
Hey, You, Get Off of My Cloud!

Exploring Information Leakage in

Third-Party Clouds

Thomas Ristenpart, Eran Tromer, Hovav Shacham, Stefan Savage

UCSD UCSD UCSDMIT

Today’s talk in one slide

Third-party clouds:

“cloud cartography”

to map internal

infrastructure

get malicious VM

on same physical

side-channels might

leak confidential data

of victiminfrastructure server as victim of victim

Exploiting a placement vulnerability:

only use cloud-provided functionality

A simplified model of third-party cloud computing

Owned/operated

by cloud provider

User A

User B

virtual machines (VMs)

Users run Virtual Machines (VMs) on cloud provider’s infrastructure

virtual machines (VMs)

Virtual

Machine

Manager

Virtual Machine Manager (VMM)

manages physical server resources for VMs

To the VM should look like dedicated server

Multitenancy (users share physical resources)

Trust models in cloud computing

User B

User A

Users must trust third-party provider to

not spy on running VMs / data

secure infrastructure from external attackers

secure infrastructure from internal attackers

User B

Trust models in cloud computing

User A

Bad guy

Threats due to

sharing of physical

infrastructure ?
Users must trust third-party provider to

not spy on running VMs / data

secure infrastructure from external attackers

secure infrastructure from internal attackers

Your business competitor

Script kiddies

Criminals
…

We explore a new threat model:

User A

Bad guy

Attacker launches VMs

VMs each check for co-residence on

same server as victim

Attacker identifies one or more victims VMs in cloud

2) Launch attacks using physical proximity

1) Achieve advantageous

placement

Exploit VMM vulnerability Side-channel attackDoS

1) Cloud cartography

2) Checking for co-residence

Using Amazon EC2 as a case study:

map internal infrastructure of cloud

map used to locate targets in cloud

check that VM is on same server as target

- network-based co-residence checks

- efficacy confirmed by covert channels

Placement

vulnerability:

attackers can

knowingly

achieve

co-residence

4) Side-channel information leakage

co-residence

with target3) Achieving co-residence

brute forcing placement

instance flooding after target launches

coarse-grained cache-contention channels

might leak confidential information

What our results mean is that

1) given no insider information

2) restricted by (the spirit of) Amazon’s acceptable use policy (AUP)

Pick target(s) Choose launch parameters

for malicious VMs

(using only Amazon’s customer APIs and very restricted network probing)

we can:

Each VM checks

for co-residence

Given successful placement,

spy on victim web server’s

traffic patterns via side channels

Before we get into details of case study:

Should I panic?
No. We didn’t show how to extract cryptographic keys

But:

We exhibit side-channels to measure load across VMs in EC2

Coarser versions of channels used to extract cryptographic keys

Other clouds?
We haven’t investigated other cloudsWe haven’t investigated other clouds

Problems only in EC2?
EC2 network configuration made cartography and co-residence checking easy

But:

These don’t seem critical to success

Placement vulnerabilities seem inherent issue when using multitenancy

1 or more targets in the cloud and we want to achieve

co-resident placement with any of them

Suppose we have an oracle for checking co-residence

(we’ll realize it later)

Launch lots of instances (over time),

each asking oracle if successful

If target set large enough or adversarial resources

(time & money) sufficient, this might already work

In practice, we can do much better than this

Some info about EC2 service (at time of study)

Linux-based VMs available

Uses Xen-based VM manager

5 instance types (various combinations of virtualized resources)

Type gigs of RAM EC2 Compute Units (ECU)

3 “availability zones” (Zone 1, Zone 2, Zone 3)
launch

parameters

User account

m1.small (default) 1.7 1

m1.large 7.5 4

m1.xlarge 15 8

c1.medium 1.7 5

c1.xlarge 7 20

1 ECU = 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor

Limit of 20 instances at a time per account.

Essentially unlimited accounts with credit card.

