
INVISILINE: Invisible Plausibly-Deniable Storage

Abstract—Powerful anti-encryption laws and adversaries who
can coerce users to provide encryption keys and passwords
weaken encryption’s ability to protect sensitive information.
Plausibly-deniable (PD) storage systems address this problem
by enabling users to securely hide data and plausibly deny
its presence when challenged. However, PD systems need
specialized software that renders them detectable by suspicious
adversaries questioning the very use of a PD system. To address
this fundamental problem, we introduce and formally define
the notion of plausible invisibility, preventing adversaries from
determining whether a PD system was used in the first place.
INVISILINEis a plausibly invisible system that formats and
stores data in a manner compatible with existing off the shelf
storage layers such as dm-crypt, a widely available block
device encryption subsystem. Users can install INVISILINE
binaries at runtime but in the presence of adversaries they can
continue to access the public data using dm-crypt. Importantly,
INVISILINE is invisible even for multi-snapshot adversaries
that can see the device multiple times. INVISILINE can securely
and invisibly hide 19GB on a 1TB disk with no impact on
public data I/O, and an average of 4.5MB/s throughput for
writing hidden data.

1. Introduction

With increasingly abusive and restrictive governments
and law enforcement agencies, it has become imperative to
provide human rights activists, whistle-blowers, investiga-
tive journalists, and regular users and companies, techniques
to ensure the privacy and confidentiality of their data. For
instance, the Cloud Act [1] allows both US and non-US
government agencies to compel telecommunications com-
panies to disclose the content stored on their servers and
data centers both in the US and overseas [2], [3]. Other
examples include coerced inspections of mobile devices at
checkpoints and border crossings in Burma [4] and even
a videographer hiding a micro-SD card with evidence of
human rights violations, in a wound when leaving Syria [5].

Encrypting data at rest is ineffective against adver-
saries that can coerce users to reveal the encryption keys.
Plausibly-deniable (PD) systems thwart such coercion by
providing mechanisms for users to hide sensitive informa-
tion and later deny its existence, even when an adversary
has access to the storage medium and encryption keys. Disk
encryption tools such as TrueCrypt [6], Rubberhose [7],
or Shufflecake [8] provide storage deniability for a single-
snapshot adversary, that can access the user device only
once. However, a multi-snapshot adversary can access the

device multiple times. Example multi-snapshot opportunities
include repeated government requests to cloud providers [1],
[2], [3], crossing a country’s border more than once, or an
oppressive government colluding with a hotel maid.

More recent PD systems also protect against multi-
snapshot adversaries [4], [9], [10], [11]. However, PD sys-
tems require specialized software and artifacts that render
them vulnerable to adversaries questioning the use of such
artifacts. Examples include (1) special software e.g., the
Shufflecake tool [8] or a modified file translation layer
(FTL) in PEARL [12], (2) system-specific metadata e.g,
special indexing structures stored on disk to track hidden
information, e.g., in HIVE [9], DataLair [10], PD-DM [11],
or (3) non-standard on-disk data layouts, e.g., in DEFY [4]
or PD-DM [11]. The presence of such specialized artifacts
ultimately reveals to the adversary that the user is using a
plausible deniable storage system to hide data.

Instead, an invisible PD solution would allow the user
to deny the use of special software to write data. Thus, an
invisible PD solution needs to ensure that any disk changes
that result from changes to the hidden data between adver-
sary snapshots, can be plausibly explained using changes to
public data that are compatible with regular use of an off-
the-shelf software. Further, the adversary should be able to
successfully read all and only the public data stored on the
device, using only such software.

In this paper we introduce and define the requirements
for invisibility for plausibly-deniable storage. We introduce
INVISILINE, a new invisible plausibly-deniable system ef-
fective against multi-snapshot adversaries, that leverages
dm-crypt [13], the Linux distribution full disk encryption
solution. During sessions taking place between adversary
snapshots, the user-installed INVISILINE creates logical
public and hidden dm-crypt devices on the physical disks,
and uses them to write public and hidden data. INVISILINE
opportunistically relies on the user’s genuine writes and
updates to public data during the session, as plausibly-
deniable cover to write and update hidden data. At the end
of each session, the user uninstalls INVISILINE and installs
the vanilla dm-crypt.

INVISILINE achieves invisibility and plausible deniabil-
ity by using a data layout and encoding that is compatible
with dm-crypt. More specifically, it stores hidden data in the
initialization vectors (IVs) used by dm-crypt block ciphers
to encrypt public data. Since the adversary can take storage
snapshots only at the end of a session, the hidden data-
storing IV associated with a sector where public data has
been written during the session can be updated any number
of times during the session.



To an adversary studying the disk across snapshots, IV
changes can plausibly be explained as changes in the ran-
domness used to encrypt public data. Further, on coercion,
the user can claim that only the vanilla dm-crypt was used
to store the public data.

INVISILINE avoids the pitfalls of imitating applications,
data formats or user behaviors that were shown to leave tell-
tale traces for a monitoring adversary to discover hidden
behaviors [14]. Instead, INVISILINE uses an existing stor-
age format (dm-crypt) with the existing logic to manage the
volume, and uses actual behavior of the user (e.g., browsing)
and the OS (e.g., updated logfiles) to provide the cover
needed to create the space for hidden data.

INVISILINE invisibly maps the logical hidden space to
the physical sector space. It persists this address translation
map (ATM) on disk along with the hidden data, and effi-
ciently reads and stores it into memory for easy access. We
further introduce INVISingle, an INVISILINE optimization
for single-snapshot adversaries, that eliminates the need for
an ATM table, increases the size of data that can be hidden
on the disk, and improves the performance of accessing it.

We analyze INVISILINE and show that it satisfies the
plausible invisibility requirements we introduced. Further,
we implemented and tested INVISILINE on the Linux 5.19
kernel. On a 1TB disk, INVISILINE can invisibly store and
map more than 19GB of hidden data, for which it requires
26s to reconstruct the ATM table. On the same disk, INVIS-
ingle can store 25GB of hidden data. Both INVISILINE and
INVISingle have minimal impact on reading public data.
INVISILINE achieves a throughput of 2.93 - 4.46 MB/s for
hiding data at sequential and random addresses, and 3.73 -
6.55 MB/s for reading hidden data. The INVISingle opti-
mization leads to a more than 50% throughput improvement.

2. Background

This section provides background on disk encryption
software, in particular the dm-crypt and dm-integrity device-
mapper targets in the Linux kernel, and the cryptsetup utility.
Disk Encryption. Modern operating systems have built-in
software for performing disk encryption, e.g., dm-crypt [13]
for Linux, BitLocker [15] for Windows, FileVault [16] for
MacOS. Full disk encryption software encrypts everything
on the disk except the boot loader. When the disk is
mounted, once the user enters a password, the software
decrypts the disk contents and presents it to the OS.

Disk encryption software can be classified based on
where the encryption takes place. In file system-based
encryption, it takes place inside the file system or as a
layer stacked beneath the existing file system. For instance,
eCryptfs [17] and EncFS [18] encrypt the data when writing
to the disk, and decrypt it when data is read from the
disk, before passing it to the upper layer. Block device
encryption systems, e.g., dm-crypt [13], TrueCrypt [6] and
Veracrypt [19], operate at the block device layer, and encrypt
everything written to the block device. One advantage of
this approach is that an adversary with access to an offline
disk encrypted with a block device encryption system cannot

interpret the file system and its contents. In the following
we provide more details on the operation of dm-crypt [13].

dm-crypt. dm-crypt [13] is a transparent block encryption
technique implemented as a device-mapper target in the
Linux kernel. The device-mapper is a framework in the
Linux kernel for mapping physical block devices onto virtual
block devices. Device mappers pass data from a virtual
(logical) block device to another block device; the data can
be modified while in transition. In the dm-crypt target case,
the modification consists of encrypting and decrypting the
data. dm-crypt recommends that before using the disk, one
should perform a secure erase by overwriting the disk with
pseudorandom data. [20].

dm-integrity. dm-integrity is a device-mapper target that
performs transparent read-write integrity checking of the
underlying block device data. dm-integrity emulates an ad-
ditional data integrity field for each data sector. The dm-
integrity target can either be used in standalone mode, where
it computes and verifies the integrity data internally or can
be used along with dm-crypt, where the dm-crypt target
supplies the integrity data along with the actual data. In
both cases, any inconsistencies to the on-disk integrity data
are identified, and an error is reported instead of returning
incorrect data.

cryptsetup. cryptsetup [21] is a utility to create and manage
dm-crypt based device-mapper mappings. It supports the
Linux Unified Key Setup (LUKS) [22] extension to store
all the setup information and to manage keys. The master
key used to protect an encrypted block device can either be
memorized as a passphrase or stored in a key file. cryptsetup
supports different encryption ciphers and hashes, and relies
on kernel cryptographic backend features. To use cryptsetup,
the device needs to be setup with a LUKS header and the
master key needs to be encrypted. The cipher used with
cryptsetup specifies the desired block cipher and IV mode.

Disk Encryption Modes. A disk is normally divided into
sectors, e.g., 512 or 4096 byte long, which are indepen-
dently encrypted. To ensure confidentiality, disk encryption
software needs to ensure that all encrypted sectors are
indistinguishable, even if repetitions occur in the plaintext.
This eliminates the ECB mode. Since the sector size is larger
than the block size of standard encryption algorithms (e.g.,
AES), chaining modes need to be used. However, the CBC
mode is vulnerable to malleability attacks [23], while the
CTR mode is vulnerable when the keys and counters repeat.
Tweakable ciphers like AES-XTS prevent such attacks by
including a tweak argument that leverages sector numbers
and provides explicit variability for every invocation of the
block transform.

