# **CSE331: Fundamentals of Security**

### Fall 2022

Radu Sion

## Intrusion Detection

- Basics
- Models of Intrusion Detection
- Architecture of an IDS
- Organization
- Incident Response

- Detect wide variety of intrusions
  - Previously known and unknown attacks
  - Suggests need to learn/adapt to new attacks or changes in behavior
- Detect intrusions in timely fashion
  - Often needs to be be real-time (especially when system responds to intrusion)
    - Problem: analysis may impact response time of system

#### **Goals of IDS**

- Present analysis:
  - simple, easy-to-understand format
  - Ideally a binary indicator
  - Usually more complex, allowing analyst to examine suspected attack
  - User interface critical, especially when monitoring many systems
- Be accurate (performance-overhead trade-off !)
  - Minimize false positives, false negatives
  - Minimize time spent verifying/looking for attacks

- Anomaly detection
  - Know: what is usual
  - Bad: what is **unusual**
- Misuse detection
  - Know: what is **bad**
  - Good: what is not bad
- Specification-based detection
  - Know: what is good
  - Bad: what is not good

- Analyzes a set of characteristics of system, and compares their values with expected values; report when computed statistics do not match expected statistics
  - Threshold metrics
  - Statistical moments
  - Markov model

- Counts number of events that occur
  - Between *m* and *n* events expected to occur
  - If number falls outside this range, anomalous
- Example
  - Windows: lock user out after k failed sequential login attempts. Range is (0, k-1).
    - *k* or more failed logins deemed anomalous
- Problems
  - Appropriate threshold may depend on non-obvious factors
    - Typing skill of users
    - If keyboards are US keyboards, and most users are French, typing errors very common

- Analyzer computes standard deviation (first two moments), other measures of correlation (higher moments)
  - If measured values fall outside expected interval for particular moments, anomalous
- Problems
  - Profile may evolve over time; solution is to weigh data appropriately or alter rules to take changes into account
  - Assumes behavior of processes and users can be modeled statistically
    - Ideal: matches a known distribution such as Gaussian or normal
    - Otherwise, must use techniques like clustering to determine moments, characteristics that show anomalies, etc.
  - Large overheads in real-time computation

- Developed at SRI International (Denning's model)
  - Represent users, login session, other entities as ordered sequence of statistics  $\langle q_{0,j}, ..., q_{n,j} \rangle$
  - $-q_{i,j}$  (statistic *i* for day *j*) is count or time interval
  - Weighting favors recent behavior over past behavior
    - $A_{k,j}$  sum of counts making up metric of *k*th statistic on *j*th day
    - $q_{k,l+1} = A_{k,l+1} A_{k,l} + 2^{-rt}q_{k,l}$  where *t* is number of log entries/total time since start, *r* factor determined through experience

- Past state affects current transition
- Anomalies based upon *sequences* of events, and not on occurrence of single event
- Problem: need to train system for valid sequences
  - Use known, training data that is not anomalous
  - The more training data, the better the model
  - Training data should cover *all* possible normal uses

- Define normal behavior in terms of <u>sequences</u> of system calls (*traces*)
- Hofmeyr: experiments show it distinguishes *sendmail* and *lpd* from other programs
- (1) Training trace is: open read write open mmap write fchmod close
- (2) Produces trace database
- (3) Later observe trace: open read read open mmap write fchmod close
- (4) Deploy distance metric from trace database

- Problem: assuming Gaussian (or other) distribution of events is not always ok !
- Clustering try to understand behavior
  - Does not assume *a priori* distribution of data
  - Obtain data, group into subsets (*clusters*) based on some property (*feature*)
  - Analyze the clusters, not individual data points

| proc  | user   | value | percent | clus#1 | clus#2 |
|-------|--------|-------|---------|--------|--------|
| $p_1$ | matt   | 359   | 100%    | 4      | 2      |
| $p_2$ | holly  | 10    | 3%      | 1      | 1      |
| $p_3$ | heidi  | 263   | 73%     | 3      | 2      |
| $p_4$ | steven | 68    | 19%     | 1      | 1      |
| $p_5$ | david  | 133   | 37%     | 2      | 1      |
| $p_6$ | mike   | 195   | 54%     | 3      | 2      |

