
Wink: Deniable Secure Messaging

Anrin Chakraborti ∗

Duke University
Darius Suciu ∗

Stony Brook University
Radu Sion

Stony Brook University

Abstract
End-to-end encrypted (E2EE) messaging is an essential first
step in providing message confidentiality. Unfortunately, all
security guarantees of end-to-end encryption are lost when
keys or plaintext are disclosed, either due to device compro-
mise or coercion by powerful adversaries. This work intro-
duces Wink, the first plausibly-deniable messaging system
protecting message confidentiality from partial device com-
promise and compelled key disclosure. Wink can surrepti-
tiously inject hidden messages in standard random coins, e.g.,
in salts, IVs, used by existing E2EE protocols. It does so as
part of legitimate secure cryptographic functionality deployed
inside the widely-available trusted execution environment
(TEE) TrustZone. This results in hidden communication us-
ing virtually unchanged existing E2EE messaging apps, as
well as strong plausible deniability. Wink has been demon-
strated with multiple existing E2EE applications (including
Telegram and Signal) with minimal (external) instrumenta-
tion, negligible overheads, and crucially, without changing
on-wire message formats.

1 Introduction

Secure messaging with end-to-end encryption has become the
standard mode of communication between trusted peers. Al-
most all messaging apps today support end-to-end encryption
for ensuring message confidentiality in the presence of com-
promised or malicious intermediate nodes; the messages are
available in plaintext only on the user devices and encrypted
when in transit with user-chosen keys.

However, if the encryption keys are eventually leaked to
an adversary, message confidentiality is automatically lost.
Unintended disclosure of cryptographic keys is not uncom-
mon: (i) commercially-available devices are often vulnerable
to malware including backdoors into widely-deployed secure
apps [24, 26, 29], and ii) users can be coerced to hand over
cryptographic information (e.g., keys) [18, 39, 41, 57].

*These authors contributed equally to this work

Achieving truly private communication between trusted
parties requires stronger security guarantees than what stan-
dard end-to-end encryption can offer. While existing solutions
can solve some facets of the problem, they ultimately fall short
of addressing the problem in its entirety. Some notable candi-
dates include off-the-record messaging (OTR) [7], deniable
encryption [10, 11, 48], ephemeral messages, and network
stegnography [30]. Most of these techniques either fail when
the end devices are also compromised by the adversary (in ad-
dition to the network monitoring), or/and are impractical for
real-world applications (see Section 2 for more detailed com-
parisons). However, perhaps more importantly, due to their
impracticality (and in some cases incompatibility with other
applications), most of these techniques are not ubiquitously
deployed; thus the mere presence of an application imple-
menting these techniques can indicate to an adversary that the
application is being specifically used to hide information. In
light of these observations, this paper asks

Can we achieve end-to-end encrypted communication
between trusted peers when the adversary can obtain
access (e.g., through adversary-controlled malware)
into the user device, can read on-wire transcripts, and
can compel the users to reveal corresponding encryp-
tion keys (and other metadata)?

At first glance, it may appear that efforts to answer this
question are futile as the adversary controls the software on
the compromised device and can therefore observe messages
in the plain by monitoring I/O channels. In fact, even without
any sophisticated mechanisms, if the adversary is aware that a
message has been sent/received (e.g., by monitoring memory
usage, network I/O), then breaching confidentiality by com-
pelling the user to hand over the keys is trivial. Thus, against
such a strong adversary the only recourse is to not only hide
the message contents but also the fact that a message has been
exchanged. Unfortunately, without a safe haven for running
some critical parts of software outside the adversary’s control
(and knowledge), and storing keys for end-to-end encryption,
the task is perhaps impossible.

1

This work answers the question affirmatively under a more
realistic and wide-spread threat model, where the adversary
only partially compromises the device, and shows that a safe
haven (ensuring message confidentiality against the adver-
sary) is indeed realizable with the help of a TEE 1. However,
achieving this is not without challenges. First, a TEE is not
designed to provide plausible deniability, and so while the
TEE may provide confidentiality of information, it will not
hide the artifacts of the execution (e.g., the fact that a mes-
sage has been sent/received). Second, messaging applications
are complex, and executing all its constituent tasks inside a
TEE is impractical; it also makes the other software in the
TEE vulnerable due to the increased trusted computing base
(TCB). Finally, building an application for a TEE with the
sole purpose of hiding message communication without any
other plausible use-case is not enough since the possession
of such software renders the user a suspect.

This paper presents the design and implementation of Wink,
a plausibly-deniable messaging framework, which addresses
all of these challenges. Wink enables trusted peers to ex-
change messages but later plausibly deny the exchange to
an adversary by providing an alternate, plausible explanation
for all the actions observed by the adversary (which includes
network traffic and system artifacts). To achieve this, Wink re-
alizes a safe haven by ensuring that the TEE is used minimally
(with small TCB) and correctly (with secure communication
channels to components outside the TEE). Wink is demonstra-
bly compatible with two widely used E2EE messaging apps,
namely Signal and Telegram, with only minimal instrumenta-
tion. Importantly, this integration does not alter the on-wire
message format native to the messaging app(s).
Wink Cryptographic Library. Wink is a library that per-
forms cryptographic operations at the request of E2EE mes-
saging applications. This includes generating and storing keys,
random coins, etc. and encrypting/decrypting messages. Wink
runs inside the TEE and integrates with a standard E2EE mes-
saging application that runs outside the TEE. In this way, only
the cryptographic operations for the application is performed
inside the TEE while all other operations (e.g., networking,
UI) runs outside the TEE2.

This design has two advantages: i) Wink can be seamlessly
integrated with any E2EE messaging application without any
change in messaging logic or specifications thus removing
burden from the app developers, and ii) Wink enables security-
conscious device vendors to provide privacy-enhanced com-
munication capabilities by simply including the library in
their software distributions. Consequently, having Wink on
the device is not enough to raise suspicion unlike alternatives,

1Of course, if the adversary is capable of completely compromising a
device even if it has advanced hardware-based defenses such as TEE isolation,
no safe haven exists. Breaking TEE isolation is however significantly more
difficult than user coercion and partial compromise through spyware, etc.

2Using TEEs for implementing trusted cryptographic functionalities for
untrusted apps is mainstream – e.g, KeyMaster [23] in ARM TrustZone.

e.g., deniable encryption, which have no other purpose for
deployment other than hiding communication.

In addition to trusted cryptography for E2EE messaging
applications, Wink also enables "hidden messaging"; hidden
messages sent using Wink are later plausibly denied to the
adversary. For this, a message transcript containing hidden
messages is shown to be equivalent (to the adversary) to a
message transcript that contains only messages sent through
the E2EE messaging app which are revealed to the adversary.
In this way, the adversary verifies that the observed message
transcript indeed corresponds to user inputs into the messag-
ing app (which may be adversary-controlled or monitored).
This provides stronger deniability than ephemeral messages
where no evidence can be provided after the fact.
Hidden Messaging over Public Channel. Wink establishes
a "hidden communication channel" over the public communi-
cation channel that is already established by the E2EE mes-
saging application running in the potentially compromised
environment outside the TEE. To achieve this, Wink injects
(encrypted) hidden messages in the random coins (e.g., salts,
IVs, etc.) inherently used in the public messaging cryptogra-
phy. Specifically, encrypted hidden messages (indistinguish-
able from random) are used as random coins and then sent
over the public channel masqueraded as randomly generated
cryptographic metadata for the public messages. When co-
erced, users can hand over the encrypted public messages
(along with the keys, and metadata) while still being able to
plausibly deny the existence of hidden messages.

Crucially, this approach does not impact the functionalities
or alter the on-wire format of the messaging app. The E2EE
app remains oblivious to the hidden message injection, and
an adversary compromising the app by installing spyware or
compromising the OS under which it runs has no visibility
into the operations pertaining to hidden message injection.
In fact, the way hidden messages are communicated over
the public channel renders them "almost invisible" to the
adversary. That is, the only indication of hidden messaging
capabilities of the user’s device is the installed Wink library.
However, assuming that Wink is ubiquitously deployed, the
presence of the Wink library is not sufficient to raise suspicion
in itself, as all network traffic, execution transcripts, etc., look
identical on all Wink-enabled devices regardless of whether
it is being used for hidden communication.
Integration with E2EE Apps. A prototype implementation
has been instantiated on TrustZone due to its widespread avail-
ability in mobile devices. We have integrated Wink with Tele-
gram [53] and Signal [49] messengers. Benchmarks show that
overheads including those introduced due to context switches
between the messaging application, the OS, and the TEE are
in the order of milliseconds. In practice, Wink-introduced
delays are negligible compared to the time required for user
interaction. Further, injecting hidden messages does not incur
communication overheads since the message transcripts do
not increase in size over public messaging.

2

2 Related Work

End-to-End Encrypted Messaging. End-to-end encrypted
messaging enables parties to communicate with each other
via messages that are available in plaintext only on the end de-
vices. When in transit, the messages are encrypted with keys
that are available only to the parties. Most messaging apps
today support E2EE messaging in addition to guarantees like
forward secrecy (see Section 3). While they are designed to
provide orthogonal security guarantees, it is worth mentioning
that end-to-end encrypted communication does not provide
any deniability whatsoever once the encryption keys/metadata
are revealed to the adversary.
Ephemeral Messages. Several messaging apps additionally
support ephemeral messages where plaintext messages and
keys/metadata are deleted periodically. While we can envi-
sion a solution for deniable messaging using ephemeral keys
wherein keys are deleted after a message is sent/received, this
does not provide strong plausible deniability guarantees: i)
the messaging app may not be fully trusted/have backdoors,
or may not duly delete the messages, ii) despite deletions it
is possible for message artifacts and metadata to persist in
the system e.g., in filesystem caches, and iii) if the device is
already compromised, the adversary can observe messages in
plaintext in I/O buffers, etc. This prompts the need for stronger
mechanisms that are also resilient to device compromise.

2.1 Plausible Deniability

There is a long line of work building plausibly-deniable sys-
tems, mainly in the context of storage systems. This includes
steganographic filesystems [1, 25, 44, 46, 61] and hidden vol-
umes [6, 13–15]. These solutions only work for data stored
at rest and cannot be directly applied for deniable messaging.
In the context of messaging applications, there are several
flavors of plausible deniability proposed in existing work, and
Table 1 compares our model with existing solutions.
Off-the-Record Messaging. Off-the-record (OTR) messag-
ing [7,37] ensures equivocation for messages – if Alice sends
a message to Bob, she can later claim to a third-party (e.g.,
a judge) that Bob fabricated the message. To achieve this,
OTR makes message ciphertexts malleable i.e., Bob could
have generated a message from a potentially benign message
that Alice sent. In this way, OTR protects against network
adversaries with access to message transcripts, but if the end-
point devices are compromised, the message contents and the
ciphertexts are available to the adversary.
Deniable Encryption. Deniable encryption [10,11,42,48] al-
lows Alice and Bob to replay exactly a transcript of encrypted
messages but to end up with a potentially different resulting
plaintext than what was originally encrypted to present to
an adversary. For example, even if the initial conversation
between Alice and Bob was regarding a protest, the conver-
sation transcript can be undetectably “tweaked” to show that

the conversation was about attending a sports event. State-of-
the-art techniques for deniable encryption rely on techniques
such as indistinguishability obfuscation (IO) which are not
practically realizable. In theory, it is unclear how IO can be re-
alized securely on a compromised device, and even if this was
possible, the adversary may obtain the messages in plaintext
from other channels such as memory buffers.
Steganography. Steganographic techniques, particularly de-
signed to hide information in network traffic, e.g., [30], syn-
thetically generate cover traffic to obfuscate the hidden infor-
mation. For instance, Meteor uses a generative model to cre-
ate cover text to hide information. While this suffices against
a network man-in-the-middle adversary, on a compromised
device, the cover text generation process as well as the en-
coding/decoding process is observable to the adversary. In
addition, the techniques proposed in [30] are not efficient
enough to be applied in real-time to messaging apps. For
instance, Meteor requires roughly 10 minutes to encode a
160-byte message, in addition to requiring up to 7KB of cover
traffic. The throughput does not scale to messaging apps.

