
CSE331: Fundamentals of Computer Security

Fall 2022
Radu Sion

© 2005-22
Thanks to G. Suryanarayana and K. Thangavelu

Fair-use educational use of several online public information sources.

File Systems Security

Encryption File Systems

Fundamentals of Computer Security 2

Encryption File Systems (EFS)

 What is an encryption file system?

 Alternatives
◼ Crypt

 Stores plain files during editing

 Need to supply the key several times

◼ Integrated security in applications

 Goals
◼ Security

◼ Usability

◼ Performance

Fundamentals of Computer Security 3

Goals of EFS

◼ Security

 Privacy

◼ On disk

◼ On wire

 Integrity

 Authentication

 Authorization

Fundamentals of Computer Security 4

Goals of EFS

◼ Usability

 Convenience

 Transparency

◼ User

◼ Applications

◼ Performance

 Encryption

 Integrity checking

 Costs with indirection

◼ Copying data

◼ Context switching (user land vs. kernel)

Fundamentals of Computer Security 5

Challenges in EFS

 Key Management
◼ Storage of keys

 On disk
 In memory

◼ Swapped out pages

◼ Sharing of keys
 Group management

◼ Key compromise
 Re-encrypt files

◼ Costly
◼ Gives adversary two versions of same file to work with

◼ Key revocation

Fundamentals of Computer Security 6

Challenges in EFS

 Utility services
◼ Backup – possible after encryption ?

◼ File system checker

◼ De-fragmentation

 Random access
◼ Cannot use stream ciphers

 Reduces strength of privacy

◼ Use block encryption

 May leak information
◼ Frequency analysis

Fundamentals of Computer Security 7

Challenges in EFS

 Forward Secrecy

◼ Data is persistent – “sitting duck effect”

 Strong encryption

◼ Long keys

 File specific keys

 IV or Block specific encryption

◼ Granularity of encryption

 All or nothing

 Per file encryption

Fundamentals of Computer Security 8

Examples

 CFS

 TCFS

 Cryptfs

 NCryptfs

 eCryptfs

 Microsoft EFS

Fundamentals of Computer Security 9

CFS - Cryptographic File System

 First system to push encryption services in the File System layer

 Implemented in the User Layer

◼ No kernel recompilation required
◼ Portable

 Standard Unix FS API support

 Can use any file systems as its underlying storage

 Transparent encryption

 All or nothing encryption

Fundamentals of Computer Security 10

Data Flow in
Standard Vnode
File System

CFS

Fundamentals of Computer Security 11

Data Flow in NFS
Client and server

CFS

Network

NFS Client

NFS Server

RPC
XDR

Auth: uid/gid

Fundamentals of Computer Security 12

Level of Indirection

CFSD

CFS

Fundamentals of Computer Security 13

CFS

 CFSD – a modified NFS server

◼ Supports all normal NFS RPCs

◼ Provides additional RPCs

◼ Accepts RPC from localhost only

 No modification to NFS client

 Start CFSD at boot time

◼ Mount /cryptfs

 A virtual file system

Fundamentals of Computer Security 14

CFS

 Attach a cryptographic key to a directory

 Directory can be local or remote

Fundamentals of Computer Security 15

CFS

 Attach an encrypted directory

 Key verified by using a special file in directory encrypted by
the hash of the key

Fundamentals of Computer Security 16

CFS

 Detach an encrypted directory

 Additional commands

◼ cname

◼ ccat

Fundamentals of Computer Security 17

CFS - Security

 Uses DES in ECB – why ?
 Uses pass phrases

◼ Key 1

 Long Bit Mask (Prevent structural analysis)
◼ Key 2

 Encrypt blocks in ECB mode

 IV
◼ Prevent structural analysis across files
◼ XORed with each block
◼ No Chaining
◼ Stored in GID (High security mode)

Fundamentals of Computer Security 18

CFS - Security

 Filenames are encrypted and encoded in ASCII

◼ increases size of file names

 An attach can be marked “obscure”

◼ security through obscurity

 File sizes, access times and structure of directory
hierarchy is not encrypted

Fundamentals of Computer Security 19

CFS – Performance

 Data is copied several extra times

 No write cache, only read caches

Application
-> kernel

-> CFS daemon (User Layer)
-> back to the kernel

-> underlying file system.