The default cipher to setup a dm-crypt device using
LUKS is aes-xts-plain64, that uses the sector number for
the initialization vector (IV) during encryption. This work
instead relies on the aes-xts-random mode where the IV is
pseudorandomly generated. This mode needs an additional
16 byte space per sector for storing the generated IV.



Figure 1. dm-crypt and dm-integrity software stack.

3. Model

3.1. System Model

We assume that the user owns a storage device D with
n sectors. The state of the device is denoted by the data
stored on it, S(D) = ∪n

i=1(i, datai), where datai is the data
stored at sector i. The storage device is used to store and
access both public and hidden data. The user is comfortable
sharing the public data with the adversary upon coercion, but
strongly prefers to not reveal even the existence of hidden
data on the device.

Further, we assume that users use their devices during
sessions. A session is defined by an explicit start time, when
the user turns on the device and logs in, and an end time,
when the user logs out or turns off the system.

Figure 1 shows the software stack and Figure 2 shows
the block devices considered in this work. The lowest layer
is the actual physical device consisting of n sectors. The
dm-integrity target is a logical device mapper target built on
top of the physical device. dm-integrity separates the sectors
that hold the actual data from the sectors that hold integrity
metadata (e.g., IVs, authentication tags) for the data sectors.
Each data sector has its corresponding integrity metadata
stored at an offset in a metadata sector. dm-integrity has a
deterministic logic to get the integrity metadata, given a data
sector number.

The dm-crypt target runs on top of the dm-integrity layer,
and exposes another logical device on top of the dm-integrity
logical device, to store encrypted data. When dm-crypt
queries a data sector from dm-integrity, it receives both the
data and the integrity metadata. The metadata is then used
to decrypt and validate the data. Conversely, when dm-crypt
writes data to a sector, it needs to supply to dm-integrity both
the data and integrity metadata. The file system (e.g., EXT4)
is mounted on top of the dm-crypt logical block device, to
store files and directories, see Figure 2.

We assume that the aes-xts-random mode has been
adopted by a reasonably large subset of dm-crypt users, e.g.,
because it provides better security at the expense of a small
overhead. Even if only 1% of dm-crypt users have adopted

Figure 2. Details of dm-crypt and dm-integrity stack: the block devices
involved. dm-integrity expects encrypted data and metadata from dm-crypt.
dm-integrity writes the metadata to separate dedicated sectors, associated
to the sector where it writes the data.

the random mode, INVISILINE can achieve invisibility.
The fact that random modes have been implemented at all
suggests this to be indeed the case.
Crypto Tools. We consider a symmetric key cryptosys-
tem with semantic security / IND-CPA indistinguishability:
no polynomial time algorithm can distinguish (with non-
negligible advantage) the ciphertexts of any two (different)
same-length plaintexts [24]. In the following the notation
EK(IV,M) denotes the symmetric key encryption of mes-
sage M with key K and initialization vector IV . Further,
we assume the use of a pseudorandom generator, i.e., whose
output is indistinguishable in polynomial time from a uni-
form ensemble [25].

3.2. Plausible Invisibility Requirements

Informally, a system writing public and hidden data
provides plausible invisibility if it satisfies the following:

• Plausible Deniability. Any changes to the disk, includ-
ing changes to hidden data, can be plausibly explained
using only changes to public data.

• Readability with Off-the-Shelf Software. The disk
state should be sufficient to successfully read using
only off-the-shelf software.

• Public Data Non-interference. Storing and modifying
hidden data should not result in changes to public data.

Intuitively, plausible invisibility means that data stored on
the device cannot be used to determine if the user has written
it using anything besides off-the-shelf software.

However, anybody using off-the-shelf software to write
to the disk inadvertently (unaware of the existence of hidden
data) can and most likely will overwrite some of the stored
hidden data.

3.3. Adversary Model

The adversary can capture device snapshots. Further:



• Single vs. Multi-Snapshot. Both single-snapshot and
multi-snapshot adversaries are of concern. Single snap-
shot adversaries can inspect the device at most once,
whereas multi-snapshot adversaries can inspect and
record the device state at multiple points in time.

• In-Session Snapshots. At runtime, during a session,
the adversary cannot take snapshots or monitor the
CPU, RAM, I/O etc.

• Software Inspection. The adversary can inspect the
data on the device D, but not the software used to store
the data or the system logs. § 5.3 discusses possible
implementations of this assumption.

• Access to Raw State. While the adversary can use
the standard device I/O interface to read data, it does
not have access to any substrates and/or device-specific
underlying state such as raw flash memory chip address
spaces on SSDs etc. Justification and details included
in § 6.

Plausible Invisibility (P-INV) Game. We extend the game
from [11] to introduce a plausible invisibility (P-INV) game
between an adversary A and challenger C on a storage
device D. The game takes place over r rounds, and uses
the notation S(D)[k] to refer to the storage state of device
D, i.e., the data stored on it, at the end of round k = 1..r.

Consistent with seeking to be indistinguishable from
popular off-the-shelf software, the game is defined for two
systems: HideSys – a software claimed to provide invis-
ibility for plausibly-deniable storage, and OTSS – off-the-
shelf software such as the popular dm-crypt and dm-integrity
systems (§ 3.1).

An access pattern O consists of a sequence of disk write
operations, where each operation writes either public or hid-
den data. The P-INV game relies on an IsExecutable(O)
predicate that returns true if and only if the input access
pattern O can be fully executed. Intuitively, the predicate is
used to model whether there are sufficient public writes in
O to provide cover for the hidden data writes. In practice
if there are not sufficient public writes a standard I/O error
(e.g., BUSY or RETRY) will be returned by the hidden
layer block device. The analysis section (§ 6) instantiates
isExecutable for INVISILINE.

The game proceeds through the following steps:
• The challenger C chooses public and hidden encryption

keys Kp and Kh using a security parameter s. C sends
Kp to the adversary A.

• C selects a random bit b. If b = 0, C installs OTSS on
device D. If b = 1, C sets up HideSys on D.

• A and C engage in r rounds as follows (where k = 1..r
is the current round):
– A generates a set of public data writes PWk =

{(si, pdi)}, writing public data pdi to sector si. A
also generates a set of hidden data writes HWk =
{(hsj , hdj)}, writing hidden data hdj at hidden
sector number hsj . Let O0

k = PWk and O1
k =

PWk ∪HWk. PWk and HWk are chosen such that
IsExecutable(∪k

l=1O1
l ) = True.

– A sends O0
k and O1

k to C.
– C executes Ob

k on D

– A uses the standard device I/O interface to take
snapshots, possibly through some existing software
on top, including OTSS or HideSys.

• A outputs b
′
, A’s guess for b.

The advantage of adversary A in the P-INV game is
Adv(A) = |P (b′ = b) − P (b′ ̸= b)|. HideSys is said to
provide plausible invisibility if any probabilistic polynomial
time (PPT) adversary A has only negligible advantage in
the P-INV game.

The number of rounds r is 1 for a single-snapshot
adversary, and polynomial in the case of a multi-snapshot
adversary. The access patterns O0

k and O1
k are inherited from

the PD games [11], [10]: the former contains only writes to
public data, and the latter contains a mix of writes to public
and hidden data.
P-INV vs. IND-PD Game [11]. The challenger C in the
IND-PD game of [11] (Appendix A) always uses HideSys,
and the adversary A needs to determine if C used HideSys
to write only the public data or the public and the hidden
data. In contrast, the P-INV game requires that an adversary
cannot use snapshots of the device storage to determine the
software used by the challenger, i.e., cannot distinguish be-
tween a challenger using HideSys to write both hidden and
public data (provided by the adversary) and the challenger
using OTSS to write only the public data. Intuitively, the P-
INV game models the stronger guarantee that the adversary
is not able to determine the software (HideSys or OTSS)
used to write the data.

Further, previous IND-PD games [11], [10] require the
challenger to send storage snapshots, implicitly captured
using HideSys, to the adversary. In contrast, the P-INV
game gives more control to the adversary, by allowing
it to capture device storage snapshots using OTSS and/or
HideSys. The P-INV game still enforces the in-snapshot
adversary restriction, by requiring the challenger to signal
to the adversary when it can take snapshots.

Thus, in the P-INV game, the failure to read a complete
device snapshot, including all the public writes from O0

l ,
l = 1..k, using OTSS, or failure to read the same public
data using OTSS and HideSys, can be used by the adversary
to correctly guess that the challenger bit b is 1. If HideSys
provides plausible invisibility, the adversary would be able
to read public data using OTSS even if the challenger used
HideSys for writing.