Wink uses random coins in symmetric key messaging ap-
plications to inject encryptions of hidden messages. In the-
ory, this is similar to algorithm substitution attacks (ASA)
where an adversary replaces an honest implementation of a
cryptographic protocol with a subverted version [2–4]. Such
substitutions of symmetric key cryptographic systems have
been used before for the purposes of steganography [5]. Wink
can similarly substitute the cryptographic system used by the
E2EE messaging application to support hidden messaging
over a public communication channel. To realize this on a
compromised device, where an adversary can inspect the cryp-
tographic algorithms in use, the burden of implementation
will be on the device vendors. However, since the crypto-
graphic machinery used by E2EE messaging applications is
often highly complex, designing such a system while retain-
ing all privacy guarantees is non-trivial and will impose a
significant implementation burden on the device vendors. As
we will discuss later, Wink uses a simpler idea for injecting
hidden messages that only needs to modify how random coins
are selected for a symmetric key encryption scheme.

2.2 TrustZone

ARM processors support running applications in a TEE en-
forced by TrustZone. Inside this TEE vendors enable pro-
tecting security-sensitive applications (TAs) that run isolated
from a potentially compromised REE (the Normal World).
Previous work presents how TrustZone can be leveraged for
protecting payment operations (TrustPay [60]), providing one-
time-passwords (TrustOPT [51]) and secure storage (Droid-
Vault [34]). Most of the proposed functionality has material-
ized in the form of TAs inside commercial TrustZone devices.

Other works have focused on protecting users from Normal
World adversaries. For example, TrustDump [52] enables col-

3

Scheme Property Dependency
Network

Adversary
Key

Disclosure
Device
Compr.

E2EE messaging Enc/dec on end-points, forward sec. - ✓ ✗ ✗

E2EE + ephemeral keys message/keys deleted periodically - ✓ ✓ ✗

OTR Messaging message content malleability IND-CPA secure malleable enc. ✓ ✓ ✗

Deniable Encryption ciphertext decrypts to any plaintext Indistinguishability Obfuscation ✓ ✓ ✗

Network Steganography obfuscation with cover traffic - ✓ ✗ ✗

Wink hidden messaging over public channel TEE isolation ✓ ✓ ✓

Table 1: A comparison of different flavors of secure/deniable messaging found in existing work. Property: flavor of deniability provided by the
system, Dependency: dependency/assumptions on which the system is built, Net Adversary: secure against a network adversary monitoring
communication transcripts, Key Disclosure: secure against key disclosure attacks, Device Comp.: secure against an adversary compromising
the end devices. Except for Wink, none of the existing solutions provide any level of deniability on a compromised device.

lecting reliable memory snapshots, TruZ-View [58] provides
trusted I/O paths to users, VeriUI [35] provides attested login
and SeCloak [33] provides reliable disabling of I/O devices
from Secure World. Under TruZ-View, a user interface pro-
tects user input confidentiality from the untrusted OS. The
VeriUI interface verifies user passwords inside Secure World,
while the SeCloak interface enables users to enable and dis-
able I/O devices from inside Secure World. Wink provides a
similar user interface for entering hidden messages. Similar
to SeCloak, the Wink interface takes over the display frame-
buffer to display hidden messages to the user. However, Wink
goes further and also takes over the touch input in order to
protect it against Normal World monitoring. The Wink pro-
vided interface enables users to inject hidden messages and
read incoming ones, even under Normal World monitoring.

3 Background

3.1 ARM TrustZone
ARM Cortex processors enable building TEEs using the ARM
TrustZone security extensions, or TrustZone. Under Trust-
Zone, each physical processor core is split into two virtual
CPUs. The processor either runs TEE software inside a Secure
World (SW), or rich execution environment (REE) software
inside the Normal World. Switching between the TEE and
REE is controlled by a special Non-Secure (NS) bit. When
NS=0, he core runs TEE code; otherwise, REE software is ex-
ecuted. Physical memory regions and I/O peripherals are also
tagged with an NS bit. Those tagged with NS=0 can only be
accessed by Secure World, providing TEE exclusive control
over the respective memory and I/O devices. The TEE can
access all physical memory and dynamically allow or deny
REE access to Secure World resources (e.g., peripherals).

The transition of control from Normal World to Secure
World is known as a world switch. Both the REE and TEE
can trigger world switches by issuing Secure Monitor Call
(SMC) instructions. These instructions are handled by a Se-
cure Monitor, which runs at ARM exception level EL3. Typi-
cally, regular applications running inside the REE and Trusted
Applications (TAs) running under the TEE communicate with
each other through OS-forwarded system calls as SMCs.

3.2 Signal

The Signal protocol is designed with asynchronous messaging
in mind – messages can be sent even when the receiver is
offline. This requires an intermediate server to facilitate key
exchange with the help of information uploaded by each party
during initialization. This key information for each user is
stored as part of a prekey bundle, signed by the user, and is
retrieved from the server when another user wants to establish
a messaging session. The prekey bundle contains several
types of keys which include: i) long-term identity keys, ii)
medium-term signed prekeys, and iii) short-term ephemeral
keys. Using these keys, a sender can establish a secure end-
to-end encrypted messaging session with an offline receiver.

A particularly interesting feature of the Signal Protocol is
forward-secrecy. This is provided by key ratcheting, first pro-
posed in [7]. Ratcheting derives symmetric per-message keys
starting from a chain key e.g., using KDFs. Previous message
keys are deleted after a message has been sent/received and
encrypted/decrypted. In this way, the confidentiality of past
messages remains intact. Further, Signal also provides future
secrecy by refreshing the chain keys periodically. This en-
sures that even if an adversary obtains the chain key at some
point in time, the messages exchanged in the future remain
secret. New chain keys are derived by exchanging ratcheting
keys potentially with every message.

4 Model

Deployment. In a plausibly-deniable messaging (PDM) sce-
nario, a trusted Sender wants to send a message(s) to a trusted
Receiver. The sender and the receiver may later want to plau-
sibly deny the exchange of certain messages to a powerful,
coercive adversary (described next). For this purpose, both
the sender and receiver use a plausibly-deniable messaging
application on their respective devices. It is worth noting that
the application does not enable the sender and the receiver
to deny that (any) communication has taken place, but rather
allows them to plausibly deny the contents of the conversation.
Also, deniable encryption and off-the-record messaging, both
of which provide some form of equivocation, provide a simi-
lar functionality. However, unlike these tools which mainly

4

hide information in transit, PDM also hides all evidence (in
network transcripts, systems artifacts, etc.) that a "hidden"
message has been exchanged or a special system is being used
with the sole purpose of hidden communication.
Plausible Deniability in Practice. For plausible deniability
to be effective, we need to make a few general assumptions:

Ubiquitous Deployment: First, if plausible deniability sys-
tems remain a niche product, any user using such a system
will appear suspect. Therefore, as with most works on plau-
sible deniability, we will assume that Wink is ubiquitously
deployed on mobile devices. In this regard, Wink arguably
provides a strong use case even when hidden messaging is
not the primary purpose, i.e., as a sanitized environment for
implementing cryptography of E2EE apps. This is unlike so-
lutions like deniable encryption where the use case beyond
obfuscation of exchanged messages is unclear.

Rational Adversary: Second, as will describe later, Wink is
deployed as a trusted service inside TrustZone. And since
so far trusted services can only be installed by the device
vendors, the inclusion of Wink in a system is completely in
the hands of the vendor. This has an added benefit: if the
vendor buys into the practicality of Wink, all devices by the
vendor will have this trusted service. Also, by design, only the
vendor is able to extract information from the trusted service.
This renders any amount of rubber-hose cryptography – where
the user is subject to confinement and torture – useless since
the user is unable to extract secret information from Wink.
Thus, a rational adversary will need to approach the vendor
through proper channels, e.g., with warrants, to access this
information. In the recent past, this model has proven to be
successful in protecting user privacy from overly intrusive
government [29]. Arguably, it is impossible to build a system
resilient against adversaries that penalize the user irrationally
regardless of evidence.

Deniability is Not Obfuscation: Finally, it is worth noting that
plausible deniability is not security by obfuscation. The adver-
sary may inspect the user device, analyze the binaries stored,
and identify that the software has features that enable deniable
communication. The goal is to ensure that the adversary can-
not detect (or guess with high probability) that the user ever
uses these features. To achieve this, a plausible deniability
system provides a plausible, alternative explanation for every
action that is observed by the adversary in runtime.

4.1 Threat Model

Capabilities. Since our adversary model is stronger than the
adversaries considered in previous works (see Table 1), we
need to carefully define the powers of this adversary. In the
following, we enlist these capabilities. We consider a coercive
adversary who may:
• Partially corrupt the sender’s/receiver’s devices and ob-

serve/record user inputs in plaintext.

• Analyze software binaries, firmware, etc., on the device.
• Observe, capture and store all (encrypted) communication

for introspection.
• Obtain access to both the sender and receiver devices

(possibly at the same time) and coerce the users to hand
over cryptographic keys.

Before discussing what the adversary can compromise on
the user’s device, it is worth clarifying a few points. First, we
allow the adversary to examine the user device, i.e., analyze
the binaries, firmware images, etc. In effect, the adversary
knows that the Wink library is being used (at least to imple-
ment cryptographic operations for E2EE messaging apps),
but as we will show, it does not know that the library is being
used in some cases for additional hidden messaging. Thus,
the goal is not to hide the existence of the library but rather to
make the modes of operation indistinguishable.