Fundamentals of Computer Security 20

TCFS – Transparent CFS

 Implemented as a modified kernel-mode NFS client

◼ Kernel module recompilation required

◼ User level tools recompilation required

Fundamentals of Computer Security 21

TCFS

Network

TCFS NFS Client

NFS Server

RPC
XDR

mountd
ioctl

xattrd

Fundamentals of Computer Security 22

TCFS - Operation

 Server exports a directory
◼ /etc/exports

 NFS server not modified

 Client mounts a remote dir with type “tcfs”

 A modified mount command in nfs-utils

 Encrypted files are set with special attribute
◼ A modified xattrd

 User master key must be set to access files

/exports bar(rw,insecure)

mount -t tcfs foo:/exports /mnt/tcfs

Fundamentals of Computer Security 23

TCFS - Operation

Fundamentals of Computer Security 24

TCFS – Key Management

 Raw key management

◼ New ioctls recognized by client

◼ Provides basis for other schemes

 Basic Key Management

◼ The key database

◼ sysadmin registers a user

/etc/tcfspwdb

Fundamentals of Computer Security 25

TCFS – Key Management

 User creates a master key

 sysadmin can remove a user

Fundamentals of Computer Security 26

TCFS – Key Management

 The Kerberized Key Management Scheme

Client

Kerberos
Server

TCFS Key
Server

NFS Server

Request ticket

Ticket for TCFSKS

Fundamentals of Computer Security 27

TCFS – Key Management

 The Kerberized Key Management Scheme

Client

Kerberos
Server

TCFS Key
Server

NFS Server

Request master key

Encrypted master key

Fundamentals of Computer Security 28

TCFS – Key Management

 The Kerberized Key Management Scheme

Client

Kerberos
Server

TCFS Key
Server

NFS Server

Request file

Return file

Fundamentals of Computer Security 29

TCFS – Key Management

 Group/Threshold Sharing

◼ Similar to secret splitting

◼ sysadmin creates a group

◼ # of users

◼ name of users

◼ threshold

◼ password

◼ User activates a group

tcfsaddgroup –g <group>

tcfsputkey –g <group>
tcfsrmkey –g <group>

Fundamentals of Computer Security 30

TCFS - Encryption

 Multiple cipher support
 File specific key
 File header

◼ file specific key
◼ cipher

 Block encryption
◼ block key

 Hash(File Key || Block no)

◼ Protection against structural analysis
◼ Authentication tag

 Hash(Block data || block key)
 Detect data change/swap

Fundamentals of Computer Security 31

TCFS - Encryption

Fundamentals of Computer Security 32

TCFS - Performance

 Less overhead than CFS

◼ data copied fewer times

 Random access is slower

 RTT for remote attribute checking makes is slower
than vanilla NFS

Fundamentals of Computer Security 33

Cryptfs: A Stackable Vnode Level Encryption
File System

User Space

Kernel Space

Process

Virtual File System (VFS)

Ext2 NFSFAT

A layer of abstraction

Fundamentals of Computer Security 34

Cryptfs

 VNodes

◼ open file, directory, device, socket

◼ Higher layers access all entities uniformly

 VNode stacking

◼ Modularize file system functions

Fundamentals of Computer Security 35

Cryptfs

A stackable Vnode interface

Fundamentals of Computer Security 36

Cryptfs – Key Management

 Root mounts an instance of Cryptfs

 User passphrases

 User Key = MD5Hash(passphrases)

 Special ioctl to manage keys

◼ set/reset/delete keys

 Two modes of operation

◼ Key lookup on user id alone

Fundamentals of Computer Security 37

Cryptfs – Key Management

◼ Key lookup on <user id, session id>

 What is a session? Unix sessions!

