
Fundamentals of Computer Security
Fall 2022

Radu Sion

Software Errors
Buffer Overflow
TOCTTOU

© 2005-22
Portions copyright by Bogdan Carbunar and Wikipedia. Used with permission

2October 12, 2022

Computer Security FundamentalsWhy Security Vulnerabilities?

• Some contributing factors

– Few courses in computer security ☺

– Programming text books do not emphasize security

– Few security audits

– C is an unsafe language

– Programmers have many other things to worry about

– Consumers do not care about security

– Security is expensive and takes time

3October 12, 2022

Computer Security FundamentalsTrends

4October 12, 2022

Computer Security FundamentalsOS Vulnerabilities

5October 12, 2022

Computer Security FundamentalsNon-malicious Errors
• How to determine quality of program ?

– Testing …

– Number of faults in requirements, design and code inspections

• Example

– Module A had 100 faults discovered and fixed

– Module B had only 20

– Which one is better ?

– Software testing result: software with more faults is likely to
have even more !!!

6October 12, 2022

Computer Security FundamentalsFixing Faults
• Penetrate and Patch

– Special teams test programs and find faults

– If no attack found, the program was OK

– Otherwise, not – More frequently

– Then fix faults

• Problem: The system became less secure !

– Focus on fixing the fault and not its context

– Fault had side effects in other places

– Fixing fault generated faults somewhere else

– Fixing fault would affect functionality or performance

7October 12, 2022

Computer Security FundamentalsHow many bugs/line of code

Up to 5% BPLOC!!!

8October 12, 2022

Computer Security FundamentalsBuffer Overflow Hall of Fame

• Morris worm (1988): overflow in fingerd

– 6,000 machines infected (10% of existing Internet)

• CodeRed (2001): overflow in MS-IIS web server

– Internet Information Services (IIS)

– Web server application

– The most used web server after Apache HTTP Server

– 300,000 machines infected in 14 hours

• SQL Slammer(2003): overflow in MS-SQL server

– 75,000 machines infected in 10 minutes (!!)

9October 12, 2022

Computer Security FundamentalsBuffer Overflow Hall of Fame (2)

• Sasser (2004): overflow in Windows LSASS

– Local Security Authority Subsystem Service

• Process in Windows OS

• Responsible for enforcing the security policy on the system.

• Verifies users logging on to a Windows computer or server,
handles password changes, and creates access tokens

– Around 500,000 machines infected

• Conficker (2008-09): overflow in Windows Server

– ~10 million machines infected

10October 12, 2022

Computer Security FundamentalsMemory Exploits

•Buffer is a data storage area inside computer
memory (stack or heap)

–Intended to hold pre-defined amount of data

•If executable code is supplied as “data”, victim’s
machine may be fooled into executing it

•Code will give attacker control over machine

11October 12, 2022

Computer Security Fundamentalse.g. stack buffer
• Suppose Web server contains this function

void func(char *str) {

char buf[126];

strcpy(buf,str);

}

• When this function is invoked, a new frame with local
variables is pushed onto the stack

Allocate local buffer
(126 bytes reserved on stack)

Copy argument into local buffer

Top of
stack

Stack grows this way

buf

Local variables

Frame of the
calling function

ret
addr

Execute code
at this address
after func() finishes

str

Arguments

sfp

Pointer to
previous
frame

12October 12, 2022

Computer Security FundamentalsStack buffer (2)

• When func returns

– The local variables are popped from the stack

– The old value of the stack frame pointer (sfp) is recovered

– The return address is retrieved

– The stack frame is popped

– Execution continues from return address (calling function)

Top of
stack

Stack grows this way

buf

Local variables

Frame of the
calling function

ret
addr

Execute code
at this address
after func() finishes

str

Arguments

sfp

Pointer to
previous
frame

13October 12, 2022

Computer Security FundamentalsWhat if Buffer is Over-stuffed? ☺

• Memory pointed to by str is copied onto stack…

void func(char *str) {

char buf[126];

strcpy(buf,str);

}

• If a string longer than 126 bytes is copied into buffer,
it will overwrite adjacent stack locations

strcpy does NOT check whether the string
at *str contains fewer than 126 characters

Top of
stack

Stack grows this way

Frame of the
calling function

ret
addr strsfpbuf overflow

This will be
interpreted
as return address!

