
Fundamentals of Computer Security
Fall 2022

Radu Sion

Isolation
Virtual Machines
Covert Channels

© 2005-22
Portions copyright by Matt Bishop and Wikipedia. Used with permission

2October 24, 2022

Computer Security FundamentalsOverview

• The confinement problem

• Isolating entities
– Virtual machines

– Sandboxes

• Covert channels
– Detecting them

– Analyzing them

– Mitigating them

3October 24, 2022

Computer Security Fundamentals“Isolation”

• Process cannot communicate with any other process

• Process cannot be observed

Impossible for this process to leak information
–Not practical as process uses observable resources such

as CPU, secondary storage, networks, etc.

4October 24, 2022

Computer Security FundamentalsRule of Transitive Confinement

• If p is confined to prevent leaking, and
it invokes q, then q must be similarly
confined to prevent leaking

• Rule: if a confined process invokes a
second process, the second process
must be as confined as the first

5October 24, 2022

Computer Security FundamentalsLipner’s Observation (1975)

• All processes can obtain rough idea of time

–Read system clock or wall clock time

–Determine number of instructions executed

• All processes can manipulate time

–Wait some interval of wall clock time

–Execute a set number of instructions, then block

6October 24, 2022

Computer Security FundamentalsKocher’s Attack

• This computes x = az mod n, where z = z0 … zk–1

x := 1; atmp := a;

for i := 0 to k–1 do begin

if zi = 1 then

x := (x * atmp) mod n;

atmp := (atmp * atmp) mod n;

end

result := x;

• Length of run time related to number of 1 bits in z

7October 24, 2022

Computer Security FundamentalsIsolation

• Virtual machines

– Emulate computer

– “Guest” entity cannot access underlying computer system

• Sandboxing

– Does not emulate computer

– Alters interface between computer, process

8October 24, 2022

Computer Security FundamentalsVirtualization

9October 24, 2022

Computer Security FundamentalsVirtualization

10October 24, 2022

Computer Security FundamentalsVirtual Machine (VM)

• A program that simulates hardware of computer system

• Virtual machine monitor (VMM, “hypervisor”) provides VM
on which conventional OS can run

– Each VM is one subject; VMM doesn’t worry about processes
running inside each VM

– VMM mediates all interactions of VM with resources, other VMS

11October 24, 2022

Computer Security FundamentalsKVM/370

• Security-enhanced version of IBM VM/370 VMM

• Goals

– Provide virtual machines for users

– Prevent VMs of different security classes from communicating

• Provides minidisks; some VMs could share some areas of disk

– Security policy controlled access to shared areas to limit
communications to those allowed by policy

12October 24, 2022

Computer Security FundamentalsDEC VAX VMM

• VMM is security kernel
– Can run Ultrix or VMS

• Invoked on trap to execute privileged instruction
– Only VMM can access hardware directly

– VM kernel, executive levels both mapped into physical executive level

• VMM subjects: users, VMs
– Each VM has own disk areas, file systems

– Each subject, object has multilevel security, integrity labels

13October 24, 2022

Computer Security FundamentalsOracle VirtualBox

You are seeing these slides
inside a VirtualBox VM ☺

Here’s a demo …

14October 24, 2022

Computer Security FundamentalsSandbox
• Environment in which actions of process are

restricted according to security policy
–Can add extra security-checking mechanisms to

libraries, kernel
• Program to be executed is not altered

–Can modify program or process to be executed
• Similar to debuggers, profilers that add breakpoints

• Add code to do extra checks (memory access, etc.)
as program runs (software fault isolation)

15October 24, 2022

Computer Security FundamentalsExample: Limiting Execution

• Sidewinder

– Uses type enforcement to confine processes

– Sandbox built into kernel; site cannot alter it

• Java VM

– Restricts set of files that applet can access and hosts to
which applet can connect

• DTE, type enforcement mechanism for DTEL

– Kernel modifications enable system administrators to
configure sandboxes

16October 24, 2022

Computer Security FundamentalsExample: Trapping System Calls

• Sandboxie (! download and use it !)

–File system sandbox

Here’s a demo …

17October 24, 2022

Computer Security FundamentalsExample: Trapping System Calls

• Janus: execution environment

–Users restrict objects, modes of access

–Two components

• Framework does run-time checking

• Modules determine which accesses allowed

–Configuration file controls modules loaded,
constraints to be enforced

18October 24, 2022

Computer Security FundamentalsJanus Configuration File
basic module

basic

— Load basic module

define subprocess environment variables

putenv IFS=“\t\n” PATH=/sbin:/bin:/usr/bin TZ=PST8PDT

— Define environmental variables for process

deny access to everything except files under /usr

path deny read,write *

path allow read,write /usr/*

— Deny all file accesses except to those under /usr

allow subprocess to read files in library directories

needed for dynamic loading

path allow read /lib/* /usr/lib/* /usr/local/lib/*

— Allow reading of files in these directories (all dynamic load libraries are here)

needed so child can execute programs

path allow read,exec /sbin/* /bin/* /usr/bin/*

— Allow reading, execution of subprograms in these directories

19October 24, 2022

Computer Security FundamentalsJanus Implementation

• System calls to be monitored defined in modules

• On system call, Janus framework invoked
– Validates system call with those specific parameters are allowed

