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1 Overview

Thanks to Professor R. Sekar for providing the exploit programs!
In this project you will learn about stack smashing attacks and how an attacker can use a vulnerable

program to exploit the system. It is recommended that this project be done by pairs of students. You can,
of course, choose to do it individually, but it is obviously going to be more work. Besides, exploit writing is
an inexact process, so there may be times when you get stuck. With two people working on the assignment,
it is less likely that both will get stuck in the same way; and even if you do, you can work in parallel to find
a work-around.

You are given a vulnerable program vuln.c and a vulnerable heap implementation my malloc.c. These
programs, together with a Makefile, are provided as a tar-gzipped archive. Note that vuln accepts commands
on its input and executes them. Examine the source code to see what the commands are. (Until you read
that code, you cannot fully understand the rest of this project description.) Unless you do the exploits
yourself, you will not be able to grasp the complexities of exploit writing or be able to answer questions in
exam related to this. Also note that memory layouts are different for each group/individual, so the exploit
that works for one group will fail for another group. This variation is implemented using the environment
variable GRP ID that should contain the group id that will be assigned to your group. Since the exploits are
different with different groups, we have made a fully working sample exploit for the data-only exploit that
overwrites authd. This exploit works when you set GRP ID to 1000. This example will give you a road map
on how to construct your exploit code, and how to structure it. (You will of course need to submit exploits
that work for your assigned group id.) For simplicity, you can use the last 3 digits of your SBU ID as the
group id. Unless there are people in the class for whom the group ID would conflict, we will reassign you a
different group ID.

If you decide to do the project in groups/individually, please notify the TA via email about your group
along with your SBU ID. For a group of 2 students, use the group ID (last 3 digits of SBU ID) which is
smaller.

Note that vuln uses read rather than scanf or gets. This means you can input arbitrary values as
input, a capability you need if you want to input arbitrary binary data that may include code or pointer
values.

There are three basic vulnerabilities that you can exploit:

• a format string vulnerability in main loop,

• a heap overflow vulnerability in the version of malloc defined in my malloc.c and used in vuln.c,

• a stack overflow vulnerability in auth.

Some of these vulnerabilities can be exploited in more than one way.
Note that you don’t need to disable ASLR, stack protection or fool around with W ⊕X (stack attack

mitigation techniques) to get your exploits to work. Instead, you will use the printf vulnerability to leak
as much of the memory contents as you want. Initially, you will leak the contents of the stack. The stack
will contain stack cookie — gcc uses the same value of the cookie for all functions, so you can read and
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reuse them. The stack will also contain saved base pointer. By reading it, you can overcome randomization
of the stack base address. To cope with possible randomization of code memory, you can read the return
addresses off the stack. By dumping code memory, you can read information such as the address of functions
in libraries (e.g., bcopy), and from there, you can compute the location of a more useful function such as
execl. Finally, to overcome W ⊕X, note that the Makefile already makes the stack executable. In addition,
my malloc ensures that its heap blocks are executable.

Note that Makefile automatically generates an assembly code version of vuln in vuln.s. To make the
assembly file easier to understand, it now embeds source code lines within assembly, so that you will know
what line of source code results in which assembly instructions.

2 Stack Smashing

Using the buffer overflow vulnerability in auth, implement the following:

• Use a data-only-attack on the local variable authd. In particular, use stack smashing in auth to go
past the stack frame of auth into its caller’s frame, and modify the value of authd there.

• Use a return-to-libc attack that returns to ownme. Do not hard-code the address of ownme in your
exploit. Such a technique won’t work if the base address of the executable is randomized. Instead,
read the return address off the stack (using the format string vulnerability) and then compute the
address of ownme from this information.

• A simple stack smashing attack that executes injected code on the stack that calls ownme().

• Use a return-to-libc attack that calls execl (or another function with a similar functionality) in libc,
the standard C library. You should control the arguments so that you get a shell.

• Use stack smashing to modify saved BP value on the stack frame of auth so that when control returns
to g, you have control of the local variables of g, and can use this to set s2 to /bin/bash even when
auth returns 0.

Note that in some instances, you don’t know the exact starting address of injected code. In those cases,
attackers precede their code with a NOP-sled. This is simply a sequence of NOPs, which are 1-byte instruc-
tions in the x86 architecture. Now, you can jump into any byte of the NOP-sled, and then execution will
flow through the NOPs to the following code.

3 Format String Attack

Implement an attack that uses only the format string vulnerability. Your goal is to execute arbitrary code
injected by the attacker. Your injected code can simply call ownme().

For this attack, you should not overwrite the canary — you should selectively target the return address
of main_loop, so that execution is diverted to the injected code when the quit command is sent to vuln,
and it returns from main loop.

4 Submission

Your submission will be in the form of C-programs. In particular, for each exploit, you will create a version
of driver.c. Compiling and running this exploit program should lead to a successful exploit. Note that you
need to submit the source code for the exploits. You should not change vuln.c or any of the other material
provided to you.