- Scheme 1: break into 4 groups (>0%, >25%, >50%, >75%);
  2, 4 may be anomalous (1 entry each)
- Scheme 2: break into 2 groups (>0%, >50%)

- Which features best show anomalies?
  - CPU use may not, but I/O use may
- Use training data
  - Anomalous data marked
  - Feature selection program picks features, clusters that best detects anomalies in data
  - That is why data mining/ML is important  $\bigcirc$

- Determines whether executed sequence is known to violate the policy ("known: what is **bad**; "good"= what is not bad)
  - Known/potential exploits grouped into *rule sets*
  - Match data against rule sets to detect attack
- Cannot detect unknown

attacks 😕

| • | Anomaly detection                         |
|---|-------------------------------------------|
|   | – Know: what is usual                     |
|   | – <b>Bad:</b> what is <b>unusual</b>      |
| • | Misuse detection                          |
|   | – Know: what is <b>bad</b>                |
|   | – Good: what is not bad                   |
| • | Specification-based detection             |
|   | – Know: what is good                      |
|   | <ul> <li>Bad: what is not good</li> </ul> |

- Built to ease adding new rules by users
- Architecture:
  - Packet sucker: read packets from network
  - Decision engine: "filters" extract information
  - Backend: write data to disk, discard matching packet
    - Query backend allows administrators to extract raw, postprocessed data from this file
    - Query backend is separate from NFR process
- Problem: need to know what to look for

• Example: ignore traffic **not** for 2 web servers:

```
# list of my web servers
my_web_servers = [ 10.237.100.189 10.237.55.93 ] ;
# we assume all HTTP traffic is on port 80
filter watch tcp ( client, dport:80 )
{
    if (ip.dest != my_web_servers) return;
# now process the packet; we just write out packet info
    record system.time, ip.src, ip.dest to www_list;
}
www list = recorder("log")
```

- Determines whether execution of sequence of instructions violates specification (known: what is good; **Bad:** what is **not good**)
- Only check programs that alter protection state
  - Need to identify and specify expected behavior of these
    - Anomaly detection
      - Know: what is usual
      - **Bad:** what is **unusual**
    - Misuse detection
      - Know: what is **bad**
      - Good: what is not bad
    - Specification-based detection
      - Know: what is good
      - Bad: what is not good

- Agent gathers data for analysis
- *Director* analyzes data obtained from the agents according to its internal rules (often centralized)
- *Notifier* gets results from director, takes action
  - notifies security officer
  - reconfigures agents, director to alter collection, analysis methods
  - activates response mechanism
    - thwarts intrusion
    - The Empire Strikes back ?!



- Runs where information is to be collected
- Messages the director
- May:
  - pre-process information (extract relevant parts)
  - delete un-needed information
- Director may request agent to send additional data

#### Example

- IDS uses failed login attempts in its analysis
- Agent scans login log every 5 minutes, sends director for each new login attempt:
  - Time of failed login
  - Account name and entered password
- Director requests all records of login (failed or not) for particular user
  - Suspecting a brute-force cracking attempt

- Obtain information from logs
  - May use many logs as sources
  - May be security-related or not
  - May be virtual logs if agent is part of the kernel
    - Very non-portable
- Agent generates its information
  - Scans information needed by IDS, turns it into equivalent of log record
  - Typically, check policy; may be very complex

- Detects network-oriented attacks
  - Denial of service attack introduced by flooding a network
- Monitor traffic for a large number of hosts
- Examine the contents of the traffic itself
- Agent must have same view of traffic as destination
  - TTL tricks, fragmentation may obscure this
- End-to-end encryption defeats content monitoring
   Can do traffic analysis, though

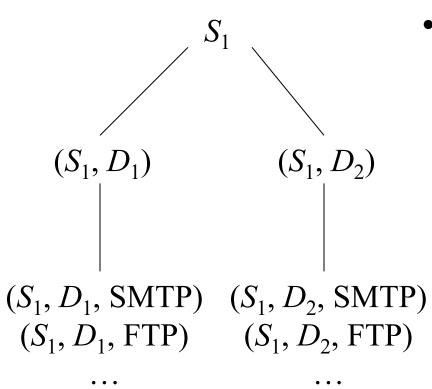
- Network architecture dictates agent placement
  - Ethernet or broadcast medium: one agent per subnet
  - Point-to-point medium: one agent per connection, or agent at distribution/routing point
- Focus is usually on intruders entering network
  - If few entry points, place network agents behind them
  - Does not help if inside attacks to be monitored