– If not, sets process environment to indicate call failed

– If okay, framework gives control back to process; on return,
framework invoked to update state

• Example: reading MIME mail
– Embed “delete file” in Postscript attachment

– Set Janus to disallow Postscript engine access to files

20October 24, 2022

Computer Security FundamentalsCovert Channel

• Channel using shared resources as a
communication path

• Covert storage channel uses attribute
of shared resource

• Covert timing channel uses temporal
or ordering relationship among
accesses to shared resource

21October 24, 2022

Computer Security FundamentalsExample: File Manipulation
• Communications protocol:

– p sends a bit by creating a file called 0 or 1, then a second
file called send
• p waits until send is deleted before repeating to send another bit

– q waits until file send exists, then looks for file 0 or 1;
whichever exists is the bit
• q then deletes 0, 1, and send and waits until send is recreated

before repeating to read another bit

• Covert storage channel: resource is directory, names of
files in directory

22October 24, 2022

Computer Security FundamentalsExample: Using Real Time Clock

• KVM/370 had covert timing channel

– VM1 wants to send 1 bit to VM2

– To send 0 bit: VM1 relinquishes CPU as soon as it gets CPU

– To send 1 bit: VM1 uses CPU for full quantum

– VM2 determines which bit is sent by seeing how quickly it gets CPU

– Shared resource is CPU, timing because real-time clock used to
measure intervaps between accesses

23October 24, 2022

Computer Security FundamentalsExample: Ordering of Events

• Two VMs
–Share cylinders 100–200 on a disk

–One is High, one is Low; process on High VM wants to
send to process on Low VM

• Disk scheduler uses SCAN algorithm

• Low process seeks to cylinder 150 and relinquishes CPU
–Now we know where the disk head is

24October 24, 2022

Computer Security FundamentalsExample: Ordering (continued)

• High wants to send a bit
– To send 1 bit, High seeks to cylinder 140 and relinquish CPU

– To send 0 bit, High seeks to cylinder 160 and relinquish CPU

• Low issues requests for tracks 139 and 161
– Seek to 139 first indicates a 1 bit

– Seek to 161 first indicates a 0 bit

• Covert timing channel: uses ordering relationship among
accesses to transmit information

25October 24, 2022

Computer Security FundamentalsNoise

• Noiseless covert channel uses shared resource
available exclusively to sender and receiver

• Noisy covert channel uses shared resource available
to sender, receive, and others

–Need to minimize interference enough so that message
can be read in spite of others’ use of channel

26October 24, 2022

Computer Security FundamentalsKey Properties

• Existence

–Determining whether the covert
channel exists

• Bandwidth

–Determining how much information
can be sent over the channel

27October 24, 2022

Computer Security FundamentalsHow do we detect them?

• Covert channels require sharing

• Manner of sharing controls which subjects can send, which
subjects can receive information using that shared resource

• Porras, Kemmerer: model flow of information through
shared resources with a tree
– Called covert flow trees (study them in more advanced class)

28October 24, 2022

Computer Security FundamentalsConstructing Tree Example

• Example: files in file system have 3 attributes

– locked: true when file locked

– isopen: true when file opened

– inuse: set containing PID of processes having file open

• Functions:

– read_access(p, f): true if p has read rights over file f

– empty(s): true if set s is empty

– random: returns one of its arguments chosen at random

29October 24, 2022

Computer Security FundamentalsExample Covert Channel

Modification of
attrib ute locked

Lockfile Unlockfile

+

Recognition of
attrib ute locked

+

Direct recognition of
attribute locked

+

Filelocked

Indirect recognition of
attrib ute locked

+

Infer attrib ute locked
via attrib ute inuse

Openfile

•

Recognition of
attribute inuse

+

Direct recognition of
attribute inuse

Indirect recognition of
attribute inuse

+

Fileopened

+

FALSE

Covert storage channel
via attrib ute locked

•

30October 24, 2022

Computer Security FundamentalsMitigation

• Goal: obscure amount of resources a process uses
– Receiver cannot determine what part sender is using and

what part is obfuscated

• How to do this?
– Devote uniform, fixed amount of resources to each process

– Inject randomness into allocation, use of resources

31October 24, 2022

Computer Security FundamentalsKey Points

• Confinement problem: prevent leakage of information
– Solution: separation and/or isolation

• Shared resources offer paths along which information
can be transferred

• Covert channels difficult if not impossible to eliminate
– Bandwidth can be greatly reduced, however!