Second, the adversary may compel the user to hand over
keys. As will describe later, Wink has a set of keys that are
accessible through user-chosen passwords. Some of these
keys are public and are handed over to the adversary and
some are hidden which the user plausibly denies using. Due
to the Wink design, the hidden keys are never provided to the
user in the plain. The user is only able to use the hidden key
through the Wink library based on a password input. When
coerced, the user denies having a password that enables the
hidden key(s) for hidden messaging operations.
System Setting & Device Compromise. Wink runs in a
trusted execution environment (TEE) (namely TrustZone).
Therefore, standard TEE-based security assumptions hold:
1. TEE isolation cannot be compromised via software or

device hardware vulnerabilities.
2. The software running inside the TEE is trusted.
3. REE cannot overwrite the TEE set device configuration.
4. The device vendor is trusted and there are no backdoors

into the TEE.
Attack Vectors. Based on the different privilege levels, there
are four broad categories of adversarial attack vectors.
1. Compelled disclosure: The adversary coerces the user to

hand over message transcripts, which includes the plain-
text messages and the corresponding ciphertexts sent and
received, and the related cryptographic metadata (e.g.,
keys, random coins, etc.).

2. Compromising REE Apps (Normal World App Compro-
mise): The adversary installs keyloggers [9], spyware [47]
or even introduces backdoors into the messaging app. Us-
ing a compromised app, the adversary may try to violate
message confidentiality, capture screenshots or key types
and monitor the user’s actions, with the goal of detecting
hidden payloads in the exchanged messages.

3. Compromising the REE Kernel (Normal World Root Ac-
cess): The adversary leverages the compromised kernel
to monitor Normal World operations performed by Wink.
Monitoring can include tracking TEE entries and exits,
timing Wink calls, or detecting I/O resource usage. Only

5

a (hijacked) REE kernel would be capable of monitoring
and reporting such fine-grained TEE operations.

4. Compromising the TEE (Secure World Compromise): The
adversary leverages TEE software or hardware vulnera-
bilities to escalate their privileges inside the TEE. Once
inside the TEE, the adversaries have direct access to the
plausibly-deniable messaging application. Further, TEE
compromise might provide adversaries with complete
control over the device.

This paper mainly focuses on defending against attacks in
categories 1 and 2, which hold even under the assumptions and
are easily deployed, i.e. without requiring advanced exploits
or alerting the user. Attacks in category 4 are out-of-scope
as it immediately invalidates all assumptions and effectively
give the adversary complete control over the device. Denial of
service attacks e.g., intentionally blocking incoming/outgoing
messages, etc. are specifically considered out of scope of
the threat model. Note that all plausible deniability systems
are vulnerable to such DoS attacks. Designing DoS-resilient
plausible deniability schemes is an open problem.
Side Channels. As with any shared-hardware system Wink
may be subject to side-channels that undermine certain secu-
rity guarantees. We have identified two such side-channels
that break plausible deniability provided by Wink: i) a timing-
based channel that measures the time of process execution in-
side the TEE by tracking entry and exit inside the TEE, and ii)
detecting Secure World screen-utilization by monitoring volt-
age, display frequency changes or other indicators of change
in displayed images. We have addressed these side-channels
in the design provided in Section 6. While we acknowledge
that there may be other side-channels that are detrimental to
the security of Wink, exploring and mitigating them is the
subject of ongoing work, and orthogonal research [17, 38].
Cryptography. To make Wink practical, it is desirable to
only employ standard (and efficient) cryptographic primitives.
Specifically, Wink only requires the following: i) the existence
of a secure public-key infrastructure (PKI) with trusted cer-
tificate authorities, ii) the existence of efficient mechanisms
to jointly compute shared secrets between two trusted parties,
and iii) the existence of cryptographically-secure one-way
functions e.g., cryptographic hashes, KDFs, etc.

5 The Wink Design

This section details the Wink design. As discussed before,
Wink requires a TEE-enabled device. The current version
is instantiated under ARM TrustZone, the most commonly
available TEE environment for commercial mobile devices.
TrustZone provides all the TEE security guarantees listed
in Section 4. Dozens of sensitive applications (TAs) are al-
ready protected by TrustZone on ARM commercial mobile
devices (e.g., KeyMaster, SamsungPay, WideVineDRM, etc.)
by running inside the Secure World.

An E2EE messaging app has several key components in-
cluding networking, user I/O, and cryptographic operations.
The most obvious (yet impractical) design of a "hardware-
assisted secure world messaging app" for TrustZone-enabled
devices runs all components of the app under Secure World
protection. While hidden messaging is straightforward, since
without compromising the Secure World the adversary has no
visibility into the messaging process, there are at least three
obvious problems with this design. First, adding an entire mes-
saging app codebase to Secure World exponentially amplifies
the TCB. For instance, the Signal and Telegram codebases
have over 257 KLOC and 791 KLOC respectively, while open-
source Secure World OSes have codebases that typically do
not exceed 220 KLOC (e.g., OP-TEE kernel, Nividia TEE
and LinaroTEE all contain less than 210 KLOC). Second,
networking components can be exploited to gain control over
the Secure World TAs or the OS. Finally, since TAs can only
be installed by the device vendor, this design would require
collaboration between the app developers and the vendors.

Therefore, in Wink, only the most critical components of
the messaging process are executed inside the TEE. The chal-
lenge is to identify these components based on the adversarial
capabilities. In this Section, we present a design where the ad-
versary under consideration may compromise the messaging
app running in the Normal World but is not capable of compro-
mising the Normal World kernel through code injection, ROP,
etc. For this threat model, only executing the cryptographic
operations in the Secure World suffice to realize hidden mes-
saging. The following Section deals with an adversary capable
of compromising the Normal World kernel.

5.1 The Wink Secure World Application

Under TrustZone, Wink runs as a trusted application (TA)
inside the Secure World and implements the cryptographic
primitives used by the Normal World messaging app to pro-
vide a secure authenticated channel for public messaging.
This is established using PKI keys whereby after an initial
certificate exchange, a symmetric session key is jointly com-
puted e.g., using the Diffie-Hellman Key Exchange protocol.
The resulting public session key encrypts public messages in
that session. Importantly, all cryptographic keys are protected
by the TEE and the encryption/decryption of public messages
is performed within the TEE, isolated from the untrusted
software running in the REE. Compared to running E2EE
messaging apps entirely in the REE, this provides stronger
security guarantees for the cryptographic information, mak-
ing Wink-integrated apps more resilient to unauthorized key
disclosures, etc. Figure 1 illustrates the design.

In commercial TrustZone devices, TAs cannot be installed
directly by the users. Instead, only vendor-signed software
can execute as TAs inside Secure World. It is standard for the
vendor to provide security-critical services such as Wink for
users as TAs running inside Secure World. Importantly, since

6

Receiver Device

Sender Device

TEE

Wink
library

Secure
touch input

Secure
framebuffer

REE

Messaging
App

OS
Touch input

OS
framebuffer

5. Public
input

9. Public
output

6.Public
message

8. Ciphertext

TEE

Wink
library

Secure
touch input

Secure
framebuffer

REE

Messaging
App

OS
Touch input

OS
framebuffer 13. Public

output

11. Ciphertext

12. Public
 message

2.Hidden
input

3. Hidden output

1. Hidden
message

4.Public message

16. Hidden
message

15. Hidden
output

14. Public Message

Sender

Receiver

Adversary 10. Ciphertext

PRNG

7. Random Values

Steps for public
and public-hidden

messaging

Public-hidden
messaging mode

only steps

PRNG

Figure 1: The Wink framework. Wink consists of a TEE hosted library that provides cryptographic implementations for E2EE messaging apps
and secure I/O for providing users with a hidden messaging interface. The REE remains oblivious to any injected hidden messages.

users cannot install Wink, the presence of the corresponding
library on a user device does not indicate in any way to the
adversary that it is installed for the purpose of hidden messag-
ing. Further, most TrustZone device vendors already provide
crytographic libraries similar to the one Wink proposes as TAs
(e.g., KeyMaster). The key difference between these libraries
and Wink lies in the ability to provide hidden messaging.
Modes of operation. Wink has two modes of operation: a
public-only messaging mode and a public-hidden messaging
mode. The user should typically operate the device in the
public-only mode and use the public-hidden mode when safe.
A user password input decides the mode of operation. Wink
requires three passwords: i) a public password corresponding
to the public-only mode, ii) a hidden password corresponding
to the public-hidden mode, and iii) a disclosure password
for verification of public communication (described later).
The ceremony for setting up the passwords is sketched in
Section 5.3. When the Normal World messaging app is started,
it requires the user to provide a password. The password
input and verification are performed directly within the Secure
World. The password determines the mode of operation.
• Public-only. In this mode, Wink only performs crypto-

graphic operations for the messaging app in the Normal
World. Wink operates in this mode on the public pass-
word input. Wink stores public message-specific metadata
(which may also contain hidden data) until the messages
are deleted by the messaging app. This metadata is stored
in order to allow verification of public communication
later under coercion (described later).

• Public-hidden. In this mode, Wink may also inject hid-
den messages into the public communication channel.
This mode is enabled only upon the provision of a hid-
den password. The existence of the hidden password is

denied under coercion. In this mode, users may also in-
put and view hidden messages through a Secure World-
provided user interface (described next). Encrypted hid-
den messages are injected into the public messaging chan-
nel while those already received are displayed on the
interface. Wink protects hidden message confidentiality
and only shows them to users upon hidden password input.
Thus, it is crucial for the user to not reveal the existence
of the hidden password to adversaries either accidentally
or under coercion. A leaked hidden password can lead
to revealing the public-hidden mode usage as well as the
hidden messages exchanged.

5.2 Secure I/O for Hidden Messaging

Wink protects hidden messages both in transit and on the
end devices themselves. For this, no evidence of hidden I/O
is leaked Normal World software, including the messaging
app itself and the Normal World OS. To accomplish this,
the Wink cryptographic library sets up a hidden messaging
interface by directly communicating with the touchscreen
through Secure World-protected I/O channels.

In order to securely display information to the user,
Wink takes control over the touchscreen framebuffer driver
when the user holds the power button for three seconds. The
power button interrupt is configured for Secure World usage
such that Wink first receives all power button presses. This
setup ensures that users can trigger the public-hidden mode in-
terface without Normal World knowledge. Of course, regular
button presses are forwarded to the Normal World for main-
taining standard power button functionality. Once the library
running in public-hidden mode receives this interrupt, first
Wink temporarily prevents the Normal World from reading

7

or writing framebuffer data. Then, the library saves the last
framebuffer state and displays the hidden messaging interface.
The hidden messaging interface is drawn on the framebuffer
from inside the Secure World, displaying a keyboard and the
exchanged hidden messages. Additionally, a user-specified
watermark is also shown on the interface to prevent interface
spoofing attacks. This watermark is maintained inside Secure
World and its setup is detailed in 5.3.

For user input, Wink takes control over the touch input
device and monitors for user touches from inside the Secure
World. The user input monitoring starts once the hidden mes-
saging interface is displayed. The monitoring stops once the
user exists the interface by triggering the Wink hardware in-
terrupt. The user-provided input is then communicated as one
or more hidden message chunks. Both user input and output
are hidden from the Normal World, as the input buffers are
always cleared and the framebuffer restored prior to returning
executing in Normal World.

5.3 Wink Setup Ceremony
Figure 2 depicts the ceremony of setting up the Wink library.
Initially, the user asks the messaging app to set up her pass-
word. This request is forwarded to the Wink library, which
will provide the user with an interface for entering the three
passwords (public, hidden, and disclosure passwords). Once
the user has entered her passwords, Wink will also ask the
user to enter a text only she knows. This text is drawn on the
hidden messaging interface as a watermark in order to prevent
spoofing attacks from the Normal World. Once all required
data is entered Wink returns execution to the messaging app.

