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Computer Security FundamentalsOverview

• The confinement problem

• Isolating entities
– Virtual machines

– Sandboxes

• Covert channels
– Detecting them

– Analyzing them

– Mitigating them
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Computer Security Fundamentals“Isolation”

• Process cannot communicate with any other process

• Process cannot be observed

Impossible for this process to leak information
–Not practical as process uses observable resources such 

as CPU, secondary storage, networks, etc.
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Computer Security FundamentalsRule of Transitive Confinement

• If p is confined to prevent leaking, and 
it invokes q, then q must be similarly 
confined to prevent leaking

• Rule: if a confined process invokes a 
second process, the second process 
must be as confined as the first
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Computer Security FundamentalsLipner’s Observation (1975)

• All processes can obtain rough idea of time

–Read system clock or wall clock time

–Determine number of instructions executed

• All processes can manipulate time

–Wait some interval of wall clock time

–Execute a set number of instructions, then block
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Computer Security FundamentalsKocher’s Attack

• This computes x = az mod n, where z = z0 … zk–1

x := 1; atmp := a;

for i := 0 to k–1 do begin

if zi = 1 then

x := (x * atmp) mod n;

atmp := (atmp * atmp) mod n;

end

result := x;

• Length of run time related to number of 1 bits in z
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Computer Security FundamentalsIsolation

• Virtual machines

– Emulate computer

– “Guest” entity cannot access underlying computer system

• Sandboxing

– Does not emulate computer

– Alters interface between computer, process
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Computer Security FundamentalsVirtualization
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Computer Security FundamentalsVirtualization
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Computer Security FundamentalsVirtual Machine (VM)

• A program that simulates hardware of computer system

• Virtual machine monitor (VMM, “hypervisor”) provides VM 
on which conventional OS can run

– Each VM is one subject; VMM doesn’t worry about processes 
running inside each VM

– VMM mediates all interactions of VM with resources, other VMS
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Computer Security FundamentalsKVM/370

• Security-enhanced version of IBM VM/370 VMM

• Goals

– Provide virtual machines for users

– Prevent VMs of different security classes from communicating

• Provides minidisks; some VMs could share some areas of disk

– Security policy controlled access to shared areas to limit 
communications to those allowed by policy
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Computer Security FundamentalsDEC VAX VMM

• VMM is security kernel
– Can run Ultrix or VMS

• Invoked on trap to execute privileged instruction
– Only VMM can access hardware directly

– VM kernel, executive levels both mapped into physical executive level

• VMM subjects: users, VMs
– Each VM has own disk areas, file systems

– Each subject, object has multilevel security, integrity labels



13October 24, 2022

Computer Security FundamentalsOracle VirtualBox

You are seeing these slides 
inside a VirtualBox VM ☺

Here’s a demo … 
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Computer Security FundamentalsSandbox
• Environment in which actions of process are 

restricted according to security policy
–Can add extra security-checking mechanisms to 

libraries, kernel
• Program to be executed is not altered

–Can modify program or process to be executed
• Similar to debuggers, profilers that add breakpoints

• Add code to do extra checks (memory access, etc.) 
as program runs (software fault isolation)
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Computer Security FundamentalsExample: Limiting Execution

• Sidewinder

– Uses type enforcement to confine processes

– Sandbox built into kernel; site cannot alter it

• Java VM

– Restricts set of files that applet can access and hosts to 
which applet can connect

• DTE, type enforcement mechanism for DTEL

– Kernel modifications enable system administrators to 
configure sandboxes
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Computer Security FundamentalsExample: Trapping System Calls

• Sandboxie (! download and use it !)

–File system sandbox

Here’s a demo … 
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Computer Security FundamentalsExample: Trapping System Calls

• Janus: execution environment

–Users restrict objects, modes of access

–Two components

• Framework does run-time checking

• Modules determine which accesses allowed

–Configuration file controls modules loaded, 
constraints to be enforced
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Computer Security FundamentalsJanus Configuration File
# basic module

basic

— Load basic module

# define subprocess environment variables

putenv IFS=“\t\n” PATH=/sbin:/bin:/usr/bin TZ=PST8PDT

— Define environmental variables for process

# deny access to everything except files under /usr

path deny read,write *

path allow read,write /usr/*

— Deny all file accesses except to those under /usr

# allow subprocess to read files in library directories

# needed for dynamic loading

path allow read /lib/* /usr/lib/* /usr/local/lib/*

— Allow reading of files in these directories (all dynamic load libraries are here)