 Protected again user account compromise

 Keys associated with real UID, not effective ones

 Groups

◼ Decouple from unix groups

◼ Must share the key

◼ Use multiple keys in different sessions

Fundamentals of Computer Security 38

Cryptfs – Security

 block size = page size
 Cipher: Blowfish

◼ Does not change the size of file

 Mode: CBC
◼ Only inside a block/page
◼ Limits dependency between blocks
◼ Allows random access

 One IV per mount
 No file specific key
 Encrypt file and directory names

◼ uuencode
 3 bytes of binary = 4 bytes of ascii (44-111)
 File names become 33% longer

◼ Checksums for filenames

Fundamentals of Computer Security 40

Cryptfs: write bytes 9000-25000

Interposing
Layer

Interposed Layer

Fundamentals of Computer Security 41

Cryptfs

 Works on top of any native FS

 No other daemons required

 Portable

◼ Exceptions

 Exporting symbols

 Modifications to FS data structure

 Kernel resident

◼ Kernel memory is difficult to get at

 vs.:CFS stores in user level memory

◼ Fewer context switches than CFS and TCFS

Fundamentals of Computer Security 42

NCryptfs

 Advanced version of Cryptfs

 Attachments

◼ A single mount operation

◼ “Attach” an encrypted directory

under “/mnt/ncryptfs”

nc_attach -c blowfish /mnt/ncryptfs mail /home/kvthanga/mail
% Enter key:

Fundamentals of Computer Security 43

NCryptfs

Mounts Attaches

Done by the superuser

- modify /etc/fstab

Can be done by any user

- A light weight mount

Encrypted directories can be
mounted on any other directory

Attaches are created only under
/mnt/ncryptfs

May execute many mount
commands

One mount to mount
/etc/ncryptfs

Directory mounted on must
already exist

No directories or files can be
created on /etc/ncryptfs

- Entries created in dcache

May hide underlying dirs Does not hide any underlying
data

OS have hard limits for mounts No limits

Fundamentals of Computer Security 44

NCryptfs

 Attachments

◼ Encryption key

◼ Authorizations

◼ Active Sessions

Fundamentals of Computer Security 45

NCryptfs

◼ Encryption key

 Long lived key for

◼ Data

◼ File names

▪ checksums

 No file specific key

 Created from hash of user passphrase

 Key related data is “pinned” in memory

◼ Pages with keys are not swapped

 Support multiple ciphers

 CFB - Cipher feedback mode of operation

◼ File size does not change

Fundamentals of Computer Security 46

NCryptfs

 Players

◼ System Administrator

 Mounts NCrytpfs

 Installs the NCryptfs kernel and user-space components

◼ Owners

 Controls encryption key

 Delegates access rights

◼ Reader & Writers

 Don’t have the encryption key

Fundamentals of Computer Security 47

NCryptfs

 Authorizations
◼ Gives an entity access to an attach

◼ Entity

 process, session, user or group

◼ Create an authorization

 Entity selects a passphrase

 Sends salted MD5 hash of it to owner
◼ Entity does not have to share passphrase with owner

◼ What is a salted MD5 hash?

 Owner adds hash to configuration file

Fundamentals of Computer Security 48

NCryptfs

◼ Use an authorization

 Creates a session

 Active sessions

◼ Entity

◼ Permissions granted to the entity - bitmask

 Unix permissions

◼ Read, Write, Execute

nc_auth /mnt/ncryptfs mail

Fundamentals of Computer Security 49

NCryptfs

 Detach

 Add an Authorization

 List Authorizations

 Delete an Authorization

 Revoke an active session

 List active sessions

 Bypass VFS Permissions

Fundamentals of Computer Security 50

NCryptfs

 Attach access control

◼ Attach – default everyone

◼ Authentication

 Attach names

◼ User specified

◼ NCryptfs

 u<userid>s<sessionid>

 Random name

◼ Prevents namespace clash

Fundamentals of Computer Security 51

NCryptfs

 Groups

◼ Supports native groups

 has to be setup ahead of time

◼ Support ad-hoc groups

 still need permission to modify low level objects

◼ Use Bypass VFS permission

Fundamentals of Computer Security 52

NCryptfs

Bypass VFS permission

current->fsuid = owner’s

Restore(current->fsuid)

Fundamentals of Computer Security 53

NCryptfs

 Timeouts

◼ Active sessions

 permission denied

 new file opens fail

 new file open suspends process until re-authentication

 all operations suspend process until re-authentication

◼ Authorizations

 new uses can’t create new sessions

 old sessions may continue

◼ Keys

 key is deleted or

 use denied for new files

◼ User space timeout callbacks

Fundamentals of Computer Security 54

NCryptfs

 Revocation
◼ Similar to timeout

◼ Can re-authenticate

 Portability
◼ Modification to task structure

 On-exit callbacks
◼ delete keys

◼ memory resources

 Challenge response authentication

◼ Cache clearing

eCryptfs from IBM

Motivation/ Problem

History and Overview

eCryptfs solutions

Design overview

Design Details

Key management

VFS operations

Using eCryptfs

Future enhancements

Motivation

Confidentiality when outside host operating environment.