In addition, the P-INV game extends the IND-PD game
to allow the adversary to specify the sector numbers si
where public writes are to take place; also logical hidden
sector numbers hsj for hidden writes. This models cases
where the user overwrites previously written public and
hidden data. In practice however, adversaries do not really
know the sector numbers used by the user to store hidden
data, or indeed whether the user has written hidden data.
P-INV Implies IND-PD [11]. P-INV (§ 3.3) implies plausi-
ble deniability as defined in the IND-PD game of [11] (Ap-
pendix A). This follows straightforwardly: the challenger
uses HideSys to write both public and hidden data when bit
b is 1. If HideSys satisfies P-INV, it has to emulate OTSS
for writing public data. Otherwise, the snapshot would be



System Layer Multi Plausible Inv. Media
snapshot PD+OTSS Rd. Requirements

DenFS [26] FS
DEFY [4] FS
TrueCrypt [6] BD
VeraCrypt [19] BD
Rubberhose [7] BD
Shufflecak [8] BD
Mobiflage [27] BD
HIVE [9] BD
MobiCeal [28] BD
DataLair [10] BD
PD-DM [11] BD
ECD [29] Firmware access to SSD firmware
StegFS [30] FS
INFUSE [31] Firmware FTL access, voltage manipulation
PEARL [12] Firmware FTL access

INVISILINE Block Device
INVISingle Block Device

TABLE 1. COMPARISON OF EXISTING WORK’S PROPERTIES. FULL AND
EMPTY CIRCLES DENOTE THAT THE SOLUTION SATISFIES OR DOES NOT

SATISFY THE PROPERTY, RESPECTIVELY. INVISILINE IS THE ONLY
MULTI-SNAPSHOT, PLAUSIBLY-INVISIBLE STORAGE SOLUTION THAT

HAS NO MEDIA REQUIREMENTS.

different from the expected output of OTSS on the public
data, and the adversary would guess that the challenger’s
bit b is 1. Then, an adversary that has a non-negligible
advantage in distinguishing between HideSys storing hidden
and public data vs. HideSys storing only the public data
(IND-PD game) also has a non-negligible advantage in
distinguishing HideSys storing hidden and public data vs.
OTSS storing only the public data (P-INV game).
P-INV Captures OTSS Readability. A HideSys that does
not provide OTSS readability does also not provide plausible
invisibility. This is because an adversary can leverage the
discovery that HideSys does not provide OTSS readability
to gain an advantage in the P-INV game.

OTSS readability indicates that the adversary is able
to use an OTSS to read all and only the data that was
written by it. If HideSys does not satisfy the public data
non-interference property, i.e., hidden data writes result
in changes to public data, then OTSS readability is also
lost: the adversary reads different data than what is ex-
pected. Therefore, OTSS readability implies public data non-
interference (§ 3.2).

4. Related work

Chen et al. [32] provide an in-depth systematization of
plausible deniability knowledge. This section focuses on
prior work most closely related to this paper.
Plausibly-Deniable File Systems. Anderson et al. [33]
introduced steganographic filesystems. Later, McDonald and
Kahn [30] developed StegFS, that implemented the approach
proposed in [33], for Linux. Pang et al. [34] improved on
previous constructions by providing more efficient storage
and avoiding hash collisions. These early solutions do not
protect against multi-snapshot adversaries.

Han et al. [35] designed DRSteg, a Dummy-Relocatable
Steganographic filesystem where multiple users can share
the same hidden data, and relocate it to ensure deniability
against a multi-snapshot adversary. However, since DRSteg
attributes deniability to joint ownership of sensitive data, it
is not the ideal solution for single-user devices.

Gasti et al. [26] introduced DenFS, a deniable shared
file system designed for cloud storage, and whose security
depends on processing data temporarily on a client ma-
chine. DenFS is built on a public key encryption scheme
using RSA-OAEP and the Damgård-Jurik generalization of
Paillier’s encryption scheme. Thus, DenFS is not invisible.
Peters et al. [4] developed DEFY, a file system for flash
devices that leverages secure deletion of data to provide
plausible deniability (but not invisibility) against multi-
snapshot adversaries.
Plausibly-Deniable Block Devices. Disk encryption tools
were further leveraged to support plausible deniability at
block device level. Tools like Truecrypt [6], VeraCrypt [19],
Rubberhose [7], Shufflecake [8], or Mobiflage [27] provide
plausible-deniability only for single-snapshot adversaries.
For instance, a multi-snapshot adversary can infer the pres-
ence of hidden data in TrueCrypt [6] through unexplainable
changes to the random uninitialized data.

Several solutions provide plausible deniability against
multi-snapshot adversaries by using an oblivious RAM
(ORAM) [9], [10], [28]. For instance, Blass et al. [9]
proposed HIVE, the first PD solution against device-
level multi-snapshot adversaries, using a write-only ORAM
(wORAM). MobiCeal [28] improved performance by re-
placing wORAMs with dummy write operations coupled to
public writes. MobiCeal uses two types of volumes (dummy
and hidden) and generates dummy writes to store hidden
data. MobiCeal does not provide invisibility, since the pres-
ence of dummy volumes and writes signals attempts to
hide data. Chakraborti et al. [10] further built DataLair that
improved on HIVE through the observation that operations
on public data do not need to be hidden but can in fact be
used to reinforce deniability.

Other solutions [29], [11] use canonical forms used for
instance in log-structured file systems [36] to decouple the
user’s logical from physical access patterns. In particular,
Zuck et al. [29] developed ECD that partitions the device
into a public and a hidden volume. Chen et al. [11] in-
troduced PD-DM, a locality-preserving PD solution that
divides the disk into a data segment and a mapping segment
that stores multiple data structures for logical-to-physical
mapping. The processing done by ECD and PD-DM render
them observable.

A key difference between existing multi-snapshot PD
storage solutions and INVISILINE is invisibility: Most PD
solutions, and block device-level solutions in particular,
modify the disk layout and encoding schemes, making it
necessary for special software to be used to read the public
data. The presence of such software and layout implies that
an adversary in the P-INV game of § 3.3 would fail to read
snapshots using OTSS, thus would acquire a non-negligible
advantage in determining when the challenger’s bit b is 1.
Efforts Towards Invisible PD. A few PD systems attempted
invisibility. StegFS [30] aimed to look like EXT2 and IN-
FUSE [31] aimed to look like YAFFS [37], a popular file
system for flash devices. PEARL [12] surreptitiously hides
data in the WOM codes of public data.

Unfortunately, StegFS is not really designed for invis-



Figure 3. System architecture. INVISILINE has two instances (hidden and
public) of dm-crypt target instantiated for a physical device. The instances
share data structures and keys, e.g., the public key Kp and the hidden key
Kh. Both dm-crypt instances operate on top of the dm-integrity logical
device mapped to the underlying physical device. Hidden data is embedded
into IVs associated with physical sectors where public data was written.

ibility and performs several changes to the disk that an
adversary can easily catch: deleted public files are replaced
with random data; new block allocation is changed for new
files to plausibly justify hidden blocks; a block table is
needed and stored in a non-hidden file that contains inode
numbers for inode blocks, etc. Any of these (and more)
immediately break plausible invisibility (§ 3.3).

Further, INFUSE only works for flash and to hide data,
requires hardware support, and firmware that enables precise
manipulation of flash cell voltages, currently unavailable in
most NAND flash chips.

PEARL is based on customized, adversary-observable
WOM codes, and requires a modified file translation layer
(FTL), thus also breaking OTSS readability.

The INVISILINE design aligns with some of the in-
tuitions of Houmansadr et al. [14] to hide data into the
features of a cover medium provided by an existing protocol.
INVISILINE hides data into the IVs used to encrypt public
data stored by the popular dm-crypt disk encryption software
available in the Linux distribution. Public data encrypted
with INVISILINE can be accessed and decrypted with the
standard dm-crypt, thereby enabling coerced users to deny
the presence of data hidden with any other software.

5. INVISILINE

5.1. Overview

INVISILINE extends the device-mapper dm-crypt target
(§ 2). The resulting dm-crypt-hidden target, see Figure 3,
achieves invisibility while storing data with plausible denia-
bility. INVISILINE exposes two logical block devices to the
upper layers for each physical device, one for storing hidden
data and the other for public data. The logical hidden block
device enables storing and accessing hidden data, while the
logical public block device stores public data. Both devices
store data in encrypted format. All operations on the hidden
and public devices in a session are mapped to the same dm-
integrity logical device, thus to the same physical device.

INVISILINE stores encrypted hidden data in the integrity
metadata space provided by the underlying physical layer.

Figure 4. Mapping of logical public and hidden sectors to physical sectors.
Logical hidden sectors (large red rectangle) are mapped to the IVs (small
red rectangles) of multiple physical sectors storing public data (large green
rectangles). IVs are stored in dedicated integrity metadata sectors.

Specifically, INVISILINE stores hidden data in the IVs used
to encrypt public data sectors. INVISILINE opportunistically
uses the user’s actual writes to public data within a session
as plausibly-deniable excuses to recalculate the IVs of public
data blocks in which hidden data is to be written. Since
IVs are pseudorandom in INVISILINE, an adversary cannot
distinguish IVs from encrypted hidden data.
User Sessions. INVISILINE users use their devices during
explicit sessions, see (§ 3.1). At the start of each session,
the user installs INVISILINE and mounts both the public
and hidden logical devices. At the end of each session, in
order to maintain invisibility, the user unmounts the devices,
uninstalls INVISILINE and erases the volatile memory and
caches and uninstalls all modules mounted at the start of the
session. The user then mounts the vanilla dm-crypt module.
Logical and Physical Sectors. In the following, physical
sectors denote sectors addressed by the dm-integrity logical
device, and logical sectors denote sectors used by the upper
file system layer when communicating with dm-crypt, see
Figure 4. For the public device, logical sector numbers
are the same as physical sector numbers. However, since
the hidden data is stored in IVs of physical sectors, each
physical sector can contribute to the storage of up to 16
bytes of hidden data.

INVISILINE maintains in memory the ATM table that
maps logical hidden sectors to physical sectors. To recon-
struct this table after sudden failures, INVISILINE also
implicitly stores this table along with the hidden data.
Storage Factor. INVISILINE uses a sector size of 512
bytes for both logical and physical devices. Then, a logical
hidden sector of 512 bytes needs a storage factor f of at
least 32=(512/16) physical sectors. That is, the data in a
logical hidden sector is stored in the IVs corresponding to
f physical sectors, see Figure 4. Thus, to read and write
one hidden sector, INVISILINE reads and writes f physical
sectors. We show later that the storage factor increases due
to requirements to populate IVs with hidden metadata along-
side hidden data. However, the storage factor is an important
design factor, since it determines how much hidden data can
be stored on a disk (refer section 8 for exact values).
Invisible Plausible-Deniable Storage. The data layout and
encoding on the disk used by INVISILINE is indistinguish-
able from the ones used by off-the-shelf software (OTSS),
e.g., vanilla dm-crypt. Further, the public data stored by
INVISILINE is accessible with OTSS. More specifically, if
INVISILINE is used to store both hidden and public data
on a disk, when the disk is unmounted and INVISILINE



is uninstalled, the user can still read the public data using
vanilla dm-crypt.

