Fundamentals of Computer Security
Fall 2022

Radu Sion

Software Errors
Buffer Overflow
TOCTTOU

Portions copyright by Bogdan Carbunar and Wikipedia. Used with permission

Why Security Vulnerabilities?

e Some contributing factors

—Few courses in computer security ©
—Programming text books do not emphasize security

—Few security audits

—C is an unsafe language

—Programmers have many other things to worry about
—Consumers do not care about security

—Security is expensive and takes time

October 12, 2022 2

I re n d S Computer Security Fundamentals

Vulnerability Disclosures Percentage of Vulnerability Disclosures
Attributed to Top 10 Vendors
2000-2009 hasad.to 1op
2009
— . 770, Top 10
R OISTT % —\ /_ Vendors: 23%

7000
6,000
5000 —
4000 —
3,000
2,000

1,000

| | I ,
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Source: IBM X-Force® B B et

October 12, 2022 3

OS Vulnerabilities

Computer Security Fundamentals

Vulnerability Disclosures Affecting Operating Systems

2005-2009
Apple Linux Su:;;;ris Microsoft E
120
100
80

A
601 7=\
/ X
40 - '

- .
__ P
G—
0 -
H1 H2 H1 H2 H1 H2 H1 H2 H1 H2
2005 2006 2007 2008 2009

Source: IBM X-Force®

50
45
40
35
30
25
20
15
10

Critical and High Vulnerability Disclosures
Affecting Operating Systems
2005-2009

Microsoft Apple Linux Sun Solaris BSD

H1 H2 H1 H2 H1 H2 H1 H2 H1 H2

2005 2006 2007 2008 2009

Source: IBM X-Force®

October 12, 2022

4

Non-malicious Errors

e How to determine of program ?
— Testing ...
— Number of faults in requirements, design and code inspections

e Example
— Module A had 100 faults discovered and fixed
— Module B had only 20
— Which one is better ?

software with more faults is likely to
have even more !!!

October 12, 2022 5

Fixing Faults

— Special teams test programs and find faults
— If no attack found, the program was OK

— Then fix faults

— Focus on fixing the fault and not its context

— Fault had side effects in other places

— Fixing fault generated faults somewhere else

— Fixing fault would affect functionality or performance

October 12, 2022 6

How many bugs/line of code

Up to 5% BPLOC!!!

222222222222222

Buffer Overflow Hall of Fame

overflow in fingerd
— 6,000 machines infected (10% of existing Internet)

overflow in MS-IIS web server
— Internet Information Services (lIS)
— Web server application

— The most used web server after Apache HTTP Server
— 300,000 machines infected in 14 hours

overflow in MS-SQL server
— 75,000 machines infected in 10 minutes (!!)

October 12, 2022 8

Buffer Overflow Hall of Fame (2)

overflow in Windows LSASS
— Local Security Authority Subsystem Service

e Process in Windows OS
e Responsible for enforcing the security policy on the system.

e \erifies users logging on to a Windows computer or server,
handles password changes, and creates access tokens

— Around 500,000 machines infected

overflow in Windows Server
— ~10 million machines infected

October 12, 2022 9

Memory Exploits

IS a data storage area inside computer
memory (stack or heap)

—Intended to hold pre-defined amount of data

e |f executable code is supplied as “data”, victim’s
machine may be fooled into executing it

e.g. stack buffer

e Suppose Web server contains this function

void func(char *str) {GEEEECEETE,
(126 bytes reserved on stack)
char buf[126];

strcpy (buf,str) ; Copy argument into local buffer

e When this function is invoked, a new frame with local
variables is pushed onto the stack

< Stack grows this way
| - -~ - \, Y J\ Y J \, v J

Local variables Pointer to Execute code Arguments
revious at this address

rame after func() finishes

October 12, 2022 11

Stack buffer (2)

e When func returns
— The local variables are popped from the stack
— The old value of the stack frame pointer (sfp) is recovered
— The return address is retrieved
— The stack frame is popped
— Execution continues from return address (calling function)

< Stack grows this way

buf

) - - \\ J\ J \\ J
Y v v A4

Local variables Pointer to Execute code Arguments
revious at this address
rame after func() finishes

October 12, 2022 12

What if Buffer is Over-stuffed? @

e Memory pointed to by str is copied onto stack...

void func(char *str)
char buf[126];
strcpy (buf, str) ;
}

e |f astring longer than 126 bytes is copied into buffer,
it will overwrite adjacent stack locations

<

buf

Stack grows this way

Top of
. stack

H_I

This will be
interpreted
as return address!