Subsequently, the password hashes and the watermark
never leave the Secure World. Instead, Wink indicates a suc-
cessful verification of the messaging on the provision of either
of the public or the hidden password. In both cases of opera-
tion, the information relayed to the messaging app is exactly
the same, ensuring that the app is oblivious to the actual mode
of operation. Only if the hidden password is provided hidden
messaging functionalities are enabled in Wink.

5.4 Interfacing with Messaging Applications
Figure 3 provides a high-level overview of the interactions be-
tween the Normal World messaging app and the Wink library
(e.g., setting up passwords, adding contacts, and exchanging
messages). Specifically, the Normal World applications (mes-
saging applications) can only access the library through a
set of APIs provided for handling cryptographic operations
and storing sensitive information (e.g., keys, and passwords).
These APIs are exposed through a series of SMCs, which
can be accessed by the messaging applications through OS-
provided system calls. In order to use the provided APIs, the
application invokes the corresponding system call. All system
calls and parameters are visible to the OS, which forwards

them to the library inside Secure World. Thus, it is crucial that
no evidence of hidden messaging is leaked by the parameters
passed or the calls to the cryptographic library themselves.

The Secure World hides the inner workings of Wink cryp-
tographic operations from both Normal World applications
and the OS. Once the Secure World receives an SMC call,
it obtains complete control over the device and can perform
the hidden operations required by Wink. These operations
include (i) reading and writing hidden user input, and (ii)
injecting hidden messages into the public communication
channel. The public and hidden message exchanges under
Wink are illustrated in Figure 3. The black steps are executed
in both public-only and public-hidden mode, while the red
steps are only executed in public-hidden mode. Importantly,
the generated random coin depicted (Step 9) is overwritten by
the hidden message ciphertext chunk in public-hidden mode.

Note that sending each hidden message chunk requires
an accompanying public message. Further, the hidden mes-
sage can only be reconstructed and read by the receiver when
sufficient hidden message chunks are received for its recon-
struction. Thus, to deliver a hidden message, the sender has
to construct and send as many public messages as there are
hidden message chunks. The number of chunks created by
Wink for each hidden message depends on the bandwidth
available, determined by the message format of the public
messaging app, and is discussed in more detail in Sections
8 and 9. However, the sender can always construct and send
additional public messages when they are required to finish
the delivery of a hidden message. Wink helps the sender plan
his public messages by noting how many are required to finish
sending the current pool of hidden messages.

 Device Secure
World

3. Setup public, hidden
 and disclosure passwords

9. User triggered
secure interrupt

8. Verification
result

4. Setup public-hidden
mode watermark

7. Enter Pasword
(public or hidden)

10. Add contact
 (and setup shared HMK)

Normal
World

2.Setup
Password

Messaging
App

Wink

library

5. Setup
result

6. Verify
password

1. Open
app

Figure 2: Wink setup ceremony. For a Wink-integrated messaging
app, the Secure World hosted Wink library manages the password
setup and verification. Entering the public-hidden mode password en-
ables setting up hidden contacts and hidden message exchanges using
symmetric encryption keys dubbed Hidden Master Keys (HMKs).

5.5 Key & Contact Management
The Wink Secure World TA securely stores all cryptographic
information required for messaging (both public and hidden)
encrypted under keys derived from a device-specific master
key. Both the master and derived keys never leave Secure

8

World, ensuring that only Wink knows the derived keys. Sim-
ilarly, Wink also stores encrypted contact information and
Hidden Master Keys (HMKs) for hidden messaging, which
are saved encrypted on physical persistence storage. Ideally,
the dedicated TEE persistent storage would be used for saving
these details. However, not all TrustZone-enabled commercial
devices provide such storage. Thus, this information is stored
in the form of an encrypted blob at a fixed Normal World
location, a standard mechanism for securely storing TA data.

A pre-determined amount of persistent storage is reserved
for saving HMK and contacts when Wink is installed. The
entire blob is read into memory when the device boots up and
there is a call to the Wink library, and thereafter re-encrypted
and stored during a graceful shutdown. This ceremony is per-
formed regardless of the presence of any hidden keys, meta-
data, etc. Naturally, due to the fixed capacity, the number of
contacts that can be added for hidden messaging is limited,
but since the only information Wink requires per contact is
their corresponding HMKs, a small amount of storage may
suffice. For instance, with 64-bit user identifiers and 1024-bit
HMKs, 1MB of reserved storage will allow more than 3000
contacts. We also note that storage-level plausible-deniability
is a well-studied problem, even in the context of mobile de-
vices [16, 28, 46]. These solutions can be employed here (in
future versions) for more efficient designs.
Hidden Keys & Contacts. To facilitate hidden messaging,
for each contact, users are required to exchange a shared se-
cret once over an out-of-band communication channel. This
may be realized either through physical exchange when the
users meet or through cryptographic protocols like deniable
authenticated key exchange [22,56]. In either case, the shared
secret never leaves the Secure World. In case the users ex-
change the secret in person, it is input directly into the Secure
World (using secure I/O) and is made available only on the
provision of a correct hidden password. For this, when the
messaging app adds a new contact, the Wink library gener-
ates the secret and a corresponding QR code. The QR code
is then presented as a secure output from the Secure World.
The counterpart Wink TA (being added as a contact), scans
this QR code as input into the Secure World. For this, Secure
World takes control of the camera temporarily and loads the
QR image. Finally, the secret is extracted from the QR im-
age and maintained inside Secure World, associated with the
corresponding contact. This exchange process is similar to
the physical verification process in several existing messag-
ing apps. For example, Signal key bundles are verified also
by scanning QR codes. Under Wink’s much more powerful
threat model, this optional feature becomes mandatory for
hidden messaging due to the lack of a trusted communication
path prior to the exchange of the shared secret.

The shared secret is used to derive a hidden master key
(HMK). All hidden messages are encrypted under the HMK.
Even a fully compromised Normal World cannot access the
Wink HMKs maintained inside Secure World. Without having

access to the HMK, the adversary cannot breach the confi-
dentiality of the hidden messages even if the public keys are
revealed. In the current design, each pair of communicating
apps have a unique HMK, which is securely stored and en-
crypted with a password-derived key by the Secure World.
All HMK(s) are made available to the Wink library only upon
the provision of the correct hidden password. As a result,
providing the hidden password makes all HMKs stored on
the device available. In addition, Wink has a static HMK per
user which is used for the hidden communication channel.
Future designs will include more fine-grained access controls,
and – at the cost of additional bandwidth – also possibly addi-
tional security features such as forward secrecy i.e., the HMK
refreshed through key ratcheting and KDFs, etc.
Controlled Disclosure of Public Keys. Protecting public
message keys in the TEE makes the public messaging opaque
to the adversary. However, public message keys and public
metadata have to be disclosed in accordance with the standard
plausible deniability model where a user is asked to hand
over a key by a coercive adversary3 (see Section 4). Since
the public message key(s) is stored in the Secure World, we
need a mechanism to reveal this on-demand to the user, with-
out making the keys accessible to compromised apps or OS.
Without Secure World compromise, the only way to retrieve
such information is through Wink provided APIs. Wink sup-
ports controlled disclosure using a disclosure password. On
provision, Wink reveals the encryption keys and metadata for
past public messages (up to the point stored by the messaging
app) using secure output. Once the disclosure password has
been used, Wink allows a password reset.

Only users in possession of a disclosure password (i.e.
those also in possession of both hidden and public passwords)
can use the provided API for disclosing public messaging
details. The disclosure password enables Wink to provide a
transparent public messaging mode, where users can disclose
all public messaging details to adversaries upon coercion.
However, Wink ensures that no users, even under coercion,
can ever disclose the hidden messaging details. Importantly,
the keys are revealed only using Secure World output and are
not exposed to any Normal World software.

5.6 Security Analysis
The security arguments underlying Wink fall into three cate-
gories. First, it needs to be argued that for any generic E2EE
messaging application that is compatible with Wink, inte-
gration does not come with lower security assurances. In
other words, a Wink-enabled messaging application retains
the same message privacy guarantees that the messaging ap-
plication has without Wink. Second, it needs to be shown that
injecting hidden messages into public communication does
not impact the privacy guarantees of public communication,

3In several nation-states, handing over encryption keys is in fact law-
mandated [39]

9

Sender Device
Secure WorldNormal World 2.Password verification

Messaging
Application

Wink
 library

4. Verification result

3. Pasword (public or hidden)

8. Encrypt public message

1. Open app

9. Random coin or hidden message10. Return encrypted message
 (ciphertext + coin or hidden message)

Receiver Device
Secure WorldNormal World 13.Password verification

Messaging
Application

Wink
 library

15. Verification result

16. Decrypt received message
 (ciphertext + coin or hidden message)

12. Open app

17. Return public message

11. Send message

18. Public message

20. Hidden output

14. Pasword (public or hidden)

6. Hidden input

5. User triggered secure interrupt

19. User triggered secure interrupt

7. Public input

Figure 3: Message exchange under Wink. Based on the user password, Wink runs either in the public-only or the public-hidden mode. In
public-hidden mode, the user can enter and read hidden messages, which are encrypted and exchanged between devices masqueraded as the
random coins of public messages.

while also ensuring that the message injection remains unde-
tectable in the message transcripts. Informally, message tran-
scripts correspond to information exchanged on-wire which
includes the message ciphertexts, random coins, etc. Finally,
Wink should also ensure that any normal world monitoring
(short of kernel compromise) cannot detect hidden message
injection based on execution patterns. Execution transcripts
correspond to on-device operations when Wink operates in
a particular mode of operation which includes data inputs,
context switches, the timing of operations, etc.

We will show that the message transcripts of a Wink-
enabled E2EE application is indistinguishable from the mes-
sage transcripts of the same application without Wink to a
computationally-bound adversary observing the network tran-
scripts. In other words, Wink does not distinguishably alter
the message transcripts of the E2EE application, and thereby
does not compromise the privacy guarantees of the vanilla
application. Furthermore, most E2EE messaging apps aim to
provide message confidentiality, integrity, and forward secu-
rity. Typically, applications such as Signal and Telegram use
authenticated encryption schemes that provide both authen-
ticity (integrity) of messages and confidentiality.

Wink preserves message confidentiality, integrity, and for-
ward security when integrated with an E2EE app. Showing
that a Wink-enabled E2EE application retains integrity and
forward security guarantees is straightforward: Wink only al-
ters the way a random nonce is selected for the authenticated
encryption scheme used in the E2EE app, which impacts nei-
ther message integrity (tag generation is independent of
the random nonce) nor forward security (which entirely
depends on the key derivation mechanism). Thus, as long
as the E2EE app implements message integrity using an au-
thenticated encryption scheme, and provides forward security

through its key derivation process a Wink-enabled version of
the app retains these two properties. Showing that message
confidentiality is also retained requires further analysis.