5.2. INVISILINE Requirements and Implications

In addition to the requirements of § 3.2, INVISILINE
needs to also satisfy the following:

• Cover public data writes. The system relies on the
user’s public data write operations to provide cover for
writing hidden data.

• Explainable re-encryption. Public sectors which are
not modified during a session should not be re-
encrypted as a result of changes to hidden data.

• In-session public data writes. For each session, public
data changes need to be remembered to be used later as
cover for hidden writes: future changes to hidden data
can be mapped to public sectors that were modified
within the session.

• Hidden data non-interference. Storing and modifying
public data should not result in changes to hidden
data. Note that this is different from public data non-
interference discussed in § 3.2. The former is captured
in the game and the latter we prove in the Analysis
section § 6.

• Security non-interference. Embedding hidden data
in IVs used to encrypt public data should not break
encryption security.

• Logical-to-physical sector map. Data from a logical
hidden sector can be stored on the IVs of any public
sector. Thus, logical-to-physical sector maps need to be
persisted between sessions.

For the first requirement, we note that an honest disk
contains many genuine public data writes from constantly
changing files, e.g., the web browser cache and logfiles.
Further, the public data writes must take place during the
same user session, before the hidden data write. To see why
this is the case, consider a scenario where there are only
hidden data changes between two snapshots. If the IVs alone
are modified, even if the corresponding public data sectors
are re-encrypted with the modified IVs, the adversary would
observe that the public data has not changed. Thus, any write
to the hidden data stored in an IV must be accompanied by a
change to the public data written in the corresponding public
sector. The following details how INVISILINE addresses
these requirements and challenges.

5.3. Solution Details

Setup. Similar to regular disk encryption using dm-crypt,
INVISILINE uses cryptsetup (§ 2) to setup the device to
store both hidden and public data. However, INVISILINE
modifies cryptsetup in two ways. First, it implements a
new option for the luksFormat action, to set up passphrases
for accessing both public and hidden devices. Second, it
modifies cryptsetup’s open action to prompt the user to
enter unlocking passphrases for both the devices. cryptsetup
uses the public passphrase to generate a master public key
Kp, to encrypt the public data. Further, it uses the hidden

Figure 5. IV format for (top) first IV in a sequence of f hidden data-storing
IVs, and (bottom) the other IVs in the sequence.

passphrase to derive the master hidden key Kh, to encrypt
the hidden data.

After checking the passphrases, cryptsetup uses the open
action to create a dm-integrity mapped device and two dm-
crypt mapped device mapper devices: the hidden and the
public device (see § 7 for implementation details).

If built into the standard Linux distro, INVISILINE
software would immediately provide plausibility for its pres-
ence. Before that happens however, the INVISILINE module
can be downloaded (online or from external media such as
USB sticks) and inserted on demand at runtime. If system
logs are set to record module inserts and are stored on
persistent media, we may want to ensure that the module is
named with the same name as one of the (hundreds) existing
standard Linux kernel modules. The system can be set up
with ephemeral logs that do not persist after reboot, and in
any case, the adversarial model § 3.3, does not allow access
to system logs. Finally, another alternative is booting from
a USB stick with an OS pre-loaded with INVISILINE.
Freelist: Tracking Changes to Public Data. INVISILINE
addresses the requirement to track public data writes (see
§ 5.2) by maintaining in memory, a freelist that stores infor-
mation about all the public writes that take place within the
session. The freelist stores a list of all the public sectors that
have been written, whose IVs do not contain hidden data or
contain stale versions of the hidden data (see version number
paragraph below). Some of these public sectors may be
encrypted at least twice (see § 9): once with a pseudorandom
IV during the public write, then again with hidden data
as IV during a hidden write. These indicate sectors where
hidden data can be stored without raising suspicion at the
next snapshot. INVISILINE maintains the freelist in dm-
crypt for every physical disk that it manages. The list is
erased at the end of each session. This avoids using public
sectors that may have been recorded by the adversary in
snapshots taken between sessions. A key point to consider is
that INVISILINE utilizes the public writes generated through
regular user activity, and does not mandate the creation of
explicit public writes by the user for storing hidden data.
However, if there are insufficient public writes available, an
IO error will occur.
Hidden ATM Table. To address the logical-to-physical
sector mapping requirement of § 5.2, INVISILINE maintains
an ATM between logical and physical sectors. Each entry in
the ATM is a tuple (lhs, phys sector, V erNo, d,m), where
lhs is a logical hidden sector number, phys sector is the
starting sector number of f physical sectors whose IVs store



the data of lhs, V erNo is a versioning number, d is a
boolean that indicates if the sector has been deleted and m
is a boolean that indicates if the sector has been modified
in the current session.

While the translation table is stored in memory, it needs
to be persistent across sessions. This can be achieved by
storing the table explicitly on disk. The ATM table then
needs to be updated on every hidden write operation. How-
ever, since the table maintains metadata for hidden data, any
changes to the table need to also be plausibly deniable to
the adversary. This implies that the table cannot be stored
at fixed locations, since frequent changes to those locations
would be impossible to explain.

Instead, INVISILINE uses an implicit approach to persist
the address translation information, i.e., store it alongside the
hidden data. More specifically, each IV that stores hidden
data also stores the logical hidden sector number (lhs) to
which it belongs. The hidden data and this metadata are
encrypted together using the master hidden key Kh.

Figure 5 details the format of data-storing IVs. In the
following we detail each field.
IV Offset. Since hidden data can be stored in the IVs of
any physical sector, the offset of each hidden data-storing
IV (see Figure 5) records the IV’s order in the sequence.
Valid values are between 0 and f − 1.
Magic Value. To determine if an IV stores hidden data or
not, INVISILINE stores a one byte magic value inside each
IV that stores hidden data, see Figure 5. Upon decryption of
the IV of a sector storing public data, INVISILINE compares
the last byte in the result against the magic value. Section 6
discusses how to reduce false positives.
Hidden Data Version Numbers. When the user updates
hidden data stored in f IVs, INVISILINE cannot force the
user to also update the public data stored on the sectors
corresponding to the IVs. This is because the adversary
would observe during the next snapshot if an unnecessary
public data re-encryption has taken place: the IVs have
been updated, the corresponding public data has been re-
encrypted with the new IVs, but the public data did not
change. Instead, when the user updates hidden data, INVISI-
LINE writes the new hidden data to another set of f IVs,
found in the freelist. Figure 6 (top and middle) illustrates this
process for one public data-storing sector and corresponding
hidden data-storing IV.

This results in INVISILINE storing both old and new
versions of the hidden data. To identify the latest version
of a logical hidden data sector, INVISILINE maintains a
2 byte V erNo, a version number for each logical hidden
sector, and includes it in each IV that stores hidden data, see
Figure 5. The adversary is unable to find version numbers in
IVs, since all hidden data and metadata in an IV is encrypted
with the master key Kh before being stored.

INVISILINE increments V erNo on every update to the
logical hidden sector. Since V erNo is part of every IV, this
ensures that the IVs containing hidden data are not the same
even if the hidden data remains the same. V erNo ensures
that IVs used for encrypting public sectors are not reused,
see “Security non-interference” requirement (§ 5.2). We later

Figure 6. Disk changes following data updates. (Top) Physical sector storing
public data and corresponding IV storing hidden data. (Middle) Updated
hidden data from (top) written to a new physical sector. (Bottom) Updated
public data and IV stored in-place of (top) example.

detail the INVISILINE process to ensure that the in-memory
ATM table stores the latest V erNo for each logical hidden
sector, even in the presence of sudden device failures.
Public Writer Counters. What happens when the user
updates public data stored in a sector whose corresponding
IV stores hidden data? The vanilla dm-crypt would generate
a new pseudorandom IV and use it to re-encrypt the updated
public data. This would erase the hidden data. To preserve
the hidden data while being indistinguishable from vanilla
dm-crypt, INVISILINE needs to also update the hidden
data. However, the user is unlikely to sync updates to the
public and the hidden data. Instead, INVISILINE stores a
2 byte Public Write Counter (PWC) in each hidden data-
storing IV, see Figure 5. On each update to the public data,
INVISILINE decrypts the IV. If it stores hidden data (see
the magic value), it increments PWC before re-encrypting
the IV and using the new IV to re-encrypt the updated
public data. This process is illustrated in Figure 6 (top and
bottom). This ensures that once the IV is re-encrypted, it
will be considered to be random and indistinguishable from
the previous IV value.
Dirty List. Frequently modified sectors, both hidden and
public, may overflow the 2 byte version number V erNo and
Public Write Counter PWC. INVISILINE avoid this by in-
crementing these counters at most once per session. INVISI-
LINE uses the in-memory ATM table to avoid overflowing
the version number. More specifically, when a logical hidden
sector is modified the first time during the session, its data
is moved to a new set of physical sectors. Then, the hidden
sector’s entry in the ATM table is updated to point to the
new physical sector, its V erNo value is incremented, and
its modified bit m is set to true. During subsequent updates
of this logical hidden sector in the session, the hidden data
updates are not moved to other physical sectors, and the
V erNo value is not incremented. This works because (1)
the adversary cannot access the device during sessions, and
(2) during the next snapshot the user can justify the hidden
data update through the changes to the new physical sectors
in whose IVs the data is hidden.