October 12, 2022 13

Attack 1: Stack SmaShing

e Suppose buffer contains attacker-created string

— For example, *str contains a string received from the
network as input to some network service daemon

Top of
ret
code stack
Attacker puts actual assembly In the overflow, a _
instructions into his input string, e.g., _ dppears In
binary code of the location where the system

expects to find return address

When function exits, code in the buffer will be

executed, giving attacker a shell
if the victim program is setuid root

October 12, 2022 14

Buffer Overflow Difficulties

e Executable attack code is stored on stack, inside the
buffer containing attacker’s string

— Stack memory is supposed to contain only data, but...
e For the basic attack, overflow portion of the buffer must
contain in the RET position

— The value in the RET position must point to the beginning of
attack assembly code in the buffer

— Otherwise application will give segmentation violation

October 12, 2022 15

Real Problem: No Range Checks

— strcpy() simply copies memory contents into starting from
*struntil “\O” is encountered, ignoring the size of area allocated to buf

— strcpy(char *dest, const char *src)
— strcat(char *dest, const char *src)
— gets(char *s)

— scanf(const char *format, ...)

— printf(const char *format, ...)

October 12, 2022 16

Does range ChECking hEIp?

e strncpy(char *dest, const char *src, size_t n)

— |If strncpy is used instead of strcpy, no more than n
characters will be copied from *src to *dest

— Programmer has to supply the right value of n

e Potential overflow in htpasswd.c (Apache 1.3):

.. Strc py(reco rd 4 ,l,JS,,e I’); Copies username (“user”) into buffer (“record”),
st rcat(record ,),' then appends “:” and hashed password (“cpw")

strcat(record, cpw); ...

. strncpy(record,user);
strcat(record,”:”);
strncat(record,cpw,); ...

October 12, 2022 17

“Eix”?
IX ¢

Published “fix” for Apache htpasswd overflow:

... strncpy(record,user,);
strcat(record, ”:”);
strncat(record,cpw,); ...

MAX_STRING_LEN bytes allocated for record buffer

__ A
~—~ —

contents of *user : contents of *cpw

AN
T o oo g

characters into buffer characters into buffer

October 12, 2022 18

Attack 2: Variable Overflow

Somewhere in the code authenticated is set only if login
procedure is successful

Other parts of the code test authenticated to provide special
access

char buf[80];
int authenticated = 0; buf overflow

void vulnerable() { A
gets(buf);

}

October 12, 2022 19

Attack 3: Alter Pointer Variables

is invoked somewhere else in the program
This is only the definition

void func(char *s){

char buf[80];
int (*fnptr)();
gets(buf);
}
buf fnptr
LOCEIF\;riables Poin:;r to ExecJte code Ar;;uments

revious at this address
rame after func() finishes

October 12, 2022 20

Alter Pointer Variables (2)

Computer Security Fundamentals

void func(char *s){

Send malicious code in

Overflow fnptr

Pass more than 80 bytes in gets

now points to malicious code

char buf[80];
int (*fnptr)();
gets(buf);
}
buf o’flow - malicious code
o Poin:;r to ExecJte code Arwg;uments

Local variables

revious at this address
rame after func() finishes

October 12, 2022 21

Attack 4: Frame Pointer

Send malicious code in
Change the caller’s

void func(char *<){ Pass more than 80 bytes in gets

char buf[80]; now points to malicious code
gets(buf); Caller’s return address read from sfp
}
buf o’flow - malicious code
(- —~ I\ v I\ Y I\ v)]
Local variables Pointer to Execute code Arguments

revious at this address
rame after func() finishes

October 12, 2022 22

Attack 5: Integer Overflow

static int getpeernamel(p, uap, compat) {
// In FreeBSD kernel, retrieves address of peer to which a socket is connected

struct socliw Checks that “len” is not too big

len = MIN(len, sa->sa_len);
... copyout(sa, (caddr_t)uap->asa, (u_int)len);

RN

Copies “len” bytes from
kernel memory to user space

October 12, 2022 23

Time of Check to Time of Use

—Successive instructions may not execute serially
—Other processes may be given control
control is given to other process

between access control check and access
operation

October 12, 2022 24

TOCTTOU Example

Path to file

int openfile(char *path) { <
struct stat s;

f (stat(path. &s) < 0) _ — Extract file meta-data

return -1; -

if (!S_ISRREG(s.st_mode)) { Between check and open
erro "onIy allowed to regular ﬁ|€S"); attacker can Change path
return -1; < Initial path is regular file

} Later path is not

return open(path, O_RDONLY); Adversary by-passes security

} \\
Open file

No symlink, directory, special file

October 12, 2022 25

TOCTTOU Defense

“owns” path

IS atomic
— No pre-emption during its execution

— Compute checksum of path before pre-emption
— Compare to checksum of path after ...