14October 12, 2022

Computer Security FundamentalsAttack 1: Stack Smashing

• Suppose buffer contains attacker-created string

– For example, *str contains a string received from the
network as input to some network service daemon

Attacker puts actual assembly
instructions into his input string, e.g.,
binary code of execve(“/bin/sh”)

In the overflow, a pointer back
into the buffer appears in
the location where the system
expects to find return address

code str Frame of the
calling function

ret Top of
stack

When function exits, code in the buffer will be
executed, giving attacker a shell
Root shell if the victim program is setuid root

15October 12, 2022

Computer Security FundamentalsBuffer Overflow Difficulties
• Executable attack code is stored on stack, inside the

buffer containing attacker’s string

– Stack memory is supposed to contain only data, but…

• For the basic attack, overflow portion of the buffer must
contain correct address of attack code in the RET position

– The value in the RET position must point to the beginning of
attack assembly code in the buffer

– Otherwise application will give segmentation violation

– Attacker must correctly guess in which stack position his
buffer will be when the function is called

16October 12, 2022

Computer Security FundamentalsReal Problem: No Range Checks
• strcpy does not check input size

– strcpy(buf, str) simply copies memory contents into buf starting from
*str until “\0” is encountered, ignoring the size of area allocated to buf

• Many C library functions are unsafe

– strcpy(char *dest, const char *src)

– strcat(char *dest, const char *src)

– gets(char *s)

– scanf(const char *format, …)

– printf(const char *format, …)

17October 12, 2022

Computer Security FundamentalsDoes range checking help?
• strncpy(char *dest, const char *src, size_t n)

– If strncpy is used instead of strcpy, no more than n
characters will be copied from *src to *dest

– Programmer has to supply the right value of n

• Potential overflow in htpasswd.c (Apache 1.3):

… strcpy(record, user);
strcat(record, ”:”);

strcat(record, cpw); …

• Published “fix” (do you see the problem?):

… strncpy(record,user, MAX_STRING_LEN-1);
strcat(record,”:”);
strncat(record,cpw, MAX_STRING_LEN-1); …

Copies username (“user”) into buffer (“record”),
then appends “:” and hashed password (“cpw”)

18October 12, 2022

Computer Security Fundamentals“Fix”?

Published “fix” for Apache htpasswd overflow:

MAX_STRING_LEN bytes allocated for record buffer

contents of *user

Put up to MAX_STRING_LEN-1
characters into buffer

:

Put “:”

contents of *cpw

Again put up to MAX_STRING_LEN-1
characters into buffer

… strncpy(record,user, MAX_STRING_LEN-1);
strcat(record, ”:”);
strncat(record,cpw, MAX_STRING_LEN-1); …

19October 12, 2022

Computer Security FundamentalsAttack 2: Variable Overflow

char buf[80];

int authenticated = 0;

void vulnerable() {

gets(buf);

}

Somewhere in the code authenticated is set only if login

procedure is successful

Other parts of the code test authenticated to provide special

access

authenticatedbuf overflow

Attacker passes 81 bytes as input to buf

authenticated becomes 1!

buf

20October 12, 2022

Computer Security FundamentalsAttack 3: Alter Pointer Variables

void func(char *s){

char buf[80];

int (*fnptr)();

gets(buf);

}

fnptr is invoked somewhere else in the program

This is only the definition

buf

Local variables

Frame of the
calling function

ret
addr

Execute code
at this address
after func() finishes

s

Arguments

sfp

Pointer to
previous
frame

fnptr

21October 12, 2022

Computer Security FundamentalsAlter Pointer Variables (2)

void func(char *s){

char buf[80];

int (*fnptr)();

gets(buf);

}

Send malicious code in s

Overflow fnptr

Pass more than 80 bytes in gets

fnptr now points to malicious code

When fnptr is executed, malicious

code is executed !

buf

Local variables

Frame of the
calling function

ret
addr

Execute code
at this address
after func() finishes

s

Arguments

sfp

Pointer to
previous
frame

fnptr malicious codebuf o’flow

22October 12, 2022

Computer Security FundamentalsAttack 4: Frame Pointer

void func(char *s){

char buf[80];

gets(buf);

}

buf

Local variables

Frame of the
calling function

ret
addr

Execute code
at this address
after func() finishes

s

Arguments

sfp

Pointer to
previous
frame

malicious codebuf o’flow

Send malicious code in s

Change the caller’s saved frame ptr.

Pass more than 80 bytes in gets

sfp now points to malicious code

Caller’s return address read from sfp

When func returns, mal. code runs !

23October 12, 2022

Computer Security FundamentalsAttack 5: Integer Overflow

static int getpeername1(p, uap, compat) {
// In FreeBSD kernel, retrieves address of peer to which a socket is connected

…
struct sockaddr *sa;
…

len = MIN(len, sa->sa_len);
… copyout(sa, (caddr_t)uap->asa, (u_int)len);
…

}

Checks that “len” is not too big

Copies “len” bytes from
kernel memory to user space

Negative “len” will always pass this check…

… interpreted as a huge
unsigned integer here

… will copy up to 4G of
kernel memory

24October 12, 2022

Computer Security FundamentalsTime of Check to Time of Use

•Concurrency issue

–Successive instructions may not execute serially

–Other processes may be given control

•TOCTTOU: control is given to other process
between access control check and access
operation

25October 12, 2022

Computer Security FundamentalsTOCTTOU Example

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)

return -1;
if (!S_ISRREG(s.st_mode)) {

error("only allowed to regular files");
return -1;