Easy to use secure data store.

Convenient backup procedures.

Key retrieval.

Intuitive – minimal learning by users.

Policies and owners.

Cost of technology and adoption.

Knowledge and extent of risks

History/ Overview

Derived from Erez Zadok’s cryptfs (FIST framework).

Part of Linux from version 2.6.19 onwards.

Encryption at file level.

File contains metadata for decryption.

Native kernel FS (POSIX)- no need for patches.

Seamless security - data encryption on the fly

Seamless key mgmt - Linux kernel keyring.

Incremental development – current ver 0.1.

Why a new thing ?

 extends Cryptfs to provide advanced key management and
policy features

 stores cryptographic metadata in the header of each file
written, so that encrypted files can be copied between hosts

 the file will be decryptable with the proper key, and there is no
need to keep track of any additional information aside from what
is already in the encrypted file itself.

eCryptfs from IBM

Motivation/ Problem

History and Overview

eCryptfs solutions

Design overview

Design Details

Key management

VFS operations

Using eCryptfs

Future enhancements

eCryptfs solutions

Confidentiality - Integration of security into FS (Lotus Notes
analogy of secure transmission)

Ease of deployment – No kernel modifications, No separate
partition, per-file meta data

TPM utilization- generate key pair for session key encryption.

Key Escrow usage. (Author’s suggestion)

Easy Incremental backups.

Lower File System independent.

Design overview

eCryptfs from IBM

Motivation/ Problem

History and Overview

eCryptfs solutions

Design overview

Design Details

Key management

VFS operations

Using eCryptfs

Future enhancements

Details: enc/decrypt individual data extents

File Encryption Key
Encryption Key

(FEKEK)

Design Details

File format – Follows OpenPGP format

◼Deviation for PGP – Encryption on extents

◼Each extent has unique IVs.

◼Some extents contain only IVs for data extents

◼Sparse file support – fill encrypted 0s

◼CBC block cipher for extents

Design Details (Contd..)

File format (contd)

◼Page 0– Header, Page 1-n: Data + Extent.

◼Bytes 0-19- Standard information for file.

◼Marker– 32 bit number for uniquely identification

◼Byte 20 onwards

Set of all authentication tokens for the file

Encrypted File Encryption Key

PGP
File
header
format

Design Details (Contd..)

Kernel Crypto API

◼In kernel encryption – faster

◼Any symmetric cipher supported by cryptoAPI

IV (Initialization Vector)

◼Avoid risk of cryptanalysis- unique IV for extents

◼Initial IV – MD5 sum of file encryption key (KR)

Integrity verification

◼Keyed hash over extents using KR.

◼Generate hash whenever data changes

◼Verify during read, assert hash verifies.

Design Details (Contd..)

In-memory Cryptographic Context - Stored in user session’s
keyring.

◼Session key for the file.

◼Encryption status.

◼crypto API context – cipher, key size, etc

◼Size of the extents.

Key revocation

◼Acquire the passphrase and the session key from it.

◼Regenerate a new session key and encrypt all data once again.

Design Details (Contd..)

Is a stackable FS

◼Does not write directly onto block device.

◼Each VFS object maps onto a lower object.

◼Any POSIX compliant FS can act as a lower FS.

VFS objects’ private data holds:

◼The reference to lower objects.

◼Current context required for encryption/ decryption.

eCryptfs from IBM

Motivation/ Problem

History and Overview

eCryptfs solutions

Design overview

Design Details

Key management

VFS operations

Using eCryptfs

Future enhancements

In memory context in the inode

Authentication
token

Key management

Supports all ciphers and key sizes of cryptoAPI

Default AES-128

MD5 hash
64K times

User passphrase
+ Salt

Authentication
token

Random number
generator

N byte File
Encryption Key

File header

Encrypt using
Authentication

Token
File header

FEK

AT

User mode

Kernel mode

Key management (Contd…)

Encryption

◼Authentication token found in keyring after mount.