Theorem 1. Given a generic E2EE messaging application
M , compatible with Wink, and a Wink-enabled version of M ,
denoted W , operating in either public-only or public-hidden
mode, the message transcripts of M and W are indistin-
guishable to a PPT adversary if IND-CPA secure encryption
producing ciphertexts indistinguishable from random exists.

We will also show that for a device-resident adversary in
the Normal World that is incapable of privilege escalation,
the message transcripts of Wink operating in the public-only
mode and public-hidden mode are indistinguishable.

Theorem 2. Normal world adversaries (incapable of privi-
lege escalation) and on-wire adversaries cannot distinguish
between message transcripts pertaining to public-only com-
munication and transcripts containing public + hidden com-
munication for a Wink-enabled E2EE messaging app if there
is an IND-CPA secure encryption producing ciphertexts in-
distinguishable from random exists.

Finally, we will show that a Normal World adversary cannot
distinguish between the public-only and public-hidden modes
of operation based on their execution patterns.

Theorem 3. Normal world adversaries (incapable of privi-
lege escalation) cannot distinguish between execution tran-
scripts pertaining to either public-only or public-hidden
modes of operation.

All proofs are in the full version4.

4https://arxiv.org/abs/2207.08891

10

6 Wink Under REE Kernel Compromise

In this section, we will first describe the impact of REE kernel
compromise on the Wink design presented in Section 5. Then,
we will describe a solution unifying the public and hidden I/O
channels through the Secure World preventing confidentiality
breaches due to REE kernel compromise. Finally, we will
analyze the impact on the TCB size, ease of integration with
messaging apps, and overall plausible deniability.
Impact of Kernel Compromise. Events in the past [19, 31,
32] have shown that REE kernel vulnerabilities may enable
sophisticated privilege escalation from compromised REE ap-
plications and provide adversaries with control over the REE
kernel. Taking over the kernel will not only provide direct
access to all public messages but also enable tracking and
timing of TEE operations, as mentioned in Section 4. Specifi-
cally while Wink ensures that hidden message confidentiality
remains intact despite REE kernel compromise, the interrupts
used to initiate hidden message inputs can be monitored by
the compromised REE kernel. Wink-introduced interrupts
due to user I/O may be arbitrarily long (although typically in
the order of seconds). Thus, it is straightforward for a com-
promised kernel to time Wink Secure World execution and
determine when it handles interrupts specific to Wink hidden
I/O. Padding interrupt handling to the order of user I/O would
render such monitoring useless. However, it is infeasible due
to the impact on system performance.
Unifying Public and Hidden Interfaces. Without moving
the entire messaging app logic into the Secure World, one
solution to tackle this problem is to obfuscate the hidden mes-
sage I/O time with the public message I/O time. Specifically,
in addition to the porting public messaging cryptography,
Wink simply needs to provide a UI for public messaging
directly using the Secure World I/O, alongside the hidden
interface detailed in Section 5. In this way, the time required
for public-only I/O can also be used for additional hidden I/O.
Using the same interface for both public and hidden I/O is
also more practical and user-friendly since it enables the user
to view and write public and hidden messages concurrently.
Hardware interrupts are no longer required to initiate hidden
inputs rendering any Normal World monitoring useless.

Handling public I/O through the TEE also has an added
advantage: message confidentiality is now ensured against a
compromised REE kernel. More specifically, since the REE
now only sees the messages encrypted and essentially acts like
a "man-in-the-middle", confidentiality is guaranteed when
using an appropriate IND-CPA secure encryption scheme.
However, it is worth noting that this does not subsume the
need for hidden messaging since ensuring confidentiality is
not enough for plausible deniability. Coercive adversaries
will still demand cryptographic metadata pertaining to the
messages exchanged, and to maintain plausible deniability,
the user now hands over the plaintext public messages, and
the cryptographic metadata used to encrypt these messages

using the controlled disclosure feature detailed in Section 5.
Cost of Integration. The added security of porting the pub-
lic I/O to the Secure World comes at the cost of increased
integration complexity and a larger TCB. In particular, each
messaging app has a unique user interface for messaging,
which can vary in complexity and code size depending on
the features supported by the app client (e.g., pictures/movies,
emojis, voice messages, etc). Integrating and maintaining UI
for each app into Wink requires a major engineering effort
and increases the Secure World TCB, perhaps unreasonably in
some cases. In contrast, Wink only requires a minimalist im-
plementation of an I/O interface for hidden messaging since
the low bandwidth hidden communication channel offered by
most messaging apps can only support text messages. Clearly,
this interface is not enough for everyday public messaging
needs with modern messaging clients.

Ideally, if multiple messaging apps were to subscribe and
use a generic Secure World UI provided by the vendor, then
the increase in TCB may be reasonably controlled in addi-
tion to making app integration and maintenance straightfor-
ward. We believe that security-conscious messengers have
enough incentives to adopt this model in collaboration with
device vendors given the added protection it offers for public
messages. With messaging apps being frequently targeted to
breach confidentiality via system compromise [43, 45, 54], a
more secure E2EE app needs to be resilient to these attacks.
Security Analysis. Unifying the I/O interfaces for public
and hidden messages does not alter the message transcripts
generated in the public-only and public-hidden modes of op-
eration. Without obtaining the cryptographic metadata for the
hidden messages protected in the Secure World, the adversary
cannot distinguish (with more than negligible advantage) mes-
sage transcripts for public-only communication and public
+ hidden communication (Theorem 4). Compromising the
REE does not enable the adversary to compromise the Se-
cure World in our threat model. We will show that with the
proposed changes to the Wink design, a compromised REE
kernel also cannot distinguish the mode of operation based
on the execution transcripts.

Theorem 4. A compromised REE kernel cannot distinguish
between Wink’s public-only and public-hidden modes of op-
eration based on their corresponding execution transcripts
if IND-CPA secure encryption produces ciphertexts indistin-
guishable from random exists.

The proof is in the full version5

Side-Channels. As with any shared-hardware system, the
threat of side-channels is applicable to Wink. However, uni-
fying the public and hidden message interface eliminates all
hidden interface-specific resource usages. Thus, the REE ad-
versary is prevented from using any potential side-channel
based on these resource usages.

5https://arxiv.org/abs/2207.08891

11

As described before, timing entry and exits into the Secure
World does not provide any additional information. Since
the interface for inputting/outputting hidden messages and
public messages is the same, the resource utilization due to
screen usage is also indistinguishable between the cases when
the screen is used only for public messaging vs. public +
hidden messaging. Thus, monitoring resources such as power
consumption, refresh rate changes, etc. due to the UI does not
reveal any information to the adversary. That is, any variations
observed in these parameters are as likely to be the result of
only public message input/output as due to both public and
hidden message input/output. The intermixing of public and
hidden messaging operations inside the TEE.

Obviously, if additional hidden messages are processed
inside the Secure World, additional computation is required.
However, very few additional cycles are used for injecting
the hidden payload in the random coins (as demonstrated in
Section 8). Power consumption does not vary out of noise
boundaries. Thus, while side-channels based on computation
or other resources might be discovered in the future, it is
not immediately clear if these side-channels can in fact be
exploited to break plausible deniability (see Section 10 for
further discussion). Discovering and mitigating such side-
channels is indeed very important, and each side-channel
mandates its own evaluation in terms of effectiveness and
evaluation. However, this is beyond the scope of this paper.

7 Implementation

Only device vendors have access inside the TEEs of Trust-
Zone commercial mobile devices and this access is strongly
guarded. Instead, we have implemented the first Wink proto-
type on a i.MX6 Nitrogen6X Max [27] development board,
featuring a mainstream ARM Cortex-A9 CPU and 4GB of
DDR3 memory. More importantly, the board provides com-
plete access to both Normal World and Secure World.

The Wink prototype uses U-boot [20] to load up a minimal
operating system, OP-TEE [55] inside the Secure World and
a vanilla Android 7.0 Nougat inside the Normal World. When
the device powers on, U-boot first loads into memory the code
of both OP-TEE and Android. Then, U-boot passes execution
to OP-TEE, which starts executing with complete control over
the device. OP-TEE sets up the Normal and Secure World
regions, assigns interrupts for each, and prepares handlers for
inter-world communication. Then, OP-TEE sets up drivers for
Secure I/O and prepares a cryptographic library for handling
Normal World requests. Once the Secure World is set up, OP-
TEE passes execution to the boot code of the Android kernel
(Linux version 4.1) inside Normal World.

The Wink trusted computing base (TCB) consists only of
code executing inside Secure World. In the prototype, Secure
World only contains a stripped-down version of OP-TEE
(12769 LOC), drivers for the user I/O (4423 LOC), and the
Wink cryptographic library (3009 LOC). In total, the Secure

World only contains 20201 lines of code.

7.1 Secure World cryptographic library
As described in Section 5, only a Secure World TA is re-
quired for injecting hidden messages into an authenticated
secure public messaging channel. For simplicity, the proto-
type TA runs as part of the OP-TEE which forwards all SMCs
incoming from Normal World to the Wink cryptographic li-
brary API. The library can operate in either public-only or
public-hidden mode (Section 5.1). The library initially starts
in public mode, where it can (i) encrypt/decrypt messages,
and (ii) save cryptographic keys and passwords. On password
storage requests from the messaging app, the user can either
enter only the public and disclosure passwords or also a hid-
den one through Secure I/O. On password verification, the
library switches into public-hidden mode only when provided
the hidden password. In public-hidden mode the library can
also show the hidden messaging interface and inject hidden
messages into the app’s public messaging channel. Crucially,
Wink ensures that the duration of processing encryption/de-
cryption requests in public-hidden mode is indistinguishable
from when they are processed in public-only mode.

When injecting a hidden message, the library notifies the
user how many public messages are required to successfully
send the entire hidden content. In the current implementa-
tion, for each public message, only a 15-byte hidden message
chunk can be embedded for Telegram (Section 9) and a 16-
byte chunk for Signal (Section 8.1) . The library keeps inject-
ing the hidden message chunks until they are all exhausted.
When no hidden messages are provided by the user, the library
operates similarly to the public-only mode. On the receiver
side, the library extracts the hidden messages and displays
them when operating in the public-hidden mode.

7.2 Secure I/O
Not unlike cell phone chipsets, the i.MX6 provides a set of
registers inside the Central Security Unit (CSU). These reg-
isters control the accessibility of peripherals, including I/O
devices. Wink takes advantage of this in order to on-demand
enable and disable Normal World access to the touchscreen
input (I2C touch interface) and output (display framebuffer).
Output. Wink displays an interface for hidden messaging
when Wink-specific hardware interrupt is triggered by the
user. For our implementation, we have chosen to set up a
Secure World GPIO key driver that intercepts the power but-
ton interrupts when Wink operates in public-hidden mode
and shows the hidden messaging interface if this button is
pressed for 3 or more seconds. Because the Secure World
only intercepts the power button hardware interrupts, Normal
World software cannot trick Wink into showing the respective
interface. Further, users can only trigger the hidden messag-
ing interface provided they know the Wink hidden password.