}
return open(path, O_RDONLY);

}

Extract file meta-data

Path to file

Open file

Between check and open

attacker can change path

Initial path is regular file

Later path is not

Adversary by-passes security

No symlink, directory, special file

26October 12, 2022

Computer Security FundamentalsTOCTTOU Defense
1. Ensure critical parameters are not exposed

during pre-emption

– openfile “owns” path

2. Ensure serial integrity

– openfile is atomic

– No pre-emption during its execution

3. Validate critical parameters

– Compute checksum of path before pre-emption

– Compare to checksum of path after …

27October 12, 2022

Computer Security FundamentalsIncomplete Mediation

• http://www.abc.com/subpage/userinput.asp?par1=(808)555-1212&par2=2011Sep10

• What if par2 is
– 1800Jan01 (outside of range)

– 2000Feb30 (non-existent)

– 2048Min32 (undefined)

– 1Aardvark2Many ?!?

• How to fix such errors ?
– Have client-side code to verify input correctness

– Restrict choices to only possible ones, e.g., drop-down menus …

28October 12, 2022

Computer Security FundamentalsIncomplete Mediation

• http://www.abc.com/subpage/userinput.asp?par1=(808)555-1212&par2=2011Sep10

• Still vulnerable !

– The results of the verification are accessible in the URL

– The (malicious) user can access and modify fields

– Only then send to the server

– The server cannot tell if URL came directly from the user
browser or from malicious user

29October 12, 2022

Computer Security FundamentalsUse in Combination

• Can be used together

• Example: Attacker can

– Use buffer overflow to disrupt code execution

– Use TOCTTOU to add a new user to system

– Use incomplete mediation to achieve privileged status

– …

Firmware Supply Chains

30

▪ Are long and obscure
▪ Involve hundreds of modules (300+)
▪ Many tens of (sub)vendors
▪ Firmware is often flashed in factory (China)
▪ Relatively easy to compromise (<$100k)

https://virtalica.com/

Firmware

31

▪ Is critical
▪ Is completely overlooked
▪ Underpins everything on top

https://virtalica.com/

Firmware Compromise

32

▪ Is virtually impossible to detect
▪ Much easier than compromising foundries/chips
▪ Transforms the machine into an APT zombie
▪ Any “security” built on top is 100% compromised
▪ Almost the very definition of “sandcastle”

https://virtalica.com/

Modern Stack: Millions of Bugs. Literally.

33

Intel AMT

Intel ME

Motherboard IPMI/controller

Intel microcode

Motherboard BIOS/firmware

Cloud Hypervisor

VM OS Kernel

VM OS Image

Cloud Network Fabric / SDN

Cloud Management Logic

Data Center Switching/Routing

ApplicationData

150,000 - 300,000

100,000 - 200,000

2,000,000

1,500,000

6,000,000

2,000,000 - 28,000,000

15,000,000 - 250,000,000

500,000 - 750,000

14,000,000 – 25,000,000

40,000,000-300,000,000 lines

2% bugs/line of code (BLOC)
600,000-6,000,000 bugs

5% actual exploits
30,000-300,000 viable exploits

Zero-day exploit
$500k+ on darknet

Exploit market
$150b

https://virtalica.com/

Firmware is impossible to fully secure

34

▪ Typical BIOS
▪ 2-3m lines of code
▪ about 60,000 bugs
▪ about 3000 exploits

▪ Smallest custom embedded BIOSes
▪ 20,000-100,000 lines of code
▪ at least 400-2000 bugs
▪ at least 20-100 exploits
▪ not really usable in modern servers

https://virtalica.com/

80% of Firmware:

35

▪ is unnecessary
▪ is obsolete
▪ is full of bugs and exploits
▪ is difficult or impossible to update
▪ should be removed
▪ harden remaining core
▪ this can significantly disrupt

supply chain attacks

https://virtalica.com/

Dynamic Firmware
Surgery

Results: SuperMicro

38

*Removed 152/244 modules

** ~62% of modules

** ~70% of binary

https://virtalica.com/

Results: Tyan

39

*Removed 134/194 modules

** ~70% of modules

** ~40% of binary

https://virtalica.com/

Results: SuperMicro

40

*Removed 154/312 modules

** ~50% of modules

** ~50% of binary

https://virtalica.com/

DECAF In Action

41

https://virtalica.com/

DECAF DEFENDER

42

Firmware
Image

Key Key Key Key

Checksum
Logic Dump

Verification Server

KVMKeyboard

Heart Beats

Protected Services
(Analytics, DBMS, etc)

UEFI

Client Machine

OS

https://virtalica.com/

Take Home (Firmware)

43

▪ Firmware is critical yet very often overlooked
▪ Everything built on top depends on its security
▪ Even the best firmware has thousands of bugs
▪ Firmware supply chains are difficult to trust
▪ Reducing firmware vulnerability surfaces can

significantly disrupt supply chain attacks

https://virtalica.com/