◼FEK encrypted with each user’s AT and stored in header.

◼Authentication token of each user stored in header

Decryption:

◼Authentication token matched with each token in header

◼File Encryption Key decrypted with proper AT and stored
in keyring – Support for multiple users

Key management (Contd..)

Pluggable Authentication Module – Configure
ways to authenticate the user (generate token)

◼Passphrase (salted)- Stored in keyring

◼Use passphrase to extract public key

◼Use this derived key in combination with key from
TPM

◼Use a smart card or USB to store the key

Pluggable PKI Module – use x509 certificates,
revocation lists etc and manage keys better

External PKI
module

Key identifier +
Encrypted data

Plain text data

Authenticates the identifier
and decrypts the data if valid

Key Callout, eCryptfs Daemon

Crypto metadata

File structure

eCryptfs layer

Kernel
Crypto API

Key extractor
(Key store)

Keystore
callout

VFS
syscall

Kernel User

PKI API

Filesytem

eCryptfs
daemon

PKI
module

Key management (Contd..)

Key Callout

◼Means of communication between kernel and
user module – Parses policy information on target

◼Finds passphrase or public keys of users

eCryptfs Daemon

◼Means to get to the user X-session if need to be
prompted for a passphrase

Key Escrow

◼ A centralized trusted party stores all keys

Secret sharing/ splitting

◼In a dynamic environment, this could be used for
a balance between key secrecy and sharing

VFS Operations (version 0.1)

Mount

Helper
application

User session
keyring

User passphrase Authentication token

eCryptfs

Set up context
for new files

Mount parameter id

Set up context
for new files

Authentication
token from

key ring

VFS Operations (Contd..)

File Open – Existing file

◼Validate the unique eCryptfs marker

◼Match the Authentication token

◼Decrypt File Encryption Key

◼Root IV = N bytes of MD5(File Encryption Key)

◼Update the context in the inode with

File Encryption key

Key size

Cipher name

Root IV

Number of header pages and extent size

VFS Operations (Contd..)

File Open – New file

◼Generate a File Encryption Key in kernel

◼Fill inode context

Cipher name – AES 128

Root IV – N bytes of MD5(File Encryption Key)

Header page – 1, extent size – kernel page size

◼Initialize the kernel crypto API context for the file

CBC mode

◼Get Authentication token, Encrypt FEK with it

◼Header to be written to disk on close

VFS Operations (Contd..)

Page Read/ Write

◼File is open and inode contains relevant context

◼Lower page index= index + Num of header pages

◼IV = Root IV + page index

◼Fetch the key and cipher used from context

◼Calculate the extent boundaries for operation

◼Set up state to be used by crypto API

◼Read – Disk -> Encrypted page + context ->
crypto API -> Clear text page -> Caller

◼Write – Caller -> Clear text page + context ->
crypto API -> Encrypted text page -> Disk

VFS Operations (Contd..)

File truncation

◼File size updated in header

◼Write encrypted 0s after new EOF

File Append

◼Translated into write to the appropriate page in
the lower file

File Close

◼Free up associated VFS objects

◼If new file, write the header on disk

◼Existing file, no change to the on disk header

eCryptfs from IBM

Motivation/ Problem

History and Overview

eCryptfs solutions

Design overview

Design Details

Key management

VFS operations

Using eCryptfs

Future enhancements

Using eCryptfs

Linux Journal article dated 04/01/07 – Detailed
usage instructions

◼Sample usage

#modprobe ecryptfs - Load the module

#mount –t ecryptfs /sec /sec – overlay mount

Enter passphrase:

Enter cipher:

#cat “Hello world” > secret.txt

◼PKI modules can be selected by mount options
for public key support

Future work

Incremental development – versions 0.1, 0.2,
0.3 planned

◼Mount wide public key support

◼Filename and metadata (size and attributes)
encryption

◼eCryptfs policy generators using generic utils

◼Convenient GUI for ease of use

◼Timeouts as supported by Ncryptfs

Yet to address

◼Temporary files left unencrypted

◼Data on swap partition unencrypted (!!!)

EFS (Microsoft)

Background of Invention
Objects and Summary of invention
General architecture
Components of EFS
EFS Driver
File System Run Time Library (FSRTL)
FSRTL callouts
EFS service
Win32 API
Data Encryption/ Decryption/ Recovery
General operations
Miscellaneous details
Security holes in EFS

Overview

Q: Forward
secrecy?