To avoid incrementing the PWC quickly and risking
rapid overflow, INVISILINE maintains in memory, a dirty
list of all the public sectors that were written in the current



Algorithm 1 Write Hidden Data(sn, sd).
Require: sn, sp ▷ write hidden sector number sn with data sd
1: f := 52
2: MAGIC := 0xAA
3: (ps-startn, V erNo,m) := getfrom ATM(sn) ▷ Get ATM entry
4: if (ps-startn == -1 || m == 0) then
5: (ps-startn, error) := getfrom freelist(f) ▷ Get free sector
6: if (error == “insufficient public writes”) then
7: set IO Error
8: return
9: end if

10: end if
11: (Encdata, IVdata) := Phy read(ps-startn, f) ▷ Read f sectors
12: PubData := decrypt(Encdata,Kp, IVdata) ▷ Decrypt pub data
13: for i ∈ {0, . . . , f − 1} do
14: if i == 0 then
15: IVdata[i] := buildIV (sd, sn, V erNo+ 1, i, 0,MAGIC)
16: else
17: IVdata[i] := buildIV (sd, V erNo+ 1, i, 0,MAGIC)
18: end if ▷ Construct IV
19: IVdata[i] := encrypt(IVdata[i],Kh, ps-startn + i) ▷ Encrypt
20: end for
21: Encdata := encrypt(PubData,Kp, IVdata) ▷ Encrypt pub data
22: Phy write(ps-startn, f, Encdata, IVdata) ▷ Write back data, IV
23: addto ATM(sn, ps-startn, V erNo+ 1, 1) ▷ Update map, m = 1
24: removefrom freelist(ps-startn, f) ▷ Update freelist

session, and whose IVs store the latest version (i.e., active
version) of some hidden data. When a public write occurs
on a physical sector whose IV stores active hidden data,
and the physical sector is not in the dirty list, INVISILINE
increments the IV’s PWC, re-encrypts the IV, then uses the
updated IV to re-encrypt the public data. However, if the
physical sector is present in the dirty list, INVISILINE uses
the same IV (without incrementing the PWC) to encrypt
the new public data. This ensures that PWC is incremented
on only once per session.

A physical sector is removed from the dirty list if it no
longer holds active hidden data, i.e., the latest version of the
logical hidden sector.
Storage Factor. The outlined IV format reduces the number
of hidden bytes per IV to 6 bytes. Thus, the storage factor
f , i.e., the number of public sectors required to store a
single hidden sector, increases to ⌈512/6⌉ = 86. INVISILINE
reduces this number by storing the logical sector number
only in the first IV of the f physical sectors. Figure 5
shows the IV format separately for the first IV storing the
data from a hidden sector, and the remaining f − 1 IVs
in the sequence. Thus, the storage factor f becomes 52.
INVISILINE assumes that the f physical sectors used to
store the data of a hidden sector are sequential.

Next we detail how INVISILINE operates on hidden and
public data. We then explain its reconstruction of the ATM
table and its support for sector deletion.
Write Hidden Data. The Write Hidden Data function,
whose pseudocode is shown in Algorithm 1 is used when
dm-crypt-hidden receives requests to write hidden data at
a logical hidden sector sn. The function first searches the
ATM table to find a matching entry for the logical hidden
sector number (line 3). If an entry exists and its modified bit
m is set, it uses the mapped physical sectors from the entry.

If not, it scans the freelist looking for f sectors to store
the input hidden data (line 5). If the freelist does not have
f available sectors, the function returns an error (line 7,8)
(see the hidden data writes can fail requirement of § 5.2).
This signals to the user that more public writes are required
for the hidden write to succeed.

Once f sectors are identified, the function proceeds to
read public data along with IVs from those sectors (line
11). The public data is then decrypted using the public key
Kp and the corresponding IVs (line 12). It then constructs
the f IVs using the hidden data as per Figure 5 with an
incremented version number and the public write counter
(PWC) set to 0 (line 15 and 17). Each of the f IVs is then
encrypted with the hidden key Kh and the physical sector
number as IV (line 19).

The f public sectors are then re-encrypted using the
newly generated IVs (line 21) and written back to the un-
derlying layer (line 22). The (logical sector number, physical
sector number, incremented version number, set m bit) tuple
is then added to the ATM table (line 23) and the freelist is
updated to remove the allocated sectors (line 24).

Algorithm 2 Read Hidden Data(sn)

Require: sn ▷ read hidden sector number sn
1: f := 52
2: (ps-startn, V erNo,m) := getfrom ATM(sn) ▷ Read ATM
3: (Encdata, IVdata) := Phy read(ps-startn, f) ▷ Read f sectors
4: for i ∈ {0, . . . , f − 1} do
5: IVdata[i] := decrypt(IVdata[i],Kh, ps-startn + i) ▷ Decrypt
6: end for
7: return IVdata

Read Hidden Data. Algorithm 2 shows the pseudocode for
reading a logical hidden sector. dm-crypt-hidden first queries
the in-memory map to retrieve the starting physical sector
number where the data is stored (line 2), then issues a read
request to the dm-integrity layer for the data and IVs of
f consecutive sectors from that location (line 3). It then
decrypts each IV using the hidden key Kh and physical
sector number (line 5) and returns the result (line 7).
Write Public Data. The dm-crypt-public instance of IN-
VISILINE receives the requests for operations on public
data. Algorithm 3 shows the pseudocode for public data
writes. INVISILINE provides hidden data non-interference
(§ 5.2) by ensuring that hidden data present in a physical
sector’s IV is not overwritten on public write. The function
reads the sector’s data and the corresponding IV (line 2),
decrypts the IV (line 3), and checks if it holds hidden data
(line 4).

If the IV contains hidden data, it extracts the IV offset
field (line 5), with value between 0 and f − 1. If the IV’s
offset is not zero, the function fetches the first IV (line 7).
This is needed since only the first of the f IVs storing a
logical hidden sector’s data, stores the hidden logical sector
number (see Figure 5). The function extracts the logical
hidden sector number and queries the ATM table for the
mapped physical sector number (line 8 and 10). It then
checks to see if the public sector holds the latest version
of the hidden data, by comparing the input public sector



Algorithm 3 Write Public Data(sn, sd)

Require: sn, sp ▷ write public sector number sn with data sd
1: MAGIC := 0xAA
2: (Encdata, IVdata) := Phy read(sn, 1) ▷ Read data and IV
3: IVdata := decrypt(IVdata,Kh, sn) ▷ Decrypt hidden data with

Kh and sn
4: if ( ( IVdata[15] == MAGIC ) then
5: offset := IVdata[12]
6: if ( offset ̸= 0) ) then
7: IV0 := get IV for sector(sn − offset) ▷ Get first IV
8: (mapped-sector, V erNo,m) := getfrom ATM(IV0)
9: else

10: (mapped-sector, V erNo,m) := getfrom ATM(IVdata)
11: end if
12: if ( mapped-sector + offset ̸= sn) ) then
13: IVdata := get random bytes(16) ▷ pseudorandom IV
14: addto freelist(sn) ▷ Add sn to freelist
15: removefrom dirty list(sn) ▷ Remove sn from dirty list
16: else
17: if (in dirty list(sn) == False) then
18: IVdata[13 : 14] := IVdata[13 : 14] + 1 ▷ PWC ++
19: IVdata := encrypt(IVdata,Kh, sn) ▷ Encrypt hidden
20: addto dirty list(sn) ▷ Add sn to dirty list
21: end if
22: end if
23: else
24: IVdata := get random bytes(16) ▷ Generate pseudorandom

IV
25: addto freelist(sn) ▷ Add sn to freelist
26: end if
27: Encdata := encrypt(sd,Kp, IVdata) ▷ Encrypt public data
28: Phy write(sn, 1, Encdata, IVdata) ▷ Write public data, IV

number with the mapped physical sector number (line 12).
If there is no match (i.e., the latest version of the hidden data
is mapped elsewhere) the function erases the old version of
the hidden data by generating and storing a pseudorandom
IV (line 13) and using it to encrypt the public data (line
27). INVISILINE then adds the physical sector number to
the freelist (line 14), to be used during a future hidden write.
It then removes it from the dirty list, if present (line 15):
the sector no longer contains the latest hidden data.

If the IV stores the latest version of the data for the
logical hidden sector number, INVISILINE increments its
PWC field (line 18), and adds the physical sector to the
dirty list (line 20). It then re-encrypts the IV (line 19),
and uses it for encrypting the public data (line 27). The
encrypted public data along with the refreshed IV are stored
through the dm-integrity layer (line 28). Note that in this
case, the freelist is not updated. As discussed above, the
dirty list allows INVISILINE to increment the PWC only
once per session.
Read Public Data. INVISILINE uses the the vanilla dm-
crypt code to read public data: it reads the physical data
along with the IV, decrypts the data using Kp and returns
the result.
Reconstructing the ATM Table. INVISILINE stores the
explicit ATM table, that maps logical hidden sectors to
physical sectors, in memory. INVISILINE also persists this
information, by storing it along with the hidden data. Upon
session start, INVISILINE needs to use this information
to reconstruct the in-memory ATM map: dm-crypt-hidden

cannot read and write hidden data before the map is fully
reconstructed.

INVISILINE uses multiple threads to parallelize this
task. Each thread issues a special request to the underlying
dm-integrity layer to read only the metadata sectors (sectors
that only contain the IVs of data sectors), without the
corresponding public data. It then decrypts IVs and uses the
result’s 13th and 16th byte to identify those that store hidden
data (see Figure 5). When an IV does not store hidden data,
the thread skips reading the next f physical sectors.

However, when a decrypted IV stores hidden data, the
thread reads the IV’s offset to check if it is the first IV in the
sequence of f IVs that store a logical hidden sector. This is
because only the first IV in the sequence records the data’s
logical hidden sector number, see Figure 5.