12

Temporarily altering the power button functionality also pre-
vents the user from accidentally shutting down her phone,
while the Wink library operating in public-hidden mode has
not sent all hidden messages or shown all received ones.

The hidden messaging interface always displays the ex-
changed hidden messages and a static keyboard, which can
be used by the user for input. A similar interface is displayed
for entering and verifying passwords. A framebuffer driver
inside Secure World is used to draw the two interfaces. Using
its control over CSU configuration, the driver takes over the
touchscreen display and its framebuffer while the library is
running. If the power button is pressed while Wink operates
in public-hidden mode, the framebuffer driver first saves the
current Normal World framebuffer image. Then, the hidden
messaging interface is drawn on the framebuffer and dis-
played to the user. The Normal World image is restored in
the framebuffer prior to returning execution to the Normal
World. This process hides the framebuffer driver operations
from Normal World adversaries.

Normal World adversaries can also trick the users into en-
tering hidden messages or passwords into a spoofed hidden
messaging interface. To prevent such attacks, the framebuffer
driver always displays the user-entered text watermark (at
setup time) on the framebuffer. This text is provided using
Secure I/O and is never revealed to the Normal World; the wa-
termark assures the user that the authentic hidden messaging
interface is on display.
Input. The Secure World provides hidden input to the crypto-
graphic library by directly monitoring the I2C interface used
by the touchscreen to send touch input data. While the hidden
messaging interface is displayed, Secure World takes control
of the I2C interface and prevents Normal World adversaries
from monitoring the interface for hidden messages.

On touch events, the I2C interface provides the Secure
World driver with a buffer that indicates touch screen presses
and the coordinates of each touch. On touch presses, the driver
converts the received data into a 2D point. This point is then
mapped into a static keyboard layout displayed on the touch-
screen Secure World framebuffer. On each touch event, the
driver provides the entered keystrokes to the Wink library.

8 Evaluation

Integration with Messaging Apps. As proofs of concept,
we have integrated the Wink library with Signal Private Mes-
senger and Telegram Messenger. In addition, we have inves-
tigated several other messaging apps including Briar6. For
Telegram we have identified a 15-byte salt exchanged under
the MTProto 2.0 protocol as a potential random coin that can
be exploited to inject hidden messages. On the other hand,
the Signal message format provides two opportunities for
hidden message injection: a 32-byte random ECDH public

6https://briarproject.org

Table 2: Bandwidth available for hidden messaging with different
E2EE messaging apps. With Telegram, for a n byte hidden messages,
n/15+ 2 public messages are required as cover traffic. Using the
Signal 16 byte IV a similar bandwidth is available. Using both the
32-byte salt and 16-byte IV provides a significantly larger bandwidth
for hidden message injection under Briar.

Application Random Coins
No. of Public

Messages

Telegram [53] 15 byte salt
⌈︁ n

15
⌉︁
+2

Signal [49] 16 byte IV
⌈︁ n

16
⌉︁
+2

Briar [8] 32 byte salt, 16 bytes IV
⌈︁ n

48
⌉︁
+2

key exchanged with every message, and a 16-byte IV for the
Sealed Sender encryption (an envelope) for exchanged mes-
sages. Finally, Briar-encrypted messages include a 32-byte
random salt and 24-byte IV.

In our evaluation, we mainly present empirical results per-
taining to the solution presented in Section 5 which protects
against REE adversaries incapable of compromising the REE
kernel. The only change required for making the solution
resilient against REE kernel adversaries is performing pub-
lic I/O through the Secure World interface which does not
introduce additional timing overheads.
Bandwidth for Hidden Messaging. The length of the ran-
dom coins determines the available bandwidth available for
hidden message injection in each messaging app. Table 2
enlists the available bandwidths for the surveyed apps. For
Telegram we have built a prototype (evaluated in Section 9)
that enables sending a n-byte hidden message using

⌈︁ n
15

⌉︁
+2

public messages, where the 2 extra messages are for the meta-
data. Similarly under Signal sending a n-byte hidden message
requires

⌈︁ n
16

⌉︁
+ 2 public messages (details in Section 8.1).

Briar provides both a 32-byte salt and 16-byte IV which com-
bined enables Wink to inject additional hidden message bytes
per public message.

8.1 Integration with Signal
As a proof-of-concept, we have integrated the Android Signal
Private Messenger with Wink (see Section 3). The instru-
mented Signal enables users to exchange hidden messages
under the Wink protocol while retaining all existing func-
tionalities for public messaging. For Signal, 60 LOC have
been changed for hooking in the Wink system calls, mostly
consisting of Java Native Interface code.
Switching Operating Modes. In terms of user authentica-
tion, Signal does not maintain passwords or require users to
explicitly log in. Instead, it mainly relies on 2FA (through
SMS sent to provided phone numbers) and OS-level user au-
thentication. Thus, we had to find an appropriate method of
hooking into the password verification required under Wink.
Instead of introducing mandatory authentication every time
Signal is opened, we have opted to hook into the Signal PIN
functionality. The PIN is a (numeric/alphanumeric) code used

13

https://briarproject.org

Signal Wink-Integrated Signal Overhead

Metadata Encryption time (ms) 0.17 ± 0.003 0.42 ± 0.002 + 0.246 ms

Metadata Decryption time (ms) 0.19 ± 0.004 0.43 ± 0.003 + 0.240 ms
Table 3: Encryption and decryption time for metadata (33 bytes) in Signal ± Wink. Overheads are under 0.25 msec per message. This is virtually
unnoticeable and dominated by other per-message operations which take thousands of times longer (e.g., typing, network transfer, etc.).

to support features like non-phone number-based identifiers.
We instrument the Signal PIN verification and move it

into Secure World under Wink. This enables users to provide
passwords (Signal PIN) to the Wink library. In turn, the library
provides verification results back to Signal. Similarly, the PIN
input is managed through the Wink library allowing the setup
of the three Wink passwords (public, hidden and disclosure).

Once the Wink hidden password is set up, the user can use
Signal’s PIN verification to enable the Wink public-hidden
mode execution. As previously described in Section 9, once
the hidden password is entered, the Secure World intercepts all
power button presses and shows the Wink hidden messaging
interface, and entered hidden messages are exchanged while
appearing as random Signal IVs.
Hooking Hidden Messaging. For Signal, we inject the hid-
den messages into the IV used for encrypting message meta-
data under the sealed sender [50] functionality. In short, a
sealed sender adds another layer of encryption (an envelope)
to each exchanged message. The metadata IV for encrypted
envelopes can be replaced with any random string, thus mak-
ing it suitable for hidden message injection. We leverage this
opportunity to integrate Wink by porting the envelope (meta-
data) encryption inside Secure World, similar to the Telegram
integration described in the process described in Section 9
for Telegram. Thus, for each Signal exchanged message, the
metadata is encrypted and exchanged using either a Wink
generated random IV or a hidden message encrypted with
CTR mode AES under a 16-byte randomly generated HMK.

To instrument the Signal PIN verification and to introduce
hidden message exchange we only had to replace a few lines
of code with system calls. However, only message metadata
encryption is ported inside Secure World for this proof-of-
concept. For a real-world deployment, further engineering
effort would be required to also move the remaining Signal
cryptographic functions used for message content encryption
inside Secure World for protection.
Signal Metadata Encryption Overheads. Under the sealed
sender functionality, Signal encrypts and decrypts the meta-
data of each exchanged message using AES in CTR mode
with no padding. For our Wink proof-of-concept we have
ported these two operations inside the Secure World library.
To estimate the overheads for integrating Wink with Signal
we compared the time required for encrypting/decrypting the
fixed length metadata of exchanged messages between the
vanilla and Wink-integrated Signal.

To evaluate the metadata encryption/decryption times we
instrumented Signal to automatically encrypt/decrypt the

metadata of each message sent/received 1000 times. The aver-
age AES encryption and decryption are measured, collecting
the average computation time and standard deviation. Table 3
presents the average metadata encryption and decryption time.
AES encryption of metadata introduces an overhead of under
0.246 milliseconds for either encryption or decryption (of
metadata – always 33 bytes), with a 95% confidence interval.
The overhead includes the additional data copy operations
from the Normal World to the Secure World. Importantly,
most other operations take thousands of times longer (typ-
ing, message transfers, etc). As a result Wink overheads are
virtually unnoticeable.

9 Integration with Telegram

We have integrated Telegram with Wink. Telegram is a popu-
lar open-source E2EE messaging app based on the MTProto
2.0 protocol. Compared to its more complex counterparts e.g.,
Signal, one advantage of the Telegram protocol is that the
cryptographic operations are relatively simple to implement.
We describe the salient features, more details are in [53].
Message Format. MTProto 2.0 derives a per-message 16
byte message key by hashing a shared authentication key and
an augmented message payload, consisting of the message
text itself, a 64-bit session identifier, a 64-bit salt (15 bytes
in the actual implementation) and the required length of the
padding. The message key is used to derive AES keys and IVs
for the payload encryption using a key-derivation function
(KDF). The encrypted payload, message key, and authentica-
tion key are sent over the wire. The salt provides the necessary
randomness to the message keys and the payload.

The instrumented version of Telegram (with Wink) retains
all existing functionalities for public messaging. Only 71
LOC have been changed for hooking in the Wink system
calls, mostly consisting of added Java Native Interface code
and replacing the existing encryption/decryption logic. Im-
portantly, since the Telegram message format is not altered,
the instrumented version can still communicate with a vanilla
Telegram version for public messaging, while relying on the
Wink library for cryptographic operations.
Instrumenting Encrypted Messaging Logic. The Wink li-
brary stores authentication keys (shared key used in MTProto
2.0 protocol) inside Secure World and performs public mes-
sage encryption and decryption. To this end, we instrumented
the Telegram “secret chat” encrypted messaging logic using
the MTProto 2.0 protocol. This logic mainly consists of de-
riving message keys and IVs through a series of SHA256 (or

14

1 4 16 64 256 1024 4096
0

1

2

3

Message size

Ti
m

e
(m

s)

Telegram
Wink-Integrated Telegram

(a) Encryption Time

1 4 16 64 256 1024 4096
0

1

2

3

Message size

Ti
m

e
(m

s)

Telegram
Wink-Integrated Telegram

(b) Decryption Time

Figure 4: Comparison of encryption, decryption times for Wink-integrated Telegram and vanilla Telegram. The error bars illustrate the margins
of error for a 95% confidence interval. Performing Secure World cryptographic operations with the Wink library incurs a 2x overhead.

SHA1 for MTProto 1.0 protocol) computations, followed by
an AES IGE [40] encryption or decryption. Under Wink, this
logic is replicated inside the Secure World library.
Switching Operating Modes. For user authentication, Tele-
gram allows users to set up a passcode (or PIN). Under Wink,
Secure World library SMC calls replace Telegram passcode
entry and verification logic. As a result, when passcode pro-
tection is enabled, the user is prompted by Wink to enter all
three passwords (public, hidden, and disclosure), through a Se-
cure I/O interface. These passwords are never revealed to the
Normal World and the Wink library only relays to Telegram
whether password verification succeeded or failed.