- Agents produce information at multiple layers of abstraction
  - Application-monitoring agents provide one view (usually one line) of an event
  - System-monitoring agents provide a different view (usually many lines) of an event
  - Network-monitoring agents provide yet another view (e.g., many network packets) of an event

#### Director

- Reduces information from agents
  - Eliminates unnecessary, redundant records
- Analyzes remaining information to determine if attack under way
  - Analysis engine can use a number of techniques, discussed before, to do this
- Usually run on separate system
  - Does not impact performance of monitored systems
  - Rules, profiles not available to ordinary users

- Jane logs in to:
  - daytime: to perform system maintenance
  - at night: to write reports
- One night she begins recompiling the kernel
- Agent #1 reports logins and logouts
- Agent #2 reports commands executed
  - Neither agent spots discrepancy
  - Director correlates log, spots it at once


- Modify profiles, rule sets to adapt their analysis to changes in system
  - Usually use machine learning or planning to determine how to do this
- Example: use neural nets to analyze logs
  - Network adapted to users' behavior over time
  - Used learning techniques to improve classification of events as anomalous
    - Reduced number of false alarms

- Accepts information from director
- Takes appropriate action
  - Notify system security officer
  - Respond to attack
- Often GUIs
  - use visualization to convey information

- Monitoring network traffic for intrusions
   NSM system
- Combining host and network monitoring
   DIDS
- Making the agents autonomous
  - AAFID system

#### **Network Security Monitor**

- Develops profile of expected usage of network, compares current usage
- Has 3-D matrix for data
  - Axes are source, destination, service
  - Each connection has unique connection ID
  - Contents are number of packets sent over that connection for a period of time, and sum of data
  - NSM generates expected connection data
  - Expected data masks data in matrix, and anything left over is reported as an anomaly



- Too much data!
  - Solution: arrange data hierarchically into groups
    - Construct by folding axes of matrix
  - Analyst could expand any group flagged as anomalous



- Analyst can write rule to look for specific occurrences in matrix
  - Repeated telnet connections lasting only as long as set-up indicates failed login attempt
- Analyst can write rules to match against network traffic
  - Used to look for excessive logins, attempt to communicate with non-existent host, single host communicating with 15 or more hosts