Background of Invention

Problem: Protecting sensitive data on disk

Solution: Encrypt sensitive data

Associated problems with naïve approach

◼Users choose weak passwords

◼Lost keys – share keys, compromise security

◼Key revocation

◼Overhead in encrypting each file

◼Intermediate temporary files

◼Application level encryption– key prone to attack

◼Not scalable to large number of users

Objects/ Summary of Invention

Secure Storage- Integrate security into storage

Security transparent to legitimate users

Share data legitimately and securely

Extensible – Adding new users/ ciphers

Data recovery when user key lost

Symmetric + Asymmetric – Performance

Reference cipher: RSA + DES

Quick idea

◼User chooses to encrypt – System generates a key (FEK)
and prepares the context.

◼Data encrypted transparently using context

◼FEK encrypted with user public key in the file

General Architecture where EFS exists

Workstation/ Server/
Standalone system

Processor

Memory

Operating System (Win NT)

File System (NTFS)

Set of APIs

I/O devices

Non volatile storage device

Swap space – VM

General Architecture where EFS exists

Encrypting File system and Method

Background of Invention
Objects and Summary of invention
General architecture of EFS
Components of EFS
EFS Driver
File System Run Time Library (FSRTL)
FSRTL callouts
EFS service
Win32 API
Data Encryption/ Decryption/ Recovery
General operations
Miscellaneous details
Security holes in EFS

Components of EFS

EFS Driver (EFSD)

Sits above NTFS

Instantiation of EFSD

Registers FSRTL CB with NTFS

EFSD <-> EFSS

◼Key mgmt services

◼Generate keys, Extract key from metadata, Get updated key

◼GenerateSessionKey for secure communication

◼Session Key used for EFSS<->EFSD<->FSRTL

EFSD <-> FSRTL through NTFS

◼To perform FS operations read/write

◼Update with latest key

EFS FSRTL (FS Run Time Library)

Implements callout functions for FS operations

Generic Data Transformation interface

FSRTL uses this for data encryption

Gets FEK from EFSD

Maintains cryptographic context

EFSD and FSRTL – Part of same component

EFSD <-> FSRTL through NTFS to maintain
consistent FS state

Encrypting File system and Method

Background of Invention
Objects and Summary of invention
General architecture
Components of EFS
EFS Driver
File System Run Time Library (FSRTL)
FSRTL callouts
EFS service
Win32 API
Data Encryption/ Decryption/ Recovery
General operations
Miscellaneous details
Security holes in EFS

EFS FSRTL Callout Functions

FileCreate for existing file

◼Called by NTFS if it determines FSRTL is interested in it.

◼Reads metadata from file and fills context

◼EFSD later reads context, gets key from EFSS

◼EFSD sets up key context with the key and stores in NTFS

FileCreate for new file

◼Called by NTFS if the directory is set as encrypted.

◼Fills up context as requisition for new key

◼EFSD requests new key from EFSS

◼EFSD sets up key context with the key and stores in NTFS

EFS FSRTL Callout Functions (Contd..)

Filecontrol_1

◼Called by NTFS when the state of the file changes

◼If encrypting – no other operations until complete

Filecontrol_2

◼Communication between EFSD and FSRTL

◼Various requests with associated data for context preparation

◼EFS_SET_ATTR – write new metadata to FSRTL

◼EFS_GET_ATTR – get stored metadata from FSRTL

◼EFS_DECRYPT_BEGIN – FSRTL locks file until decrypt ends

◼EFS_DEL_ATTR – Decryption done, delete metadata

◼EFS_ENCRYPT_DONE – Encryption done, allow other
operations

EFS FSRTL Callout Functions (Contd..)

AfterReadProcess

◼FS calls this if stream needs to be decrypted

◼FSRTL decrypts the stream, FS returns to user

BeforeWriteProcess

◼FS calls this if stream needs to be encrypted

◼FSRTL encrypts the stream, FS stores on disk

CleanUp

◼FS calls this before freeing resources for stream

◼FSRTL frees up its context and resources allocated

EFS FSRTL Callout Functions (Contd..)