October 12, 2022 26

|nC0mp|€te Mediation

* http://www.abc.com/subpage/userinput.asp? &
* What if par2is

— 1800Jan01 (outside of range)

— 2000Feb30 (non-existent)

— 2048Min32 (undefined)

— 1Aardvark2Many ?!?

* How to fix such errors ?
— Have client-side code to verify input correctness
— Restrict choices to only possible ones, e.g., drop-down menus ...

October 12, 2022 27

Incomplete Mediation

e http:// &
e Still vulnerable !

— The results of the verification are accessible in the URL

— Only then send to the server

— The server cannot tell if URL came directly from the user
browser or from malicious user

October 12, 2022 28

Use in Combination

e (Can be used together

— Use buffer overflow to disrupt code execution
— Use TOCTTOU to add a new user to system
— Use incomplete mediation to achieve privileged status

October 12, 2022 29

30

ol
Re

Firmware Supply Chains

Are long and obscure
nvolve hundreds of modules (300+)
Many tens of (sub)vendors

mware is often flashed in factory (C

atively easy to compromise (<$100

)

nina)

Private
Machines

rrr

https://virtalica.com/

31

Firmware

s critical
s completely ove

Jnderpins everyt

looked

NiNg on top

Private

-
Machines
High Performance Zero Trust Infrastructure Tech

https://virtalica.com/

32

Firmware Compromise

s virtually impossible to detect
Much easier than compromising foundries/chips
Transforms the machine into an APT zombie

A
A

Ny “security” built on top is 100% compromised

most the very definition of “sandcastle”

-
Private
Machines
High Performance Zero Trust Infrastructure Tech

https://virtalica.com/

33

Modern Stack: Millions of Bugs. Literally.

Data Application

' VM 0S Image

VM OS Kernel

Cloud Hypervisor

| Motherboard BIOS/firmware

| Motherboard IPMI/controller

' Intel ME

Intel AMT

Intel microcode

| Cloud Network Fabric / SDN

| Cloud Management Logic

Data Center Switching/Routing

| 15,000,000 - 250,000,000

| 2,000,000 - 28,000,000

6,000,000

1,500,000

2,000,000

100,000 - 200,000

150,000 - 300,000

500,000 - 750,000

14,000,000 — 25,000,000

40,000,000-300,000,000 lines |

2% bugs/line of code (BLOC)
600,000-6,000,000 bugs

5% actual exploits
30,000-300,000 viable exploits

Zero-day exploit
$500k+ on darknet

Exploit market
S150b

Private
Machines

High Performance Zero Trust Infrastructure Tech

https://virtalica.com/

34

Firmware is impossible to fully secure

= Typical BIOS
" 2-3m lines of code
" about 60,000 bugs
" about 3000 exploits
" Smallest custom embedded BIOSes
= 70,000-100,000 lines of code
= atleast 400-2000 bugs
" atleast 20-100 exploits
" not really usable in modern servers

Private
Machines

rrr

https://virtalica.com/

80% of Firmware:

IS unnecessary

IS obsolete

is full of bugs and exploits

is difficult or impossible to update
should be removed

harden remaining core

this can significantly disrupt
supply chain attacks

Private
Machines

rr

https://virtalica.com/

Dynamic Firmware
urgery

Setup Control Environment Toolkit
Module Management Tool
samsssEEs UEFI ROM Dissect Tool
e BIOS Configuration Toolkit

’ ’—\\ e e ' Setup Data Extraction

Firmware IPM|

Key Management

Signing Server

BIOS
IPMI Controller Morphfng
, , Engine
» DHCP
COTS ! ?-I?:r;reessst DECAF
— TFTP Image

Hardware | Platform |

Firmware |

—f—’

------ B Setup Control Environment Toolkit

""""""""" > Module Management Tool

| ISR » UEFI ROM Dissect Tool

——

----------------- » BIOS Configuration Toolkit

A A A A

Morphing API

e S Setup Data Extraction) (Morpher -0

IPMI \

COTS

Hardware y

T

L

IPMI Controller) Morphing

Engine

DHCP Jd

Firmwsare

IPMI

—

TFTP |« .
TestHarnesslmagvi Sreang
] HW PWR
CTRL HUB
Morphing API
L L. L Poesswnisimnssionmasioisisionisss ,’ MorphingEngine J
—

Signing Server)

Key Management)

> Morphing Task Queue)
. EY

T B
i _s=e §

Firmware
- Pruning Tree

Transactiona

DB MS

N
e ,.‘__-'_ > LU;]

Morphing
Constraints
—

DECAF
Platform

Automatic Adaptive De-bloating
and Hardening of COTS Firmware

i)