| Se               | ervic                                                   | es / Snort                                                                                                                                          | : / Rul                                                       | es / WAN                                                                                                                                                                        |                                                |                                                                                                                     |                                                                                                              |                                                                                                                                                                                                                              | 6                                                                                                                                                                                                                                 |
|------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sn               | ort Int                                                 | erfaces Glo                                                                                                                                         | obal Settii                                                   | ngs Updates                                                                                                                                                                     | Alerts Blocked                                 | Pass Lists Suppre                                                                                                   | ess IP Lists                                                                                                 | SID Mgmt                                                                                                                                                                                                                     | Log Mgmt Sync                                                                                                                                                                                                                     |
| W                | AN Set                                                  | tings WAN                                                                                                                                           | N Categor                                                     | ies WAN Rules                                                                                                                                                                   | WAN Variables V                                | VAN Preprocs WAN                                                                                                    | I Barnyard2 WAN                                                                                              | N IP Rep W                                                                                                                                                                                                                   | AN Logs                                                                                                                                                                                                                           |
| Av               | ailab                                                   | le Rule Cate                                                                                                                                        | gories                                                        |                                                                                                                                                                                 |                                                |                                                                                                                     |                                                                                                              |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                   |
|                  | Cate                                                    | gory Selection:                                                                                                                                     | Linnin                                                        | Policy - Connectivity<br>t the rule category to vie                                                                                                                             | w and manage.                                  |                                                                                                                     |                                                                                                              |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                   |
| Ru               | le Si                                                   | gnature ID (S                                                                                                                                       | SID) Ena                                                      | ble/Disable Overri                                                                                                                                                              | des                                            |                                                                                                                     |                                                                                                              |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                   |
|                  |                                                         | SID Actions                                                                                                                                         | <b>B</b> A                                                    | pply                                                                                                                                                                            | C <sup>e</sup> Reset All                       | C Reset Current                                                                                                     | 🙁 Disab                                                                                                      | le All                                                                                                                                                                                                                       | O Enable All                                                                                                                                                                                                                      |
| Leg              | (                                                       | Default Disabled                                                                                                                                    | 🕑 Enabl<br>d 😢 Disab                                          | ed by user 🔗 Auto-enabled<br>led by user 🔗 Auto-disable                                                                                                                         | d by SID Mgmt                                  | Destination                                                                                                         | DPort                                                                                                        | Message                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |
|                  | GID                                                     | <ul> <li>Default Enabled</li> <li>Default Disabled</li> <li>SID</li> </ul>                                                                          | C Enabl<br>B Oisab<br>Proto                                   | led by user 🙆 Auto-disable                                                                                                                                                      | d by SID Mgmt<br>SPort                         | Destination                                                                                                         | DPort                                                                                                        | Message                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |
|                  | (                                                       | Default Enabled<br>Default Disabled                                                                                                                 | 🕑 Enabl<br>d 😢 Disab                                          | led by user 💊 Auto-disable                                                                                                                                                      | d by SID Mgmt                                  | Destination<br>\$EXTERNAL_NET                                                                                       | DPort<br>\$HTTP_PORTS                                                                                        | -                                                                                                                                                                                                                            | User-Agent known malicious<br>SAH Agent                                                                                                                                                                                           |
| 0                | <b>GID</b>                                              | <ul> <li>Default Enabled</li> <li>Default Disabled</li> <li>SID</li> </ul>                                                                          | C Enabl<br>B Oisab<br>Proto                                   | led by user 🙆 Auto-disable                                                                                                                                                      | d by SID Mgmt<br>SPort                         |                                                                                                                     |                                                                                                              | BLACKLIST U<br>user agent -                                                                                                                                                                                                  | -                                                                                                                                                                                                                                 |
| 0                | <b>GID</b>                                              | <ul> <li>Default Enabled</li> <li>Default Disabled</li> <li>SID</li> <li>5808</li> </ul>                                                            | C Enabl<br>Disab<br>Proto<br>tcp                              | led by user Auto-disable<br>Source<br>\$HOME_NET                                                                                                                                | d by SID Mgmt SPort any                        | \$EXTERNAL_NET                                                                                                      | \$HTTP_PORTS                                                                                                 | BLACKLIST U<br>user agent -<br>BLACKLIST U<br>user agent -<br>BLACKLIST U                                                                                                                                                    | SAH Agent<br>User-Agent known malicious                                                                                                                                                                                           |
| 0<br>0<br>0      | <b>GID</b><br>1<br>1                                    | <ul> <li>Default Enabled</li> <li>Default Disabled</li> <li>SID</li> <li>5808</li> <li>5900</li> </ul>                                              | Enabl<br>Disab<br>Proto<br>tcp<br>tcp                         | led by user Auto-disable<br>Source<br>\$HOME_NET<br>\$HOME_NET                                                                                                                  | d by SID Mgmt SPort any any                    | \$EXTERNAL_NET                                                                                                      | \$HTTP_PORTS<br>\$HTTP_PORTS                                                                                 | BLACKLIST (<br>user agent -<br>BLACKLIST (<br>user agent -<br>BLACKLIST (<br>malicious ur<br>BLACKLIST (                                                                                                                     | SAH Agent<br>User-Agent known malicious<br>Async HTTP Agent<br>URI request for known<br>i config.ini on 3322.org doma<br>User-Agent known malicious<br>KAIIOO00871 -                                                              |
| 0                | GID<br>1<br>1<br>1<br>1                                 | <ul> <li>Default Enabled</li> <li>Default Disabled</li> <li>SID</li> <li>5808</li> <li>5900</li> <li>19493</li> </ul>                               | C Enable<br>C Disab<br>Proto<br>tcp<br>tcp<br>tcp             | led by user Auto-disable Source SHOME_NET SHOME_NET SHOME_NET SHOME_NET                                                                                                         | Ad by SID Mgmt SPort any any any any           | \$EXTERNAL_NET \$EXTERNAL_NET \$EXTERNAL_NET                                                                        | \$HTTP_PORTS<br>\$HTTP_PORTS<br>\$HTTP_PORTS                                                                 | BLACKLIST I<br>user agent -<br>BLACKLIST I<br>user agent -<br>BLACKLIST I<br>malicious ur<br>BLACKLIST I<br>user-agent -<br>Win.Trojan.D<br>BROWSER-P                                                                        | SAH Agent<br>User-Agent known malicious<br>Async HTTP Agent<br>URI request for known<br>i config.ini on 3322.org doma<br>User-Agent known malicious<br>KAIIOO00871 -                                                              |
| ©<br>©<br>©      | <pre>GID 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>    | <ul> <li>Default Enabled</li> <li>Default Disabled</li> <li>SID</li> <li>5808</li> <li>5900</li> <li>19493</li> <li>33907</li> </ul>                | C Enable<br>Disab<br>Proto<br>tcp<br>tcp<br>tcp<br>tcp<br>tcp | led by user Auto-disable Source SHOME_NET SHOME_NET SHOME_NET SHOME_NET SHOME_NET                                                                                               | d by SID Mgmt SPort any any any any any any    | \$EXTERNAL_NET \$EXTERNAL_NET \$EXTERNAL_NET \$EXTERNAL_NET \$HOME_NET                                              | \$HTTP_PORTS         \$HTTP_PORTS         \$HTTP_PORTS         \$HTTP_PORTS         \$HTTP_PORTS             | BLACKLIST (<br>user agent -<br>BLACKLIST (<br>user agent -<br>BLACKLIST (<br>malicious ur<br>BLACKLIST (<br>user-agent -<br>Win.Trojan.D<br>BROWSER-P<br>sql.DriverMa<br>attempt<br>BROWSER-P                                | SAH Agent<br>User-Agent known malicious<br>Async HTTP Agent<br>URI request for known<br>i config.ini on 3322.org doma<br>User-Agent known malicious<br>KAIIOOO0871 -<br>Dridex<br>LUGINS Java Applet                              |
| 9<br>9<br>9<br>9 | (GID)<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | <ul> <li>Default Enabled</li> <li>Default Disabled</li> <li>SID</li> <li>5808</li> <li>5900</li> <li>19493</li> <li>33907</li> <li>26898</li> </ul> | C Enable<br>C Disab<br>Proto<br>tcp<br>tcp<br>tcp<br>tcp      | led by user     Auto-disable       Source     \$HOME_NET       \$HOME_NET       \$HOME_NET       \$HOME_NET       \$HOME_NET       \$HOME_NET       \$HOME_NET       \$HOME_NET | d by SID Mgmt SPort any any any SFILE_DATA_POR | SEXTERNAL_NET         SEXTERNAL_NET         SEXTERNAL_NET         SEXTERNAL_NET         SHOME_NET         SHOME_NET | \$HTTP_PORTS         \$HTTP_PORTS         \$HTTP_PORTS         \$HTTP_PORTS         \$HTTP_PORTS         any | BLACKLIST I<br>user agent -<br>BLACKLIST I<br>user agent -<br>BLACKLIST I<br>malicious ur<br>BLACKLIST I<br>user-agent -<br>Win.Trojan.D<br>BROWSER-P<br>sql.DriverMa<br>attempt<br>BROWSER-P<br>Slider feature<br>BROWSER-P | SAH Agent<br>User-Agent known malicious<br>Async HTTP Agent<br>URI request for known<br>i config.ini on 3322.org doma<br>User-Agent known malicious<br>KAIIOOO0871 -<br>Dridex<br>LUGINS Java Applet<br>inager fakedriver exploit |