You should create a tar-gzipped archive of all your exploit programs. Give them descriptive names such
as driver-smash-data.c, driver-heap.c, etc.
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5 Tips

• Use the 32-bit VM image provided to you. Your submission will be tested on this VM, so you might
as well work on the same VM. You can download the VM from here:

– https://drive.google.com/file/d/1Pl8Hjr7ovPNdgq0VVCBtrOhZqNcZt5fs/view

I have tested the exploits on a 64-bit Ubuntu system, when every thing is compiled with the -m32

flag that produces 32-bit binaries. However, before you submit, please ensure that your exploits work
correctly on the provided VM.

• Don’t change the Makefile, except possibly for adding additional lines for compiling additional
exploit programs.

• Review carefully the example exploit program driver_authd_exp.c. You will gain a better
understanding of how to structure your exploits, and also save time on other exploits.

• You can print a specific offset that is, say, 100 words from the top of the stack using printf("%100$x")
instead of having to use 100 instances of %x’s. (Note that this may end up printing something that is
a few words off, say, 97 words from the top of the stack.)

• Within gdb, registers can be accessed by prefixing them with $, e.g., print $esp will print the stack
pointer register.

• Within gdb, you can print arbitrary memory locations by casting them into pointers and dereferenc-
ing them, e.g., print *(int *)0xbfffff7c. You can control the format, e.g., print it in hex using
print /x *(int *)0xbfffff7c.

• You need to use the printf vulnerability to leak several pieces of information. The first is the stack
canary value. The second is the saved ebp value that you need in order to figure out the base of
the stack frames. (You cannot hard-code stack base address because the stack base is (re)randomized
on each execution.) Finally, you need to leak return address on the stack, or the address of library
functions in the GOT (Global Offset Table).

The driver program is necessary because of the need to leak these pieces information. You will structure
your exploits as follows. First, you will use the e command to leak the above pieces of information.
You will extract the information into variables in the driver program, which will then construct an
exploit string and send it to vuln.

• You can debug an already running process by using gdb to attach to it. (Some times you may need
root privilege to attach to an existing process.) To attach to an existing process, e.g., vuln, type
ps ax|grep vuln at the bash command prompt. It will produce a list of processes that have the
name vuln. Note down the pid, fire up gdb, and at its command line, type attach to that pid.

This ability is invaluable for tracking down problems with your exploits.

• You can also use objdump to disassemble the executable. An executable contains code that won’t
be in the object file vuln.o, or the assembly file vuln.s. Use objdump -d vuln to disassemble the
executable. Then you will see how library calls are made, and how you can hijack them.

Although the stack and code layout is going to be different for each team, the layout does not change
from one run to another. So you can use gdb to figure out the layout once, and then use it repeatedly in
your exploits. Specifically, you need to know the size of the stack frames of main loop and auth, and you
can find this by running vuln within gdb, setting break points in these functions, and printing the values of
ebp and esp registers. Make sure that you print esp value after the calls to alloca. (This function allocates
storage on the stack, and hence will change the value of esp.)

In order to succeed in this project, you have to get good at using gdb if you are not already there.
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5.1 Working with assembly/object code

Some exploits require you to use binary code. You can do this by writing a small assembly code snippet and
then compiling it using an assembler. One option is to use as, the default assembler on your system. You
can invoke it as:

as -a --32 test.s

where test.s is the file containing your assembly code. This command dumps the assembled code on
the screen. Note that as uses AT&T syntax for assembly. Alternatively, you can nasm which supports Intel
format. (I have not used nasm.)

Instead of trying to use direct jumps or calls to absolute memory locations, you should try to use indirect
jumps and indirect calls. First move the target address into a register, and then use an indirect jump or call
using that register. Various other points to note:

• Make sure you get your assembly syntax right for various addressing modes and operands. Specifically,
for as, make sure you prefix immediate operands with a $, and register operands with a %. For instance,
mov $0x20, %eax moves the decimal number 32 into the register eax, while mov 0x20, %eax moves
the contents of memory location 0x20 into eax. Also make sure that you use a * for indirect calls and
jumps, e.g., call *%eax is an indirect call to the address contained in eax. (However, call *(%eax)

first dereferences the location whose address is in eax, and then fetches the value stored at this memory
location, and then calls that location.)

• You can use gdb to work at the assembly level. You can use layout asm to see your code in assembly.
You can use stepi to single-step assembly instructions. The following pages may be helpful in this
regard:

– http: // web. cecs. pdx. edu/ ~ apt/ cs491/ gdb. pdf

– https: // sourceware. org/ gdb/ current/ onlinedocs/ gdb/ Machine-Code. html

– https: // cs. nyu. edu/ courses/ fall03/ V22. 0201-003/ c_ att_ syntax. html

5.2 Additional Resources

Professor Sekar has made the following videos from his class available for reference. It is highly recommended
that you go through the following videos to understand how to craft your exploit code and get a better
understanding of each of the vulnerability in the program.

Exploit project Discussion

• Project Overview: Link 1, Link 2

• Help session with gdb and code Link 3, Link 4, Link 5

• Follow-up discussion with Q&A session Link 6

• Behind the working of gdb Link 7
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