virtual platform. Linux journal, 1999(63es):6,
1999.

[55] Min Hong Yun and Lin Zhong. Ginseng: Keeping secrets in registers
when you distrust the operating system. In Proceedings 2019 Network
and Distributed System Security Symposium. Internet Society, 2019.

[56] N. Zhang, Kun Sun, D. Shands, W. Lou, and Y. Hou. Trusense:
Information leakage from trustzone. IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications, pages 1097–1105, 2018.

[57] Shijun Zhao, Qianying Zhang, Yu Qin, Wei Feng, and Dengguo Feng.
Sectee: A software-based approach to secure enclave architecture
using tee. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’19, page 1723–1740,
New York, NY, USA, 2019. Association for Computing Machinery.

[58] Xianyi Zheng, Lulu Yang, Jiangang Ma, Gang Shi, and Dan Meng.
TrustPAY: Trusted mobile payment on security enhanced ARM
TrustZone platforms. In 2016 IEEE Symposium on Computers and
Communication (ISCC). IEEE, June 2016.

APPENDIX A
REMOTE COMMUNICATION PROTOCOL

AppBastion allows Shielded Apps to exchange confidential
information with trusted remote servers. In this Appendix
we first describe and discuss the process through which a
shared encryption key can be setup ( through an authenticated
Diffie-Hellman key exchange) between a remote server and
the AppBastion monitor and show how it enables confidential
data transfers between the server and Shielded App.

Assumptions. AppBastion operates under the following
assumptions: (i) The remote server already possesses an
AppBastion certificate. This certificate is published and
maintained by the device vendor; (ii) The AppBastion
monitor already possesses the certificates of trusted servers.
These certificates are extracted from the Shielded App
binary; (iii) The remote server can verify the attestation
proofs provided by AppBastion. The verification is done by
comparing the received cryptographic code hashes against a
set of hashes pre-computed locally or by a trusted party.

Establishing connections. Figure 4 presents the
communication sequence that occurs under the assumptions
presented. The key exchange protocol contains three parties:

the remote server, the Shielded App and the AppBastion
monitor. In the key exchange context, the Shielded App only
initiates the connection to the remote server and forwards
messages between the monitor and respective server.

Once the Shielded App initiates a connection, the Remote
Server send its certificate alongside a nonce to the monitor.
Once the monitor receives a server certificate, it first verifies it
against its list of trusted server certificates. If the verification
passes, it constructs an attestation proof. This proof consists
of cryptographic hashes of the code belonging to the Shielded
App, Normal World OS and the monitor itself.

The proof is signed using a device private key. This key is
burned by the manufacturer in an e-fuse available only to the
Secure World. The manufacturer also publishes a certificate
containing the public counterpart to the respective key.

The monitor builds a response to the server by encrypting
the signed proof alongside the received nonce and public
components of a Diffie-Hellman key exchange (e.g., public
key ”A”, modulus ”p” and base ”g”).

Next, the monitor encrypts its response using the public
key included in the certificate provide by the server and sends
the encrypted response through the Shielded App.

The server decrypts the monitor response using its private
key and proceeds to process it. First, the signed attestation
proof are decrypted using the device public key located in
the certificate it already posseses. Then, the nonce received
is verified alongside the attestation proof. Finally, if the
verifications succeed, the server finishes the key exchange by
sending its signed public key ”B”. Once ”B” is received and
verified, a shared symmetric encryption key can derived on
both sides, completing the Diffie-Hellman key exchange.

Exchanging data. On each completed key exchange, the
monitor and server end up with a shared symmetric key. In
order to enable confidential data key exchange under this key,
the monitor first has to decrypt the data from under the existing
Shielded App key and re-encrypt it under new one shared with
the Server. Once the data is moved under the new key, Figure
5 illustrates how confidential data can be exchanged. Note,
dotted arrows depict actions not dependant on explicit requests.

For data transfers, lets assume first a Shielded App
requests data from the server and sends a nonce to the server
(to detect replay attacks). In response, the server encrypts data
alongside the received nonce using the Shielded App key.
The resulting ciphertext is then provided to the Shielded App.
However, the Shielded App does not have the key required
for decryption. Instead, it can only rely on the monitor. Thus,
in order to decrypt the received ciphertext, the Shielded
App must copy it first into confidential data pages. Then,
an SMC can be issued to the monitor in order to request its
decryption. Finally, the Shielded App can verify the freshness
of received data using the included nonce. Note, the monitor
only decrypts data located inside confidential data pages. This
ensures that at no point the exchanged data and nonce can be
accessed in clear text by untrusted Normal World software.