Fundamentals of Security

35

- Neither network-based nor host-based monitoring sufficient to detect some attacks
  - Attacker tries to telnet into system several times using different account names (network-based ID)
  - Attacker tries to log into system using an account without password (host-based ID)
- DIDS uses
  - agents on hosts being monitored
  - network monitor
  - DIDS director uses expert system to analyze data

- Intruder breaks into system A as *alice*
- Intruder goes from A to system B, and breaks into B's account *bob*
- Host-based mechanisms cannot correlate these
- DIDS director can see *bob* logged in over *alice*'s connection; expert system infers it is the same user
   assigns *network identification number* NID (per user)

- Agent analyzes logs to extract entries of interest
  - uses signatures to look for attacks
    - Summaries sent to Director
  - Other events forwarded directly to director
- DIDS model has agents report:
  - Events (information in log entries)
  - Action (e.g., "create"), domain (e.g., "system")

- Identify attack *before* it completes
- Prevent it from completing
- Jails useful for this (remember "Honeypots")
  - Attacker placed in a confined environment that looks like a full, unrestricted environment
  - Attacker may download files, but gets bogus ones
  - Can imitate a slow system, or an unreliable one
  - Useful to figure out what attacker wants

# Somayaji and Forrest (2000)

- "Automated Response using Call Delays"
- IDS records anomalous system calls
  - When number of calls exceeded threshold, system delayed evaluation of system calls (only)
  - If second threshold exceeded, process cannot spawn child
- Performance impact should be minimal on legitimate programs
  - System calls small part of runtime of most programs

- Implemented in kernel of Linux system
- Test #1: *ssh* daemon
  - Detected attempt to use global password installed as back door in daemon
  - Connection slowed down significantly
  - When second threshold set to 1, attacker could not obtain login shell
- Test #2: *sendmail* daemon
  - Detected attempts to break in
  - Delays grew quickly to 2 hours per system call

- Restoring system to satisfy site security policy
- Six phases
  - Preparation for attack (before attack detected)
  - *Identification* of attack
  - Containment of attack (confinement)
  - *Eradication* of attack (stop attack)
  - *Recovery* from attack (restore system to secure state)
  - *Follow-up* to attack (analysis and other actions)

- Goal: limit access of attacker to system resources
- Two methods
  - Passive monitoring
  - Constraining access

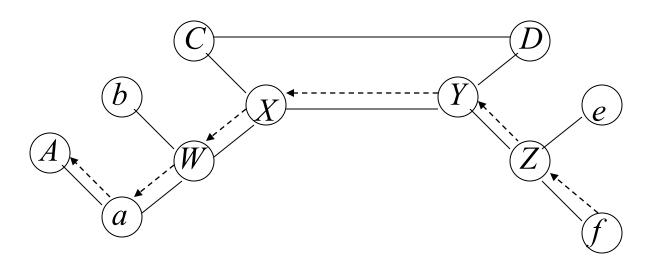
- Records attacker's actions; do not interfere with it
  - Idea is to find out what the attacker is after and/or methods the attacker is using
- Problem: attacked system is vulnerable throughout
  - Attacker can also attack other systems
- Example: type of OS can be derived from settings of TCP and IP packets of incoming connections
  - Analyst draws conclusions about source of attack

- Reduce protection domain of attacker
- Problem: if defenders do not know what attacker is after, reduced protection domain may <u>not</u> contain what the attacker is after
- e.g., Stoll created document that attacker downloaded (knew what she was after)
  - Download took several hours, during which the underlying phone call was traced to Germany

## Deception

- Deception Tool Kit (DTK)
  - Creates false network interface
  - Can present any network configuration to attackers
  - When probed, can return wide range of vulnerabilities
  - Attacker wastes time attacking non-existent systems while analyst collects and analyzes attacks to determine goals and abilities of attacker
  - Experiments show deception is effective response to keep attackers from targeting real systems

- Usual approach: deny or remove access to system, or terminate processes involved in attack
- Use wrappers to implement access control
  - Example: wrap system calls
    - On invocation, wrapper takes control of process
    - Wrapper can log call, deny access, do intrusion detection
    - Experiments focusing on intrusion detection used multiple wrappers to terminate suspicious processes
  - Example: network connections
    - Wrapper around servers log, do access control on, incoming connections and control access to Web-based databases


#### **Firewalls**

- Mediate access to organization's network
  - Also mediate access out to the Internet
- Example: Java applets filtered at firewall
  - Use proxy server to rewrite them
    - Change "<applet>" to something else
  - Discard incoming web files with hex sequence CA FE BA BE (Java class files prefix)
  - Block all files with name ending in ".class" or ".zip"
    - Lots of false positives