(Simplified) EC2 instance networking

Internal

routers

External IP

External

DNS
Internal

DNS

External

domain

name

External

domain name or IP

Internal IP

Internal IP
Dom0

Xen

VMM

routers

IP address

shows up in

traceroutes

Our experiments indicate

that internal IPs

are statically assigned to

physical servers

Co-residence checking

via Dom0:

only hop on traceroute

to co-resident target

Cloud cartography

From “Account A”: launch 20 instances of each type in each availability zone

Map internal cloud structure to locate targets

Target VM
Launch parameters

to achieve co-residence

Towards generating a map, we want to understand affects of launch parameters:

Availability zone Instance type Account

20 x 15 = 300 instances launched

Clean partition of internal IP address space among availability zones

From “Account A”: launch 20 instances of each type in each availability zone

From “Account A”: launch 20 instances of each type in each availability zone

20 x 15 = 300 instances launched

From “Account B”: launch 20 instances of each type in Zone 3

20 x 5 = 100 instances launched

39 hours

apart

Cloud cartography

55 of 100 Account B instances had IP address assigned to Account A instance

Most /24 associated to single instance type and zone

Associate each /24 with Zone & Type

Seems that user account doesn’t impact placement

Data from 977 instances with unique internal IPs
…

10.251.238.0 zone1 m1.large (ip)

10.251.239.0 zone1 m1.large (scan)

10.251.241.0 zone1 m1.xlarge (scan)

10.251.242.0 zone1 m1.xlarge (ip)

10.251.243.0 zone1 m1.xlarge (scan)

10.252.5.0 zone3 m1.large m1.xlarge (scan)

10.252.6.0 zone3 m1.large m1.xlarge (ip)

10.252.7.0 zone3 m1.large m1.xlarge (scan)

10.252.9.0 zone3 m1.large (ip)

10.252.10.0 zone3 m1.large (ip)

10.252.11.0 zone3 m1.large (scan)

10.252.13.0 zone3 m1.large m1.xlarge (scan)

10.252.14.0 zone3 m1.large (ip)

10.252.15.0 zone3 m1.xlarge (ip)

10.252.21.0 zone3 m1.large (scan)

+

=

simple heuristics based on

EC2 network configuration

Ability to label /24’s with

zone & instance type(s)

To locate a target in the cloud:10.252.21.0 zone3 m1.large (scan)

10.252.22.0 zone3 m1.large (ip)

10.252.23.0 zone3 m1.large (ip)

10.252.25.0 zone3 m1.large (scan)

10.252.26.0 zone3 m1.large (ip)

10.252.27.0 zone3 m1.large (ip)

10.252.29.0 zone3 m1.large (scan)

10.252.30.0 zone3 m1.large (scan)

10.252.31.0 zone3 m1.large (ip)

10.252.33.0 zone3 m1.large (scan)

10.252.34.0 zone3 m1.large (ip)

10.252.35.0 zone3 m1.large (ip)

10.252.37.0 zone3 m1.small (ip)

10.252.38.0 zone3 m1.small (ip)

10.252.39.0 zone3 m1.small (ip)

…

To locate a target in the cloud:

1) DNS lookup maps External IP to Internal IP

2) Check /24 to see what zone & instance type

Our map provides sufficiently precise estimate to

use for mounting attacks.

Mapping might have other applications, as well

(inferring types of instances used by a company)

Achieving co-residence

“Brute-forcing” co-residence

1,686 public HTTP servers as stand-in “targets”

running m1.small and in Zone 3 (via our map)

1,785 “attacker” instances launched over 18 days

Attacker launches many VMs over

a relatively long period of time in

target’s zone and of target type

Experiment:

1,785 “attacker” instances launched over 18 days

Each checked co-residence against all targets

Results:

78 unique Dom0 IPs

141 / 1,686 (8.4%) had attacker co-resident

Lower bound on true success rate

Sequential placement locality

lowers success

Achieving co-residence

Can an attacker do better?

Auto-scaling services (Amazon, RightScale, …)

Dynamic nature of cloud helps attacker:

Launch many instances in parallel

near time of target launch

Exploits parallel placement locality

Auto-scaling services (Amazon, RightScale, …)

Cause target VM to crash, relaunch

…

Wait for maintenance cycles

Achieving co-residence

1) Launch 1 target VM (Account A)

Repeat for 10 trials:

Experiment:

Can an attacker do better?