If the IV offset is 0, INVISILINE reads the logical hidden
sector number and the V erNo. It then uses the correspond-
ing physical sector number to insert a (logical hidden sector
number, physical sector number, V erNo, d = 0, m = 0)
tuple to the in-memory ATM, where d and m are the deletion
and modification bits, respectively. If an entry already exists
for this logical hidden sector, the ATM entry’s physical
sector and V erNo values are updated only if its V erNo
value is smaller than the one in the newly decrypted IV.

If the IV’s offset is not zero, the thread issues a request
for the first IV (at current physical sector number - offset)
and applies the above procedure. Once an entry has been
added to the translation table, the thread skips the subse-
quent f physical sectors.

Appendix B discusses support provided by INVISILINE
to delete logical hidden sectors (via the TRIM command)
from the hidden device. Appendix C further presents IN-
VISingle, an optimization for single-snapshot adversaries
that can inspect the user device only once.

6. Analysis

IsExecutable. Let HideCount(O1
k) be a function that re-

turns the number of unique sectors in the adversary’s hidden
data write requests Oj

h = (hsj , hdj) ∈ O1
k in the k-th round.

Further, let PubCount(O1
k,∪

k−1
l=1 O1

l ) be a function that
returns the number of unique sector numbers sni that appear
in the adversary’s public writes Oi

p = (sni, datai) ∈ O1
k in

round k, that do not appear in any of the previous rounds.
Then, the IsExecutable(∪k

l=1O1
l ) predicate with input

all public and hidden writes generated by the adversary
A up until and including round k, returns true only if
HideCount(O1

k) ≤ f · PubCount(O1
k,∪

k−1
l=1 O1

l ). That is,
the number of unique hidden data writes in the k-th round
need to be at most equal to the storage factor f times the
number of unique sectors written with public data in round
k, that were not written to in any of the previous rounds.
INVISILINE Provides Plausible Invisibility. We adapt the
P-INV game of § 3.3 to the INVISILINE system defined in
§ 5.3: The device D stores data in sectors and IVs associated
with data sectors. Let D[i, k] denote the data stored on D
for sector i after round k of the P-INV game. Thus, if
sector i has been written with public data in any of the



k rounds, D[i, k] = (IVi, EKp
(IVi, datai)), where IVi is

an initialization vector, and public data datai is encrypted
with the key Kp and IV. Otherwise, D[i, k] = (R1, R2), for
pseudorandom R1 and R2 used to initialize the device (§ 2).

During the k-th round (session) the adversary sends
O0

k = PWk and O1
k = PWk∪HWk, with public data write

requests in PWk of format Oi
p = (sni, datai) and hidden

data write requests in HWk of format Oj
h = (hsj , hdj)

chosen such that the above defined IsExecutable(∪k
l=1O1

l )
returns true. The isExecutable function ensures that each
hidden write in the adversary’s set HWk can be stored in the
IVs of the public sectors written in the set PWk. Thus, the
only sectors that change in round k are the ones referenced
by the adversary in the set PWk. For the purpose of this
proof, we make the simplifying assumption that the storage
factor f = 1, i.e., each hidden data write fits in a single IV.

At the end of the k-th round (session) the adversary
captures a snapshot of the storage device, i.e., all D[i, k]
tuples, i = 1..n. Let val(IVi, l) denote the value of IV for
sector i at the end of round l in the P-INV game. There are
two main cases, based on the value of C’s bit b:
(Case 0): When b = 0, i.e., the challenger only writes public
data using OTSS, val(IVi, k) is random for all sectors i
where public data has been written in the current round.

When b = 1, i.e., the challenger uses INVISILINE to
write both public and hidden data. More specifically, for
each hidden write in O1

k, INVISILINE first performs f
public writes from O1

k. At the end of round k, the value
of any IVi on D corresponding to a sector si referenced in
O1

k can be one of the following:
(Case 1): val(IVi, k) is pseudorandom generated. This hap-
pens for public data write requests Oi

p = (si, datai) where
no hidden data was embedded into the IV of sector number
si in any of the 1..k rounds. INVISILINE emulates OTSS
to encrypt the public data with a pseudorandom IV.
(Case 2): val(IVi, k) = EKh

(si, [hdj , V erNoj =
0, PWCi = 0,Magic]), where the sector number si cor-
responding to IVi is used for initialization value. This
occurs after a hidden write Oj

h = (hsj , hdj) ∈ O1
k where

ATM [hsj ] = null, i.e., this is the first time the adversary
wrote data at hidden sector hsj , and the value of IVi after
round k − 1, val(IVi, k − 1) was pseudorandom.
(Case 3): val(IVi, k) = EKh

(si, [hdj , V erNoj +
1, PWCi = 0,Magic]), see Figure 6 (middle). This occurs
for a hidden data overwrite Oj

h = (hsj , hdj) ∈ O1
k, where

hidden sector hsj was written by the adversary in any of the
rounds 1..k − 1, and ATM [hsj ] = (sj , V erNoj , dj ,mj).
val(IVi, k−1) was pseudorandom, i.e., this is the first time
the IVi of sector D[i] is used to hide data.
(Case 4): val(IVi, k) = EKh

(si, [hdj , V erNoj , PWCi +
1,Magic]), see Figure 6 (bottom). This occurs for an
adversary access Oi

p = (si, datai) ∈ O1
k that overwrites

the public data at the sector si corresponding to IVi, i.e.,
val(IVi, k − 1) = EKh

(hdj , V erNoj , PWCi,Magic).
The adversary has access to all D[i, l] values, ∀i =

1..n, l = 1..k. The use of sector numbers si as initialization
vectors for hidden data-storing IVs ensures that the adver-
sary cannot correlate hidden data-storing IVs from different

sectors Thus, to gain an advantage in the game, the adversary
needs to distinguish between Case 0 (bit b = 0) and either
of the Cases 1 .. 4 (bit b = 1).

Case 1 is by definition identical to Case 0. In
Case 2 vs. Case 0 and Case 3 vs. Case 0, the adver-
sary needs to distinguish EKh

(si, [hdj , 0, 0,Magic]) and
EKh

(si, [hdj , V erNoj + 1, PWCi,Magic]) respectively,
from the output of a pseudorandom generator. An adversary
with non-negligible advantage in distinguishing between
these cases, can be used to break the semantic security
of INVISILINE’s encryption function (i.e., AES, § 3.1),
i.e., by building a polynomial time algorithm with non-
negligible advantage in distinguishing the output of AES
from a pseudorandom value with the same length.

Further, in Case 4 vs. Case 0, the adversary needs to
distinguish val(IVi, k) = EKh

(si, [hdj , V erNoj , PWCi +
1,Magic]) from a pseudorandom value and from
val(IVi, k−1) = EKh

(si, [hdj , V erNoj , PWCi,Magic]).
Given that PWCi changes in at least one bit, an adversary
with non-negligible advantage in distinguishing Case 4 from
Case 0 will break the indistinguishability of encryptions of
INVISILINE’s encryption function (i.e., AES, § 3.1).

Since plausible invisibility implies plausible deniability
and OTSS readability (§ 3.3), INVISILINE also provides
plausible deniability and OTSS readability.
Data Non-interference. INVISILINE provides non-
interference by construction. The Write Public Data
function (Algorithm 3) ensures that hidden data is not
erased when the public data stored in the corresponding
public sector is updated (see Hidden Data non-interference
§ 5.2). It achieves this by incrementing the PWC field
of the cleartext IV (at most once per session) before re-
encrypting the updated hidden data-storing IV, which is then
used to re-encrypt the updated public data. The public data
non-interference (§ 3.2) holds since INVISILINE provides
OTSS readability which in turn implies accessibility of all
public data.
Security Non-interference. INVISILINE prevents security
interference (§ 5.2) by ensuring that the IVs used for en-
crypting public data are not reused. First, since each of the f
IVs of a logical hidden sector includes a different offset (see
Figure 5), each IV is different, even when repetitions occur
within the hidden data. Second, since each IV includes a
V erNo value, all the IVs that store the different versions
of a logical hidden sector are different, even if the hidden
data is the same in all the versions. Third, the use of public
sector numbers as initialization vectors to encrypt hidden
data-storing IVs ensures that hidden data-storing IVs from
different sectors will be different even if the hidden data,
version number and offset are the same.

Thus, each hidden-data storing IV is generated by en-
crypting material that differs in at least one bit from any
other hidden-data storing IV on the disk. An adversary that
can distinguish with non-negligible advantage an INVISI-
LINE IV storing hidden data from a pseudorandom string of
the same length or from an IV with either the same version
number, same offset or same value, can be used to break



the semantic security of INVISILINE’s encryption function
(i.e., AES, § 3.1).
Flash-Based Data Duplication Attack. Any updates to data
in SSDs are written to new locations for wear leveling.
INVISILINE encrypts public sectors at least twice during
a session. First with a pseudorandom IV and then with en-
crypted hidden data as IV. An adversary with access to raw
flash data will find multiple copies of the same public data
encrypted with different IVs, to guess that INVISILINE was
used to store hidden data. However, this is indistinguishable
from usage with vanilla dm-crypt for e.g., when updating
two sectors containing same data or when reverting to a
previous version of sector data.

Further, and importantly, this paper assumes an adver-
sary that cannot access the raw data on the user device
(§ 3.3). On modern high-density SSDs access to raw data
is virtually impossible without significant SSD manufac-
turer support (e.g., by injecting access primitives into the
firmware). Modern SSDs have flash chips BGA soldered
with hundreds of high density pins, making it virtually
impossible for reliable access to raw pages, even if they
are not destroyed during de-soldering attempts. Assuming
SSD manufacturer collusion would break the security model,
where the adversary can only access storage snapshots: the
manufacturer firmware in effect is an online witness to all
I/O on the device.