- Coordinates response to attacks
- Boundary controller is system that can block connection from entering perimeter – Typically firewalls/routers
- *Neighbor* is system directly connected
- *IDIP domain* is set of systems that can send messages to one another without messages passing through boundary controller

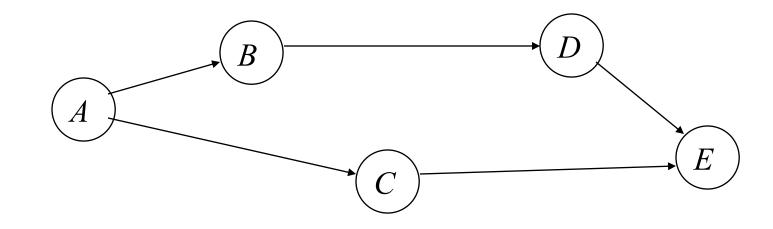
- IDIP protocol engine monitors connection passing through members of IDIP domains
  - If intrusion observed, engine reports it to neighbors
  - Neighbors propagate information about attack
  - Trace connection, datagrams to boundary controllers
  - Boundary controllers coordinate responses
    - Usually, block attack, notify other controllers to block relevant communications

#### Example



- *C*, *D*, *W*, *X*, *Y*, *Z* boundary controllers
- *f* launches flooding attack on *A* (saturates links)
- a notifies W which notifies X which notifies Y and C ...
- After X suppresses traffic intended for A, W eliminates supression
- Now A, b, a, and W can communicate again
- Problem: paths without IDIP controllers are vulnerable

- Take action external to system
  - Legal action (issue: span communities)
  - Thumb-printing: trace-back at **connection** level
  - IP header marking: trace-back at **packet** level
  - Counter-attacking ©


# **Thumb-printing**

- Compares contents of connections to determine which are in a chain of connections
- Characteristic of a good thumbprint
  - 1. Takes as little space as possible
  - 2. Low probability of collisions (connections with different contents having same thumbprint)
  - 3. Minimally affected by common transmission errors
  - 4. Additive, so two thumbprints over successive intervals can be combined
  - 5. Cost little to compute, compare

- Thumbprints are linear combinations of character frequencies
  - Experiment used telnet, rlogin connections
- Computed over normal network traffic
- Control experiment
  - Out of 4000 random pairings, 1 match reported
    - So thumbprints unlikely to match if connections paired randomly
    - Matched pair had identical contents

- Router places data into each header: path taken
- When do you mark it?
  - Deterministic: always marked
  - Probabilistic: marked with some probability
- How do you mark it?
  - Internal: marking placed in existing header
  - Expansive: header expanded to include extra space

- Expand header to have *n* slots for router addresses
- Router address placed in slot *s* with probability *sp*
- Use: suppose SYN flood occurs in network



- *E* SYN flooded; 3150 packets could be result of flood
- E sees packets: 600 (*A*, *B*, *D*); 200 (*A*, *D*); 150 (*B*, *D*); 1500 (*D*); 400 (*A*, *C*); 300 (*C*)
  - *aggregates: A*: 1200; *B*: 750; *C*: 700; *D*: 2450
- Note traffic increases between *B* and *D*: *B* probable culprit

- Use legal procedures
  - Collect chain of evidence so legal authorities can establish attack was real
  - Check with lawyers for this
    - Rules of evidence very specific and detailed
    - If you don't follow them, expect case to be dropped
- Technical attack
  - Goal is to damage attacker seriously enough to stop current attack and deter future attacks

### Consequences

# 1. May harm innocent party

- Attacker may have broken into source of attack or may be impersonating innocent party
- 2. May have side effects
  - If counterattack is flooding, may block legitimate use of network
- 3. Antithetical to shared use of network
  - Counterattack absorbs network resources and makes threats more immediate
- 4. May be legally actionable

- Counter-worm given signature of real worm
  - spreads rapidly
  - deletes all occurrences of original worm
- Some issues
  - What if infected system is gathering worms for fun?
  - How do originators of counter-worm know it will not cause problems for any system?
    - And are they legally liable if it does?