Launch many instances in parallel

near time of target launch

Exploits parallel placement locality

1) Launch 1 target VM (Account A)

2) 5 minutes later, launch 20 “attack” VMs

(alternate using Account B or C)

3) Determine if any co-resident with target

4 / 10 trials succeeded

In paper:

parallel placement locality good for >56 hours

success against commercial accounts

Attacker has uncomfortably good chance

at achieving co-residence with your VM

What can the attacker then do?What can the attacker then do?

Cache contention yields cross-VM load measurement in EC2

Cache

system

Attacker VM

Victim VM

Main

memory
Load-correlated

memory reads

Measure read

times

Side-channel information leakage

Attacker measures time to retrieve memory data

Read times increase with Victim’s load

Measurements via Prime+Trigger+Probe :
Extends [OST05]

Prime+Probe technique

1) Read an array to ensure cache used by attacker VM (Prime)

2) Busy loop until CPU’s cycle counter jumps by large value (Trigger)

3) Measure time to read array (Probe)

Load measurement uses

coarse-grained side channel

Simpler to mount More robust to noise Extract less information

coarse side channels could be damaging

in hands of clever attackers

Cache-based load measurement to determine co-residence

Repeated HTTP get requests

Performs cache load measurements

Running Apache server

3 pairs of instances, 2 pairs co-resident and 1 not

100 cache load measurements during HTTP gets (1024 byte page) and with no HTTP gets

Instances co-resident Instances co-resident Instances NOT co-resident

100 cache load measurements during HTTP gets (1024 byte page) and with no HTTP gets

Cache-based load measurement of traffic rates

3 trials with 1 pair of co-resident instances:

1000 cache load measurements during

Varying rates of web traffic

Performs cache load measurements

Running Apache server

1000 cache load measurements during

0, 50, 100, or 200 HTTP gets (3 Mbyte page) per minute for ~1.5 mins

Prime+Trigger+Probe combined with differential encoding technique

gives high bandwidth cross-VM covert channel on EC2

More on cache-based physical channels

Keystroke timing in experimental testbed similar to EC2 m1.small instances

CPU 1

Core 1 Core 2

CPU 2

Core 1 Core 2
AMD Opterons

Prime+Trigger+Probe combined with differential encoding technique

gives high bandwidth cross-VM covert channel on EC2

More on cache-based physical channels

Keystroke timing in experimental testbed similar to EC2 m1.small instances

CPU 1

Core 1 Core 2

CPU 2

Core 1 Core 2
AMD Opterons

Prime+Trigger+Probe combined with differential encoding technique

gives high bandwidth cross-VM covert channel on EC2

More on cache-based physical channels

Keystroke timing in experimental testbed similar to EC2 m1.small instances

CPU 1

Core 1 Core 2

CPU 2

Core 1 Core 2
AMD Opterons

Prime+Trigger+Probe combined with differential encoding technique

gives high bandwidth cross-VM covert channel on EC2

More on cache-based physical channels

Keystroke timing in experimental testbed similar to EC2 m1.small instances

CPU 1

Core 1 Core 2

CPU 2

Core 1 Core 2
AMD Opterons

We show that cache-load measurements enable cross-VM keystroke detection

Keystroke timing of this form might be sufficient for the

password recovery attacks of [Song, Wagner, Tian 01]

VMs pinned

to core

1) Cloud cartography

2) Checking for

co-residence

What can cloud providers do?

- Random Internal IP assignment

3) Achieving

- Isolate each user’s view of

internal address space

Possible counter-measures:

- Hide Dom0 from traceroutes

- Random Internal IP assignment

- Allow users to opt out of

Customers can pay the (slight) extra

operational costs to avoid multitenancy

4) Side-channel

information leakage

3) Achieving

co-residence

- Allow users to opt out of

multitenancy

- Hardware or software

countermeasures to stop leakage

[Ber05,OST05,Page02,Page03,

Page05,Per05]

Placement vulnerability:

attackers can knowingly achieve

co-residence with target

Load measurement via side channels

Cloud cartography
Exploit physical

side-channels
Instance flooding w/ co-residence checks

co-residence with target

More demands on virtual isolation due to multitenancy

Coarse-grained side channels already of use to some attackers

Security threat seems inherent to any third-party cloud with multitenancy