On providing the hidden password, the Secure World in-
tercepts all power button presses and shows the Wink hidden
messaging interface every time the power button is pressed
for longer than 3 seconds. The interrupt-based provided inter-
face enables users to manage hidden contacts and read/write
hidden messages at any point during the Wink public-hidden
mode execution. The interception of the power button presses
ends when Wink resumes operating in public mode (e.g., by
entering the public password). Hidden messages are then
exchanged as random Telegram message salts.
Telegram Hidden Message Injection. Telegram’s MTProto
2.0 protocol includes an 8-byte salt in the encrypted message
sent over the wire. In the open-source code, we found that the
actual salt size used is 15 bytes (perhaps to make Telegram
more resilient to brute-force attacks). Wink uses this 15-byte
salt for hidden message injection.

Hidden messages are encrypted with AES in CTR mode
under a 16-byte randomly generated hidden master key. A hid-
den message, if longer than 15 bytes, is encrypted as a whole
and the ciphertext is broken into 15-byte chunks. Each chunk
is subsequently used as a random salt for a public message
and sent over the wire as part of the encrypted payload.

In addition, each hidden message is preceded by a 16-byte
random IV and a 8-byte message length indicator, which is
broken in two 15-byte encrypted messages. The remaining
6 bytes out of the combined 30 bytes is used to add redun-

dancy e.g., all 0s allowing the decryption logic to distinguish
between actual messages and random information.

While this simple scheme judiciously utilizes the avail-
able bandwidth (by reducing the amount of metadata) it has
one drawback: if the chunks for a long-hidden message are
received out-of-order then the decryption logic on the re-
ceiver side may not be able to reorder the encrypted ciphertext
chunks. We leverage the fact that each encrypted payload in
Telegram has a sequence number which allows the receiver
to correctly re-order out-of-order public messages.

Since the hidden message injection in Wink is synchronized
with the public messaging i.e., each hidden chunk is injected
with one public message, the ordering of the public messages
also establishes the hidden message chunk ordering. Thus,
Wink can leverage the public message sequence numbers to
correctly reorder the hidden message chunks for decryption.
Telegram Message Processing Overheads. To estimate
the performance overheads of integration, we compared the
time required for encrypting/decrypting messages in Wink-
integrated Telegram with the time required in the vanilla ver-
sion. Note that the only difference between the two cases is
that the Secure World-hosted Wink library implements the
crypto for the Wink-integrated version while the vanilla ver-
sion implements its own cryptography in the Normal World.

The experiment is set up by instrumenting Telegram to
automatically generate and encrypt/decrypt messages of sizes
between 1 and 4096 bytes (max size supported by Telegram).
For decryption, a remote Telegram instance encrypts and pro-
vides messages between 1 and 4096 bytes. For each generated
message the experiment is repeated 1000 times, measuring
the encryption process – SHA256 computations for key and
IV generation plus AES IGE encryption – duration. Then, the
average execution time and standard deviation are computed.
A similar process is carried out for timing the decryption of
message ciphertexts.

Figure 4(a) and Figure 4(b) illustrate the average time re-
quired for encrypting and decrypting messages under both
vanilla and Wink-integrated Telegram respectively. The ob-

15

served results indicate that using the Wink library for secure
cryptographic operations only makes the encryption, and de-
cryption slower by a factor of 2x. This is expected given the
context switches and the memcopies required for utilizing
the Wink cryptographic operations. For a messaging applica-
tion, the overhead is almost negligible since it only slightly
increases overall message processing times (around 1 ms).
The bulk of the time is spent on user inputs, which are usu-
ally in the order of a few seconds. The results also indicate
that the time required for encryption and decryption is not
significantly affected by the message size. The almost mini-
mal overheads justify using Wink only for more secure public
messaging and strengthen plausible deniability arguments.

10 Discussion

In this section, we will further discuss threat model assump-
tions and point out potential Wink design drawbacks.
TEE Compromise. Naturally, the TEEs themselves are far
from invulnerable. Importantly, however, the small, compar-
atively carefully designed TEE TCB results immediately in
proportionally fewer vulnerabilities, oftentimes by 2-3 orders
of magnitudes! In fact, between 2013 and 2018 only a handful
of CVEs have been reported for TEEs [12], in comparison to
the 1647 CVEs reported for Linux, a rich OS. Additionally,
in Trustonic, one of the most largely-deployed TEEs, only
5 vulnerabilities have been reported in this timeframe, 330
times fewer than for Linux (1647). Moreover, most reported
TEE vulnerabilities are located within TAs, which are isolated
by the TEE OS from Wink and do not directly impact hidden
messaging security. Overall, the fact is that the significantly
smaller TCB/attack surface raises the bar significantly. How-
ever, hardening TEEs and specifically Trustzone against all
possible attack vectors is orthogonal to the scope of this work.
Side Channels. As with any shared-hardware system Wink
may be subject to side-channels that undermine its security
guarantees; the solution in Section 6 mitigates several side-
channels that are specifically detrimental to Wink security
guarantees. However, we acknowledge that there may be side-
channels that are not covered or mitigated under the current
Wink design. There is a large body of work on mitigating
these side-channels for general TrustZone-protected trusted
services, e.g., [21, 36, 38, 59]. Integrating these solutions in
future versions will eliminate the side-channels detrimental
to Wink security. In addition, identifying other side-channels
that may undermine Wink is the subject of future research.
Password-based attacks. As with any password-based
system, Wink requires strong passwords, which can not be
guessed in a reasonable amount of time. To prevent password
brute forcing attacks, Wink imposes strict length and content
requirements, and locks access permanently after a reasonable
amount of attempts.
Spoofing Wink UI. Adversaries could try to show users a
spoofed version of the Wink interface (e.g., from a compro-

mised application), to trick them into leaking their passwords
(hidden and public) or hidden messages. Such attacks can
be mitigated in various ways, including by the user-selected
watermark maintained only inside Secure World and shown
on the Wink drawn interface.
Data leakage through Wink. Wink is preferably installed
by a vendor as firmware in the Secure World and provides a
secure communication channel that is invisible to the Normal
World. It only becomes visible to users when they utilize
it through the Wink hidden-messaging UI. Importantly, the
vendor is trusted by the user; Secure World is assumed to be
benign and not compromised.

However, it is important to understand what that means.
To that end, let us consider a malicious vendor or a Secure
World OS that compromises Wink operations. In addition
to obtaining all confidential information exchanged as hid-
den messages, they can also introduce their own collected
data (e.g., collected user confidential information) into hid-
den messages and exfiltrate it without the user or Normal
World software ever knowing. Thus, a compromised Wink
can become a powerful tool for adversaries if they require
a mechanism for leaking data from Secure World without
leaving any evidence. Note, however, that such adversaries
can introduce their encrypted data within any other exchanged
random coins within Normal and Secure World software and
achieve a similar result. Wink does not introduce such data
leakage as a new attack vector.

11 Conclusion

This work presented Wink, a plausibly-deniable messaging
framework enabling users to reclaim the ability to communi-
cate securely even in the presence of powerful surveillance
or coercive adversaries. It works by surreptitiously injecting
hidden messages in cryptographic randomness inherent in
end-to-end encrypted messaging. Users can plausibly deny
the exchange of hidden messages, and also any evidence of
using the messaging software itself. Wink can be efficiently
integrated with a number of existing E2EE applications in-
cluding Telegram and Signal with minimal external instru-
mentation, and crucially without needing to change existing
standard on-wire message formatting.

Acknowledgments

This work was supported in part through NSF award 2052951.
We thank our shepherd and the anonymous Usenix Security
Symposium reviewers for their excellent suggestions and feed-
back. The views and conclusions in this document are those of
the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the National
Science Foundation.

16

References

[1] Anderson, R., Needham, R., Shamir, A.: The steganographic
file system. In: Information Hiding (1998)

[2] Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient sig-
nature schemes. In: ACM Conference on Computer and Com-
munications Security. pp. 364–375 (2015)

[3] Bellare, M., Jaeger, J., Kane, D.: Mass-surveillance without the
state: Strongly undetectable algorithm-substitution attacks. In:
ACM Conference on Computer and Communications Security.
pp. 1431–1440 (2015)

[4] Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmet-
ric encryption against mass surveillance. In: Advances in Cryp-
tology – CRYPTO. pp. 1–19 (2014)

[5] Berndt, S., Liśkiewicz, M.: Algorithm substitution attacks from
a steganographic perspective. In: ACM Conference on Com-
puter and Communications Security. pp. 1649–1660 (2017)

[6] Blass, E.O., Mayberry, T., Noubir, G., Onarlioglu, K.: Toward
robust hidden volumes using write-only oblivious ram. In:
ACM Conference on Computer and Communications Security.
pp. 203–214 (2014)

[7] Borisov, N., Goldberg, I., Brewer, E.: Off-the-record commu-
nication, or, why not to use pgp. In: Workshop on Privacy in
the Electronic Society (2004)

[8] Briar. https://briarproject.org

[9] Byrant, F.: 7 best keyloggers for android without root. Spy
Drill (2021)

[10] Canetti, R., Park, S., Poburinnaya, O.: Fully deniable interactive
encryption. In: Advances in Cryptology – CRYPTO. pp. 807–
835 (2020)

[11] Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable en-
cryption. In: Advances in Cryptology – CRYPTO. pp. 90–104
(1997)

[12] Cerdeira, D., Santos, N., Fonseca, P., Pinto, S.: Sok: Under-
standing the prevailing security vulnerabilities in trustzone-
assisted tee systems. In: IEEE Symposium on Security and
Privacy. pp. 1416–1432 (2020)

[13] Chakraborti, A., Chen, C., Sion, R.: DataLair: Efficient block
storage with plausible deniability against multi-snapshot ad-
versaries. In: Privacy Enhancing Technologies Symposium. pp.
175–193 (2017)

[14] Chang, B., Zhang, F., Chen, B., Li, Y., Zhu, W., Tian, Y., Wang,
Z., Ching, A.: Mobiceal: Towards secure and practical plausibly
deniable encryption on mobile devices. In: IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks
(2018)

[15] Chen, C., Chakraborti, A., Sion, R.: Pd-dm: An efficient
locality-preserving block device mapper with plausible denia-
bility. In: Privacy Enhancing Technologies Symposium (2019)

[16] Chen, C., Chakraborti, A., Sion, R.: INFUSE: Invisible
plausibly-deniable file system for NAND flash. In: Privacy
Enhancing Technologies Symposium. pp. 239–254 (2020)

[17] Cho, H., Zhang, P., Kim, D., Park, J., Lee, C.H., Zhao, Z.,
Doupé, A., Ahn, G.J.: Prime+count: Novel cross-world covert
channels on arm trustzone. In: Annual Computer Security Ap-
plications Conference. p. 441–452 (2018)

[18] Coynash, H.: Russian fsb terrorizes another ukrainian activist
in occupied crimea. http://khpg.org/en/index.php?id=
1549897598

[19] Cui, Y.: Elevation of privilege vulnerability in the ker-
nel (cve-2015-6640)). https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2015-6640

[20] Denk, W., et al.: Das u-boot–the universal boot loader. http:
//www.denx.de/wiki/U-Boot (2013)