The Shielded App can also leverage the monitor in order
to send its own confidential data to the server. There exist
two scenarios, based on the confidential data state. (a) public
pages are writable and confidential data is already encrypted
by the monitor. In this case, the Shielded App only needs
to provide the encrypted data to the server. (b) Public pages
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AP = Build attestation proof

 SAP = SignDpriv (AP)
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Send R
Send R

SAP, nonce, A, p, g = DecryptSpriv (R)

AP = DecryptDpub (SAP)

Verify nonce and AP

TLS SMC

Certificate[Spub], nonce, 
Spriv, Spub, Dpub, B, b Dpriv, A, a, p, g

Send SB 
Send SB

Authenticated Diffie-Hellman Key Exchange 

Key = KDF(A, b, p, g) Key = KDF(B, a, p, g)

SB = SignSpriv(B)

B = DecryptSpub (SB)

Fig. 4: Authenticated Diffie-Hellman key exchange post mutual authentication under AppBastion

are read-only and confidential data is not encrypted. In this
case, the Shielded App must first copy the data into public
pages (which are read-only). This triggers a page fault, which
arrives at the monitor. At this point, the monitor encrypts
data using the key shared with the server, restoring the write
permissions to public pages. Finally, similar the Shielded App
can sent the encrypted data to the server.

Discussion. Under AppBastion’s protocol, the problem of
verifying the identity of remote servers is managed by the
monitor on behalf of the Shielded App. The monitor verifies
the certificate received from the server against a whitelist of
server certificates extracted from the Shielded App signed
binary. The monitors only sets up shared encryption key
with servers within the respective whitelist. The AppBastion
protocol also enables Shielded Apps to prove to remote
servers that they run under AppBastion’s protection. Thus, the
Normal World can not trick the remote servers into providing
confidential data to untrusted applications.

A malicious OS could launch man-in-the middle attacks on
both either the connection between servers and Shielded Apps
or the one between Shielded App and the monitor. However,
suck attacks that would not lead to leaking or compromising
confidential data exchanged under the proposed protocol.
However, the OS could perform denial of service (e.g.,
dropping messages, shutting down the Shielded App, etc.).
Denial-of-service is out of scope.

Under the key exchange protocol proposed, all data is
encrypted using a single key shared between the server and
monitor. Thus, concurrent connections with multiple remote
servers are not supported under this protocol.

Finally, the proposed protocol does not leak the Shielded
App encryption key to any Normal World process. Only
trusted remote servers are provided with the keys used to
protect Shielded App confidential data.

APPENDIX B
CONFIDENTIAL DATA DISCLOSURE

Declassification Request. Shielded Apps can only declassify
contents from confidential code pages using the following
AppBastion provided steps:

(i) The Shielded App must issue a new declassification request
by sending an SMC to the monitor, through the Normal
World OS. This SMC forwards to the monitor the address
of a 64-bit empty space inside a confidential page. Upon
receiving such a request, the monitor first verifies if the
address provided is located inside a confidential data page.
Then, a unique 64-bit number (nonce) is generated by the
monitor and written at the respective address. This nonce
is also maintained inside Secure World and associated with
the Shielded App. At this point the execution returns to
the Shielded App.
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Send C

key keynonce
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Fig. 5: Example of confidential data exchange between Shielded Apps and remote servers

(ii) The Shielded App must construct a special declassification
header inside its confidential data pages. The nonce
received from the monitor must be copied inside this
header. The header must also specify the location of the
confidential data ciphertext that requires declassification.
This location must be inside public memory, otherwise the
request is denied (in order to not disrupt the automatic
process used for protecting confidential data).

(iii) The Shielded app must copy the confidential data
to declassify into the public range specified inside the
declassification header. This data is automatically encrypted
by the monitor, as per Section V-C.

(iv) Finally, Shielded App can start sending the declassification
header to the monitor. This header can only be sent by
first copying it into a public page and passing the resulting
ciphertext to the monitor through another SMC. Note, the
header is automatically encrypted by the monitor when it
is copied into the public page. Thus, the untrusted OS can
not change the parameters located inside (e.g., locations,
nonces, etc.).

Declassification. Upon receiving an SMC containing de-
classification request, the monitor will first decrypt it using
the encryption key of the Shielded App. This key is already
maintained inside Secure World by the monitor. Next the mon-
itor will check against replay attacks by verifying the unique
number freshness. The check is performed by comparing
against value maintained inside Secure World. If the verifica-
tion passes, the monitor will then decrypt the content inside in-
dicated public pages using the Shielded App’s encryption key.

In order to simplify subsequent declassification requests,
the monitor monotonically increases the nonce maintained
inside Secure World after each declassification request. In
turn the Shielded App must also increase its provided nonce.

This allows future declassification to proceed only using steps
(ii-iv).
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