7. Implementation

INVISILINE was implemented as a Linux device mapper
dm-crypt target. It exposes two logical block devices, one
for hidden and one for public data. All changes were made
on the Linux 5.19 kernel image.

Figure 3 shows the architecture of INVISILINE. The dm-
crypt kernel module in INVISILINE supports two compo-
nents namely dm-crypt hidden and dm-crypt public based on
how the device mapper target has been instantiated. When
cryptsetup is invoked with open action for a physical device,
two dm-crypt logical devices (hidden and public) and one
dm-integrity logical device gets created. For e.g., if test is
provided as the mapping name with cryptsetup for a physical
device, the device mapper dm-crypt hidden device is created
at /dev/mapper/test pd, and dm-crypt public device is cre-
ated at /dev/mapper/test. The dm-integrity logical device is
created at /dev/mapper/test dif. Both dm-crypt hidden and
dm-crypt public operate on the same underlying dm-integrity
device and share data structures and keys, allowing each to
operate on the other’s data and metadata.

The dm-integrity layer, mapped at /dev/mapper/test dif
is transparent to whether the data operations coming from
the dm-crypt layer pertain to hidden or public data. Separate
file systems, e.g., EXT4, can be mounted on the hidden and
public block devices to store files and directories.

INVISILINE uses cryptsetup, run with luksFormat, to
specify the AES-XTS block cipher with random ivmode.
The integrity option is set to none to ensure that integrity
metadata only stores 16 bytes of persistent IV per sector.

OP dm-crypt INVISingle INVISingle INVISILINE INVISILINE
Pub Hidden Pub Hidden

Read 12.29 13.47 48.88 11.89 76.12
Write 19.39 43.34 81.76 65.62 112.73
Random Read 18.41 21.25 104.71 17.14 137.19
Random Write 18.3 45.60 111.17 67.12 172.34

TABLE 2. LATENCY (IN MS) COMPARISON OF INVISILINE FOR
SINGLE AND MULTI SNAPSHOT ADVERSARIES AGAINST VANILLA

DM-CRYPT. WE OBSERVE HIGH LATENCY (112MS) FOR HIDDEN WRITES
IN MULTI-SNAPSHOT CASE COMPARED TO OTHER APPROACHES AS IT

CONSTITUTES READING AND DECRYPTING MULTIPLE PUBLIC SECTORS
AND THEN RE-ENCRYPTING THEM WITH NEW HIDDEN DATA.

OP dm-crypt INVISingle INVISingle INVISILINE INVISILINE
Pub Hidden Pub Hidden

Read 71.4 62.5 19.96 66.7 12.78
Write 45.5 22.5 11.12 14.43 8.73
Random Read 47.6 42.2 9.30 50.75 7.49
Random Write 47.6 21.05 8.69 13.8 5.74

TABLE 3. COMPARISON OF IOPS (1000 I/O OPERATIONS PER SEC) OF
INVISILINE FOR SINGLE AND MULTI SNAPSHOT ADVERSARIES

AGAINST DM-CRYPT. INVISILINE AND INVISINGLE WRITE HIDDEN
DATA WITH INVISIBILITY AND PLAUSIBLE DENIABILITY AT 19% AND

24% RESPECTIVELY OF THE VANILLA DM-CRYPT IOPS.

8. Evaluation

This section evaluates INVISILINE and compares it
against the vanilla dm-crypt/dm-integrity and INVISingle.
The experiment platform is a laptop running Intel Core i7
with 6 cores, 16GB DRAM and 512GB SSD NVMe storage.
The experiments were performed using the flexible I/O tester
(fio) [38], on a 40GB device file, with 512B sector size,
on sequential and random workloads. All measurements
reported are averages over 5 independent experiments.
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Figure 7. Throughput for sequential workload in INVISingle is higher when
compared to INVISILINE because of INVISILINE IO and CPU overhead.

Hidden Device Size. The size of the hidden device depends
on the size of the physical device and the storage factor f .
If the size of the physical device is s, then the size of the
hidden device is ≈ s/f . Thus, for a 1TB physical device,
INVISILINE (f = 52) generates a 19.23GB hidden device,
while INVISingle(f = 40) generates a 25GB hidden device.

Figure 7 shows the INVISILINE and INVISingle se-
quential read and write throughput for hidden data, and
the vanilla dm-crypt throughput for sequential public data.
Figure 8 shows the INVISILINE and INVISingle read and
write throughput for hidden data at random logical hidden
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Figure 8. Throughput for random workload is marginally lower compared
to sequential operations owing to non sequential access.

sectors, and the vanilla dm-crypt read and write through-
put for public data at random addresses. Tables 2 and 3
also show the latency and IOPS values for INVISILINE,
INVISingle and vanilla dm-crypt, for both sequential and
random workloads. In the following we discuss performance
separately for operations on public and hidden data.
Public Data Operations. INVISILINE and INVISingle
achieve similar throughput for sequential (34 MB/s) and
random (24 MB/s) public reads when compared to vanilla
dm-crypt. Public writes in dm-crypt are higher than in
INVISingle. This is because public writes first read the
sector (along with IV) to determine if hidden data is present.
This incurs additional overhead in terms of IO and CPU.
Sequential public writes in INVISingle (11.5 MB/s) are 56%
faster than in INVISILINE (7.37 MB/s), whereas random
public writes are 44% faster in INVISingle (10.8 MB/s vs
7.5 MB/s). This is because (1) the storage factor in INVISI-
LINE is larger than in INVISingle, and (2) INVISILINE
imposes additional I/O and CPU overhead to determine if
the hidden data stored in a sector’s IV is the latest version.
Hidden Data Operations. Hidden operations in INVISI-
LINE achieve a throughput of 6.55 MB/s for sequential reads
and 4.46 MB/s for sequential writes. Hidden operations
impose higher I/O and CPU overhead since they involve
a factor of f = 52 physical sectors for every logical
sector. Hidden reads decrypt the IVs of physical sectors,
while hidden writes decrypt the data of physical sectors
and encrypt it back with hidden data as IV. INVISILINE
imposes additional overhead to maintain (1) the freelist, (2)
the mapping table (ATM) and (3) the dirty sector list. Each
logical hidden sector is mapped to a different set of contigu-
ous physical sectors. Thus, even when accessing contiguous
logical hidden sectors, separate I/O requests for each set of
physical sectors have to be issued to the underlying layer.

The INVISingle optimization improves the sequential
read throughput by 55% (10.21 MB/s) and the sequential
write throughput by 34% (5.98 MB/s), when compared to
INVISILINE. This is due to its lower storage factor, f = 40.
Further, INVISingle can perform a single IO request for all
the contiguous logical sectors. Random reads and random
writes access random logical sectors and therefore produce
lower throughput than the sequential counterparts.
Hidden ATM Table: Size and Reconstruction Overhead.

Each entry in the hidden ATM table takes 12 bytes to store
the logical hidden sector, the physical sector number, the
version number, and the deletion and the modified bits. For
a disk of size D, the maximum size of the ATM table is
12 × D/(f × 512). That is, for a 1TB disk and a storage
factor f of 52, the table can grow up to 450.7MB.

At the start of each session, INVISILINE scans the
integrity metadata sectors from the underlying device to
reconstruct the ATM table (§ 5.3). In order to avoid the
overhead of reading both the sector data and its metadata,
INVISILINE uses a modified dm-integrity module to retrieve
only the metadata region without reading the actual data
sectors. INVISILINE spawns multiple threads (12 threads
for 6 core CPU) for reading IVs in parallel and also avoids
reading each IV in the metadata region. In our experiments
it took 1.03s to scan 81,184,760 IVs for a 40 GB disk and
fully reconstruct the ATM. For a 1TB disk this scales to a
start-up overhead of 26.36s at the beginning of each session.

9. Discussion and Limitations

False Positives. The magic value of IVs (Figure 5 and 9)
allows INVISILINE and INVISingle to determine if an IV
stores hidden data. To reduce false positives (FPR = 2−8)
in case of match, INVISILINE also checks whether the IV
offset has a value between 0 and f − 1. Further, it fetches
another IV in the sequence and verifies that it has the magic
value set, an appropriate offset (0 or 1 respectively), and the
same PWC as the first IV. This reduces the false positive
rate to less than 2−34.
Overflowing PWC and VerNo. If a write operation would
lead to a V erNo or PWC counter overflow, INVISILINE
returns an IO error. While theoretically this difference be-
tween INVISILINE and dm-crypt could be exploited by
an adversary to break invisibility, the attack would require
significant time: assuming an average of ten sessions per
day, it will take INVISILINE 17.95 years to overflow the
V erNo and PWC counters. This exceeds twice the ex-
pected lifetime of most laptops and servers [39], [40].
Hidden Data Can Be Accidentally Erased. If the disk
is unmounted and INVISILINE is uninstalled, the user can
still read public data if the vanilla dm-crypt is installed.
However, any write operations to the public data using
vanilla dm-crypt may overwrite the hidden data permanently.
That is, data hidden in IVs overwritten by dm-crypt cannot
be recovered even if INVISILINE is re-installed.

10. Conclusion

We introduced INVISILINE, the first invisible disk en-
cryption system. INVISILINE achieves invisibility, even in
the presence of multi-snapshot adversaries, by hiding data in
IVs used to encrypt public data, in a manner compatible with
dm-crypt, a popular disk encryption software. We formally
defined invisibility for plausibly-deniable storage. INVISI-
LINE was implemented and can securely and invisibly hide
19GB of data on a 1TB disk, with hidden data throughput
exceeding multiple MB/s.
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Appendix A.
Plausible Deniability

The following adapts the IND-PD (plausible deniability)
game defined in [11] to the notations used in this paper (§ 3).