AttachVolume

◼FS calls this on first user [en/de]cryption on the volume

◼FSRTL requests attachment to the device

◼All calls routed to EFS Driver before NTFS

DismountVolume

◼FS calls this if when drive ejected or power off

◼Free allocated resources during AttachVolume

EFS Service

EFS Service

Part of Win NT security service

Secure communication with kernel through LSA

Talks to CryptoAPI in user space

Services provided
◼Generate Session Key

◼Generate File Encryption Key (FEK)

◼Extract FEK from metadata using user’s private keys

◼Win32 API support

EFSD and EFSS synchronize with one other on
startup and exchange session key

Encrypting File system and Method

Background of Invention
Objects and Summary of invention
General architecture
Components of EFS
EFS Driver
File System Run Time Library (FSRTL)
FSRTL callouts
EFS service
Win32 API
Data Encryption/ Decryption/ Recovery
General operations
Miscellaneous details
Security holes in EFS

Win32 API

User mode services by EFSS to use encryption

Interfaces provided for operations on plain text files

◼EncryptFile

◼DecryptFile

Interfaces provided for backup encrypted files

◼OpenRawFile

◼ReadRawFile

◼WriteRawFile

◼CloseRawFile

During raw file transfer, EFSS informs FSRTL through
FileControl_2 not to encrypt/decrypt data

Overview

Data Encryption

Encryption Key – Rand num

Ref symmetric cipher DES

Data Decryption Field - DDF

Data Recovery Field - DRF

Private keys on smart card
– not used during encryption

Ref asymmetric cipher RSA

Not tied to any cipher or
key length

Data Decryption

User private key is
used to decrypt

each DDF

One of them will
decrypt the key

FEK used to decrypt
the cipher text

FEK and Decryption stored
in context info

Ease of random access

Data Recovery

When users leave/ lose keys

Search starts from DDF and
goes on to DRF

Reveals only FEK not user
private key

Domain policy decides the
recovery agents

Policy contains public keys

Agent specifies private key

Policy MD5 hashed to ensure
authenticity

Hash value authenticated
before using the policy

Encrypting File system and Method

Background of Invention
Objects and Summary of invention
General architecture
Components of EFS
EFS Driver
File System Run Time Library (FSRTL)
FSRTL callouts
EFS service
Win32 API
Data Encryption/ Decryption/ Recovery
General operations
Miscellaneous details
Security holes in EFS

General operation – Create/ Open

EFS creates a
new context for

the file

API calls land at
I/O layer.

Decides apt FS

If stream needs
encryption, call

FSRTL

New file- Request for FEK
Existing file – Load meta
data from file to context.

Request verification

Verification: Pass
metadata to EFSS

New FEK: Request
new key from

EFSS

Generic Win32
API for file

create/ open

Stores the updated
metadata from EFS

driver onto disk

Mark file as
encrypted

General operation – Read

Args: File
Offset, Length,

Buffer, Key

AfterRead
Callout

General operation – Write

Deletes the
clear text copy

BeforeWrite
Callout

General operation – Win32 EncryptFile

Directory is
simply marked
as its data is
not encrypted

General operation – Win32 DecryptFile

Directory is
simply marked
as its data is
not encrypted

Make a copy of
the original file

Overwrite the
original with

plaintext

Miscellaneous details

Intermediate/ Temporary files encrypted too

EFSD uses non paged pool of memory

◼FEK and other context details not swapped to disk

Data sharing

◼FEK encrypted with public keys of all legitimate users

Easy to use - no administrative effort involved

Support for encryption on remote server

◼Server support for EFS, Data on wire in plaintext

File copy across FS

◼Copy across EFS aware FS – encrypted content

◼Copy to EFS unaware FS (FAT32) – plaintext data copied

Security holes in EFS (Win 2K)

Administrator – Default Recovery agent

◼Has access to all user data

◼Win XP has no default recovery agent – Policy decides agents

User Private key protection

◼Protected by user password only – Not encrypted

◼Weak Hashes of pass-phrases are kept !!!

◼Key lies in all kinds of other places that are accessible at
various times to different principals (e.g., pass reset etc.)

No secure deletion in place

◼After encrypting files, plaintext version only deleted

◼Win XP does not yet solve this problem

◼Use third part tools for secure deletion

Directory contents not encrypted