[21] Dessouky, G., Frassetto, T., Sadeghi, A.R.: {HybCache}: Hy-
brid {Side-Channel-Resilient} caches for trusted execution
environments. In: USENIX Security Symposium. pp. 451–468
(2020)

[22] Di Raimondo, M., Gennaro, R., Krawczyk, H.: Deniable au-
thentication and key exchange. In: ACM Conference on Com-
puter and Communications Security. p. 400–409 (2006)

[23] Google: Hardware-backed keystore. https://source.
android.com/security/keystore (2019)

[24] Guardian staff: Whatsapp design feature means some
encrypted messages could be read by third party.
https://www.theguardian.com/technology/2017/jan/
13/whatsapp-design-feature-encrypted-messages

[25] Han, J., Pan, M., Gao, D., Pang, H.: A multi-user stegano-
graphic file system on untrusted shared storage. In: Annual
Computer Security Applications Conference (2010)

[26] Helms, K.: Us senators introduce ’lawful access to encrypted
data act’ — with backdoor mandate. https://tinyurl.com/
lawful-access-backdoor

[27] Nitrogen6_max development board. https://
boundarydevices.com/product/nitrogen6max/

[28] Jia, S., Xia, L., Chen, B., Liu, P.: Deftl: Implementing plausibly
deniable encryption in flash translation layer. In: ACM Confer-
ence on Computer and Communications Security (2017)

[29] Kahney, L.: The fbi wanted a back door to
the iphone. https://www.wired.com/story/
the-time-tim-cook-stood-his-ground-against-fbi/

[30] Kaptchuk, G., Jois, T.M., Green, M., Rubin, A.D.: Meteor:
Cryptographically secure steganography for realistic distribu-
tions. In: ACM Conference on Computer and Communications
Security. pp. 1529–1548 (2021)

[31] laginimaineb: Android linux kernel privilege escalation (cve-
2014-4322). http://bits-please.blogspot.com/2015/
08/android-linux-kernel-privilege.html

[32] laginimaineb: Android linux kernel privilege escalation (cve-
2014-4323). http://bits-please.blogspot.com/2015/
08/android-linux-kernel-privilege_26.html

[33] Lentz, M., Sen, R., Druschel, P., Bhattacharjee, B.: Secloak:
Arm trustzone-based mobile peripheral control. In: ACM An-
nual International Conference on Mobile Systems, Applica-
tions, and Services. pp. 1–13 (2018)

17

https://briarproject.org
http://khpg.org/en/index.php?id=1549897598
http://khpg.org/en/index.php?id=1549897598
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6640
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6640
http://www. denx. de/wiki/U-Boot
http://www. denx. de/wiki/U-Boot
https://source.android.com/security/keystore
https://source.android.com/security/keystore
https://www.theguardian.com/technology/2017/jan/13/whatsapp-design-feature-encrypted-messages
https://www.theguardian.com/technology/2017/jan/13/whatsapp-design-feature-encrypted-messages
https://tinyurl.com/lawful-access-backdoor
https://tinyurl.com/lawful-access-backdoor
https://boundarydevices.com/product/nitrogen6max/
https://boundarydevices.com/product/nitrogen6max/
https://www.wired.com/story/the-time-tim-cook-stood-his-ground-against-fbi/
https://www.wired.com/story/the-time-tim-cook-stood-his-ground-against-fbi/
http://bits-please.blogspot.com/2015/08/android-linux-kernel-privilege.html
http://bits-please.blogspot.com/2015/08/android-linux-kernel-privilege.html
http://bits-please.blogspot.com/2015/08/android-linux-kernel-privilege_26.html
http://bits-please.blogspot.com/2015/08/android-linux-kernel-privilege_26.html

[34] Li, X., Hu, H., Bai, G., Jia, Y., Liang, Z., Saxena, P.: Droid-
Vault: A trusted data vault for android devices. In: International
Conference on Engineering of Complex Computer Systems
(Aug 2014)

[35] Liu, D., Cox, L.P.: VeriUI. In: Workshop on Mobile Computing
Systems and Applications (2014)

[36] Liu, F., Ge, Q., Yarom, Y., Mckeen, F., Rozas, C., Heiser, G.,
Lee, R.B.: Catalyst: Defeating last-level cache side channel
attacks in cloud computing. In: IEEE International Symposium
on High Performance Computer Architecture. pp. 406–418
(2016)

[37] Liu, H., Vasserman, E., Hopper, N.: Improved group off-the-
record messaging. In: ACM Conference on Computer and
Communications Security (2013)

[38] Liu, N., Yu, M., Zang, W., Sandhu, R.S.: Cost and effectiveness
of trustzone defense and side-channel attack on arm platform.
In: Journal of Wireless Mobile Networks, Ubiquitous Comput-
ing, and Dependable Applications. vol. 11, pp. 1–15 (2020)

[39] Lomas, N.: Could the UK be about to break
end-to-end encryption? https://techcrunch.
com/2017/05/27/could-the-uk-be-about\
-to-break-end-to-end-encryption/

[40] Mull, J.: Aes ige encryption. https://mgp25.com/AESIGE/

[41] Oates, J.: Youth jailed for not handing over encryp-
tion password. https://www.theregister.co.uk/2010/
10/06/jail_password_ripa/

[42] O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key
encryption. In: Advances in Cryptology – CRYPTO. pp. 525–
542

[43] Owen, M.: Invisible kismet imessage exploit used to hack jour-
nalists’ iphones. https://appleinsider.com/articles/
20/12/21/invisible-kismet-imessage-exploit-\
used-to-hack-journalists-iphones

[44] Pang, H., Tan, K.L., Zhou, X.: Stegfs: a steganographic file sys-
tem. In: IEEE International Conference on Data Engineering.
pp. 657–667 (2003)

[45] Pegg, D., Cutler, S.: What is pegasus spyware and how
does it hack phones? https://www.theguardian.
com/news/2021/jul/18/what-is-pegasus\
-spyware-and-how-does-it-hack-phones

[46] Peters, T., Gondree, M., Peterson, Z.N.J.: DEFY: A deniable,
encrypted file system for log-structured storage. In: ISOC Net-
work and Distributed System Security Symposium (2015)

[47] Raja, A.: 10 best free hidden spy apps for android. Tech Times
(2019)

[48] Sahai, A., Waters, B.: How to use indistinguishability obfusca-
tion: Deniable encryption, and more. In: ACM Symposium on
Theory of Computing. p. 475–484 (2014)

[49] Signal. https://signal.org/en/

[50] Technology preview: Sealed sender for signal. https://
signal.org/blog/sealed-sender/

[51] Sun, H., Sun, K., Wang, Y., Jing, J.: TrustOTP. In: ACM Con-
ference on Computer and Communications Security (2015)

[52] Sun, H., Sun, K., Wang, Y., Jing, J., Jajodia, S.: TrustDump:
Reliable memory acquisition on smartphones. In: European
Symposium on Research in Computer Security. pp. 202–218
(2014)

[53] Telegram messenger. https://telegram.org

[54] ThreatFabric: Vultur, with a v for vnc. https:
//www.threatfabric.com/blogs/vultur-v-for-vnc.
html#brunhilda

[55] TrustedFirmware.org: Op-tee documentation. https://
optee.readthedocs.io/en/latest/ (2019)

[56] Unger, N., Goldberg, I.: Improved strongly deniable authenti-
cated key exchanges for secure messaging. In: Privacy Enhanc-
ing Technologies Symposium. pp. 21 – 66 (2018)

[57] Victor, D.: Forced searches of phones and lap-
tops at u.s. border are illegal, lawsuit claims.
https://www.nytimes.com/2017/09/13/technology/
aclu-border-patrol-lawsuit.html

[58] Ying, K., Thavai, P., Du, W.: Truz-view: Developing trustzone
user interface for mobile os using delegation integration model.
In: ACM Conference on Data and Application Security and
Privacy. pp. 1–12 (2019)

[59] Zhao, S., Zhang, Q., Qin, Y., Feng, W., Feng, D.: Sectee: A
software-based approach to secure enclave architecture using
tee. In: ACM Conference on Computer and Communications
Security. p. 1723–1740 (2019)

[60] Zheng, X., Yang, L., Ma, J., Shi, G., Meng, D.: TrustPAY:
Trusted mobile payment on security enhanced ARM TrustZone
platforms. In: IEEE Symposium on Computers and Communi-
cation (2016)

[61] Zhou, X., Pang, H., Tan, K.L.: Hiding data accesses in stegano-
graphic file system. In: IEEE International Conference on Data
Engineering (2004)

18

https://techcrunch.com/2017/05/27/could-the-uk-be-about\-to-break-end-to-end-encryption/
https://techcrunch.com/2017/05/27/could-the-uk-be-about\-to-break-end-to-end-encryption/
https://techcrunch.com/2017/05/27/could-the-uk-be-about\-to-break-end-to-end-encryption/
https://mgp25.com/AESIGE/
https://www.theregister.co.uk/2010/10/06/jail_password_ripa/
https://www.theregister.co.uk/2010/10/06/jail_password_ripa/
https://appleinsider.com/articles/20/12/21/invisible-kismet-imessage-exploit-\used-to-hack-journalists-iphones
https://appleinsider.com/articles/20/12/21/invisible-kismet-imessage-exploit-\used-to-hack-journalists-iphones
https://appleinsider.com/articles/20/12/21/invisible-kismet-imessage-exploit-\used-to-hack-journalists-iphones
https://www.theguardian.com/news/2021/jul/18/what-is-pegasus\-spyware-and-how-does-it-hack-phones
https://www.theguardian.com/news/2021/jul/18/what-is-pegasus\-spyware-and-how-does-it-hack-phones
https://www.theguardian.com/news/2021/jul/18/what-is-pegasus\-spyware-and-how-does-it-hack-phones
https://signal.org/en/
https://signal.org/blog/sealed-sender/
https://signal.org/blog/sealed-sender/
https://telegram.org
https://www.threatfabric.com/blogs/vultur-v-for-vnc.html#brunhilda
https://www.threatfabric.com/blogs/vultur-v-for-vnc.html#brunhilda
https://www.threatfabric.com/blogs/vultur-v-for-vnc.html#brunhilda
https://optee.readthedocs.io/en/latest/
https://optee.readthedocs.io/en/latest/
https://www.nytimes.com/2017/09/13/technology/aclu-border-patrol-lawsuit.html
https://www.nytimes.com/2017/09/13/technology/aclu-border-patrol-lawsuit.html

	Introduction
	Related Work
	Plausible Deniability
	TrustZone

	Background
	ARM TrustZone
	Signal

	Model
	Threat Model

	The Wink Design
	The Wink Secure World Application
	Secure I/O for Hidden Messaging
	Wink Setup Ceremony
	Interfacing with Messaging Applications
	Key & Contact Management
	Security Analysis

	Wink Under REE Kernel Compromise
	Implementation
	Secure World cryptographic library
	Secure I/O

	Evaluation
	Integration with Signal

	Integration with Telegram
	Discussion
	Conclusion