# needed so child can execute programs

path allow read,exec /sbin/* /bin/* /usr/bin/*

— Allow reading, execution of subprograms in these directories
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Computer Security FundamentalsJanus Implementation

• System calls to be monitored defined in modules

• On system call, Janus framework invoked
– Validates system call with those specific parameters are allowed

– If not, sets process environment to indicate call failed

– If okay, framework gives control back to process; on return, 
framework invoked to update state

• Example: reading MIME mail
– Embed “delete file” in Postscript attachment

– Set Janus to disallow Postscript engine access to files
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Computer Security FundamentalsCovert Channel

• Channel using shared resources as a 
communication path

• Covert storage channel uses attribute 
of shared resource

• Covert timing channel uses temporal 
or ordering relationship among 
accesses to shared resource
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Computer Security FundamentalsExample: File Manipulation
• Communications protocol:

– p sends a bit by creating a file called 0 or 1, then a second 
file called send
• p waits until send is deleted before repeating to send another bit

– q waits until file send exists, then looks for file 0 or 1; 
whichever exists is the bit
• q then deletes 0, 1, and send and waits until send is recreated 

before repeating to read another bit

• Covert storage channel: resource is directory, names of 
files in directory
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Computer Security FundamentalsExample: Using Real Time Clock

• KVM/370 had covert timing channel

– VM1 wants to send 1 bit to VM2

– To send 0 bit: VM1 relinquishes CPU as soon as it gets CPU

– To send 1 bit: VM1 uses CPU for full quantum

– VM2 determines which bit is sent by seeing how quickly it gets CPU

– Shared resource is CPU, timing because real-time clock used to 
measure intervaps between accesses
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Computer Security FundamentalsExample: Ordering of Events

• Two VMs
–Share cylinders 100–200 on a disk

–One is High, one is Low; process on High VM wants to 
send to process on Low VM

• Disk scheduler uses SCAN algorithm

• Low process seeks to cylinder 150 and relinquishes CPU
–Now we know where the disk head is
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Computer Security FundamentalsExample: Ordering (continued)

• High wants to send a bit
– To send 1 bit, High seeks to cylinder 140 and relinquish CPU

– To send 0 bit, High seeks to cylinder 160 and relinquish CPU

• Low issues requests for tracks 139 and 161
– Seek to 139 first indicates a 1 bit

– Seek to 161 first indicates a 0 bit

• Covert timing channel: uses ordering relationship among 
accesses to transmit information
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Computer Security FundamentalsNoise

• Noiseless covert channel uses shared resource 
available exclusively to sender and receiver

• Noisy covert channel uses shared resource available 
to sender, receive, and others

–Need to minimize interference enough so that message 
can be read in spite of others’ use of channel
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Computer Security FundamentalsKey Properties

• Existence

–Determining whether the covert 
channel exists

• Bandwidth

–Determining how much information 
can be sent over the channel
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Computer Security FundamentalsHow do we detect them?

• Covert channels require sharing

• Manner of sharing controls which subjects can send, which 
subjects can receive information using that shared resource

• Porras, Kemmerer: model flow of information through 
shared resources with a tree
– Called covert flow trees (study them in more advanced class)
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Computer Security FundamentalsConstructing Tree Example

• Example: files in file system have 3 attributes

– locked: true when file locked

– isopen: true when file opened

– inuse: set containing PID of processes having file open

• Functions:

– read_access(p, f): true if p has read rights over file f

– empty(s): true if set s is empty

– random: returns one of its arguments chosen at random
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Computer Security FundamentalsExample Covert Channel

Modification of
attrib ute locked

Lockfile Unlockfile

+

Recognition of
attrib ute locked

+

Direct recognition of
attribute locked

+

Filelocked

Indirect recognition of
attrib ute locked

+

Infer attrib ute locked
via attrib ute inuse

Openfile

•

Recognition of
attribute inuse

+

Direct recognition of
attribute inuse

Indirect recognition of
attribute inuse

+

Fileopened

+

FALSE

Covert storage channel
via attrib ute locked

•
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Computer Security FundamentalsMitigation

• Goal: obscure amount of resources a process uses
– Receiver cannot determine what part sender is using and 

what part is obfuscated

• How to do this?
– Devote uniform, fixed amount of resources to each process

– Inject randomness into allocation, use of resources
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Computer Security FundamentalsKey Points

• Confinement problem: prevent leakage of information
– Solution: separation and/or isolation

• Shared resources offer paths along which information 
can be transferred

• Covert channels difficult if not impossible to eliminate
– Bandwidth can be greatly reduced, however!