• The challenger C and adversary A agree on the of
HideSys on device D. C chooses public and hidden
encryption keys Kp and Kh using a security parameter
s. C sends Kp to A.

• C selects a random bit b.
• A and C engage in the following r rounds, where k =
1..r is the current round:
– A selects a set of arbitrary writes to public data,

O0
k = {Oi

p}, and arbitrary writes to hidden data,



Figure 9. IV format for single snapshot adversary. Two bytes are reserved
for PWC and one for Magic data, leaving 13B for hidden data.

{Oj
h}, such that there exists an access pattern O1

k =
O0

k∪{Oj
h} where IsExecutable(∪k

l=1O1
l ) = True.

– A sends O0
k and O1

k to C.
– C executes Ob

k on device D.
– C sends a snapshot of D to A.

• A outputs b
′
, A’s guess for b.

The advantage of adversary A in the IND-PD game is
Adv(A) = |P (b′ = b) − P (b′ ̸= b)|. A system provides
plausible deniability if any probabilistic polynomial time
(PPT) adversary A has only negligible advantage in the
IND-PD game.

Appendix B.
Sector Deletion via TRIM

Most SSDs support the TRIM command which allows
the OS to inform the device which data blocks are no
longer needed and can be deleted. Trimming enables SSDs
to efficiently handle garbage collection and wear-leveling.
INVISILINE provides support to delete logical hidden sec-
tors (via the TRIM command) from the hidden device. First,
it uses the freelist to find an available public write to a
single physical sector. It then generates a special deletion
IV for the sector, that consists of the logical hidden sector
number (4B), the V erNo value incremented from the value
currently stored in the in-memory ATM table (2B), the
PWC (2B) set to 0, and a special magic value indicating
deletion (1B). Further, it increments the version number
V erNo of the entry in the ATM table corresponding to the
deleted logical hidden sector, and marks it as deleted (set it
d bit to 1). Subsequently, a read request for a sector whose
corresponding d bit is set returns error.

During the ATM table reconstruction at the start of the
session, if INVISILINE encounters a deletion IV for a logical
sector, it marks the sector as deleted in the table by setting
its bit d to 1. In future, if there is a write for that sector,
it updates the map with the new physical sector number
and incremented version number and also resets the deleted
bit d. The incremented version number ensures that during
map reconstruction, INVISILINE resets the deleted bit if
it encounters a higher V erNo value than the one found
in the deletion IV. This also ensures that the public write
would reclaim the deletion IV since the map now contains
an updated version number for that logical sector.

Appendix C.
INVISingle: Single-Snapshot Optimization

We now present INVISingle, an INVISILINE optimiza-
tion for single-snapshot adversaries, that can inspect the user
device only once. Multiple commercial disk encryption tools
assume single-snapshot adversaries, e.g., TrueCrypt [6],
Rubberhose [7], or Shufflecake [8]. In the following we
focus on the INVISingle solution.

A single-snapshot adversary implies at most one user
session. In turn, this eliminates the need for the user to gen-
erate public writes to store hidden data. Further, it simplifies
the requirements for the IV format, eliminates the need of
maintaining an ATM table, freelist and dirty list, increases
the size of data that can be hidden on the disk, and improves
the performance of accessing hidden data. In the following
we detail these changes.
IV Format. The IV format used by INVISingle to store
encrypted data is illustrated in Figure 9. To prevent public
data overwrites from erasing hidden data stored in the
corresponding IVs, INVISingle uses the one byte magic
value and two byte PWC to indicate if the IV is used to
store hidden data. Thus, the factor f used in Algorithms 4
and 5 is ⌈512/13⌉ = 40.

Further, since the adversary can only inspect the device
once, INVISingle does not need to maintain an ATM table.
Instead, it uses a fixed mapping of logical hidden sectors
to physical sectors: logical hidden sector i maps to the f
physical sectors i× f to (i+ 1)× f − 1.

Algorithm 4 Write Hidden Data Single(sn, sd).
Require: sn, sp ▷ write hidden sector number sn with data sd
1: f := 40
2: MAGIC := 0xAA
3: ps-startn := f ∗ sn ▷ Compute starting physical sector number
4: (Encdata, IVdata) := Phy read(ps-startn, f) ▷ Read f sectors
5: data := decrypt(Encdata,Kp, IVdata) ▷ Decrypt public data
6: for i ∈ {0, . . . , f − 1} do
7: IVdata[i] := buildIV (sd, 0,MAGIC) ▷ Construct IV
8: IVdata[i] := encrypt(IVdata[i],Kh, ps-startn + i) ▷ Encrypt

data
9: end for

10: Encdata := encrypt(data,Kp, IVdata) ▷ Re-encrypt public data
11: Phy write(ps-startn, factor, Encdata, IVdata) ▷ Write data

Write Hidden Data. Algorithm 4 shows the pseudocode for
writing hidden data for a logical hidden sector. The code is
executed by the dm-crypt-hidden instance. To ensure non-
interference (§ 3.2), on every logical hidden sector update,
the write function first extracts the public data from the
sectors, and re-encrypts it with the new hidden data as IV.
More specifically, the function computes the first physical
sector number corresponding to the logical sector number
in the request (line 3). It then issues a read request (line
4) to the underlying dm-integrity layer for those sectors.
Once dm-crypt-hidden receives the data along with the
corresponding IVs, it decrypts the public data using the IVs
and Kp (line 5). It then constructs each of the f IVs using
the hidden data, PWC = 0 and magic value (line 7), and
encrypts each IV with Kh and the physical sector number



as IV (line 8). The function then re-encrypts the public data
using resulting IV (line 10), then issues a write request to
the dm-integrity layer with the new data (line 11). Thus,
at the end of the write request, the hidden data is updated
without imposing changes to the corresponding public data.

Algorithm 5 Read Hidden Data Single(sn)

Require: sn ▷ read hidden sector number sn
1: f := 40
2: ps-startn := f ∗ sn ▷ Compute starting physical sector number
3: (Encdata, IVdata) := Phy read(ps-startn, f) ▷ Read data and

IV
4: for i ∈ {0, . . . , f − 1} do
5: IVdata[i] := decrypt(IVdata[i],Kh, ps-startn + i) ▷ Decrypt
6: end for
7: return IVdata

Read Hidden Data. Algorithm 5 shows the pseudocode
for reading hidden data stored at a logical sector number
given as input. The function issues read requests to the
corresponding physical sectors. Once it receives the public
data and the metadata, it decrypts the metadata using Kh

and returns it, discarding the public data.
Write and Read Public Data. Algorithm 6 shows the
pseudocode for writing public data sd at physical sector
sn. To again ensure non-interference, i.e., ensure that the
public write does not overwrite its corresponding hidden
data with a random IV, the function first reads the data and
IV from the underlying layer (line 3) and decrypts the IV
using Kh (line 4). To avoid false positives, the function
also reads its adjacent IV (at sector sn + 1 or sn − 1)
(lines 5-10). It then checks both the IVs for magic data and
matching PWC (line 13-15). If the comparison succeeds
(the IV holds hidden data), it increments the PWC (line
16) and re-encrypts the IV (line 17). Otherwise, it generates
a pseudorandom IV (line 19). The resultant IV is then used
to encrypt the public data (line 21). Finally, the function
uses dm-integrity to write the encrypted data and IV (line
22). INVISingle uses the the vanilla dm-crypt code to read
public data: it reads the physical data along with the IV,
decrypts the data using Kp and returns the result.

Invisibility against single-snapshot adversary. INVISingle
is a special case of INVISILINE in which the adversary
can only take one device snapshot. INVISingle uses a
fixed mapping of logical hidden sectors to physical sectors.
An IVi at sector si that stores hidden data has value
val(IVi) = EKh

(si, [hdj , PWC,Magic]), see Figure 9.
The value stored at sector si can be either EKp

(IVi, datai)
if si stores public data, orpseudorandom (generated when
device D was initialized before its first use) if no public
data was written. In both cases, an adversary with non-
negligible advantage in the P-INV game (r = 1) can be used
to construct an adversary with non-negligible advantage
in distinguishing the output of INVISILINE’s encryption
function from apseudorandom value. Incrementing PWC
on every public write to a sector whose corresponding IV
holds hidden data ensures that the IV used for encrypting
public data is not re-used. This guarantees the security non-
intereference.

Algorithm 6 Write Public Data Single(sn, sd)

Require: sn, sp ▷ write public sector number sn with data sd
1: f := 40
2: MAGIC := 0xAA
3: (Encdata, IVdata) := Phy read(sn, 1) ▷ Get data and IV
4: IVdata := decrypt(IVdata,Kh, sn) ▷ Decrypt hidden data
5: if (sn mod f) ̸= 0 then
6: (Encdata, IVabj) := Phy read(sn − 1, 1)
7: IVadj := decrypt(IVadj ,Kh, sn − 1)
8: else
9: (Encdata, IVadj) := Phy read(sn + 1, 1)

10: IVadj := decrypt(IVadj ,Kh, sn + 1)
11: end if ▷ Get adjacent IV
12: if (
13: IVdata[15] = MAGIC AND
14: IVadj [15] = MAGIC AND
15: IVdata[13 : 14] = IVadj [13 : 14] ) then
16: IVdata[13 : 14] := IVdata[13 : 14] + 1 ▷ PWC ++
17: IVdata := encrypt(IVdata,Kh, sn) ▷ Encrypt hidden
18: else
19: IVdata := get random bytes(16) ▷ Generate pseudorandom

IV
20: end if
21: Encdata := encrypt(sd,Kp, IVdata) ▷ Encrypt public data
22: Phy write(sn, 1, Encdata, IVdata) ▷ Write back public data