-)

sl

R |

Q@O

,_)

L

= U

.I_I'_.u [

@

[-
10

38

3 |-'

Results: SuperMicro

DECAF Runtime - SuperMicro A1Sri

#)

tions |

Number of Itera

- _— -]‘DD
| e BIOS Post)

& OS Probe Success
S U N | | S N A S = E,D.D
Y | |y ———————— | ——— e ESpSep——— R —— —— —————— R— . SDD
1 1 . R R 7 A] S N B
iy mo— N I S IS S (. e 8 1
B e I — R e ——— P —— e 5 S (S S —— — EUD

..... el 8 frpm— [—— [—— [—— e [| | —————————— |S— lDD
== s s ——ble——fr| sl ol el et} j——fl——afl——aff——st——frj | [}

I I I I I I I
0s 5h 33m 11h 06m 16h 40m22h 13m27h 46m 33h 20m 38h 53m
Time Elapsed

*Removed 152/244 modules
** ~62% of modules
k% ~70% of binary

Private
Machines

High Performance Zero Trust Infrastructure Tech

https://virtalica.com/

39

f Byt

-)

ercentage o

el
.I'\.l L I.

B s

L

Results: Tyan

DECAF Runtime - Tyan $5533

e BIOS Post i
¢ OS Probe Success
¥ 0OS Probe Failure

350

- 300

- 150

- 100

- 50

I I
11h 06m 16h 40m

Time Elapsed

I
22h 13m

I
27h 46m

- 250 —

- 200 -

tions (#

Number of ltera

*Removed 134/194 modules
** ~70% of modules
** ~40% of binary

Private
Machines

High Performance Zero Trust Infrastructure Tech

https://virtalica.com/

DECAF

Results: SuperMicro

Runtime - SuperMicro A25Di

S0+~ @ BIOS Post

§ OS Probe Success

¥ 0OS Probe Failure

________________________ L 400

______________________________ - BDD

Number of lterations (#)

_'-"__ _ o = < 4 5 B I O - 4 & T - A A O - 4 il N -1 A N 5 - S A - A A A I 1 A - EDD
TI;I 20 +——pF—————— — ! Ja— — b - 4 -
ik
]
10 | e S — e S S S S S E—— 100
I g oot e S et o e e (e ——————: ——— T D
I I I I I
0s 13h 53m 27h 46m 41h 40m 55h 33m

40

Time Elapsed

*Removed 154/312 modules
** ~50% of modules
** ~50% of binary

Private
Machines

High Performance Zero Trust Infrastructure Tech

https://virtalica.com/

DECAF In Action

& DECAF = Docs & Suppor
Motherboards Motherboards

=

& Models

B Manufacturel

Motherbo: i
Bios Images

lhizs Search:

Services

) DECAF =

IPMI Firmware Motherboards

Images

= Docs

@ Settings

Pruned Images

Images

Motherboards Pruning Configurations

Images [ot |

Pruning

Pruning & Bios Images

Services & IPMI Firmware

Settings

Pruned Imag Flash Mainboard for DL380
= Pipelines
Pruning

Galart & waliel IEE1 RINS fila
Pruning Configurati

= Docs

Peripherals
@ Settings Motherboards

Local iscover

Models

Validation Targets

£ Settings

B3 Manufacturel

DL380 - Motherboard Info Management Firmware
Images Vendor HPE Power: Off Flash
Model DL 380 m
Pruning PMI MAC address b8:83:03:4c2e:7c
PMIIP address 102074
Other MAC address b8:83:03:4c:2¢:7e Virtual Media: Mounted Flash IPMI

b8:83:03:4c2e7F mm
4 Settings b8:83:03:4c:2e:80

C3000 - Motherboard Info Management Firmware
SuperMicro Power: Off Flash
A2SDi (16-Core)
ac:1f:6b:4b:fhidS m

PMIIP address 192.168.100.150

Other MAC addresses ac1f6b:40:67c0 Virtual Media: Not mounted GEC D

ac:If6b:40eTel m m
ac16bid0eTc2

© Private Machines Inc.

Private
Machines

High Performance Zero Trust Infrastructure Tech

https://virtalica.com/

42

DECAF DEFENDER

I
ey (o Key (0 Key (I Key

l

Private

-
Machines
h Performance Zero Trust Infrastructure Tech

https://virtalica.com/

43

Take Home (Firmware)

Firmware Is ¢

rl1tica

vet very often overlooked

Everything built on top depends on its security
Even the best firmware has thousands of bugs

-irmware supply chains are difficult to trust
Reducing firmware vulnerability surfaces can

significantly disrupt supply chain attacks

Private
Machines

rr

https://virtalica.com/

