
CSE331: Fundamentals of Computer Security

Fall 2022
Radu Sion

© 2005-22
Thanks to G. Suryanarayana and K. Thangavelu

Fair-use educational use of several online public information sources.

File Systems Security

Encryption File Systems

Fundamentals of Computer Security 2

Encryption File Systems (EFS)

 What is an encryption file system?

 Alternatives
◼ Crypt

 Stores plain files during editing

 Need to supply the key several times

◼ Integrated security in applications

 Goals
◼ Security

◼ Usability

◼ Performance

Fundamentals of Computer Security 3

Goals of EFS

◼ Security

 Privacy

◼ On disk

◼ On wire

 Integrity

 Authentication

 Authorization

Fundamentals of Computer Security 4

Goals of EFS

◼ Usability

 Convenience

 Transparency

◼ User

◼ Applications

◼ Performance

 Encryption

 Integrity checking

 Costs with indirection

◼ Copying data

◼ Context switching (user land vs. kernel)

Fundamentals of Computer Security 5

Challenges in EFS

 Key Management
◼ Storage of keys

 On disk
 In memory

◼ Swapped out pages

◼ Sharing of keys
 Group management

◼ Key compromise
 Re-encrypt files

◼ Costly
◼ Gives adversary two versions of same file to work with

◼ Key revocation

Fundamentals of Computer Security 6

Challenges in EFS

 Utility services
◼ Backup – possible after encryption ?

◼ File system checker

◼ De-fragmentation

 Random access
◼ Cannot use stream ciphers

 Reduces strength of privacy

◼ Use block encryption

 May leak information
◼ Frequency analysis

Fundamentals of Computer Security 7

Challenges in EFS

 Forward Secrecy

◼ Data is persistent – “sitting duck effect”

 Strong encryption

◼ Long keys

 File specific keys

 IV or Block specific encryption

◼ Granularity of encryption

 All or nothing

 Per file encryption

Fundamentals of Computer Security 8

Examples

 CFS

 TCFS

 Cryptfs

 NCryptfs

 eCryptfs

 Microsoft EFS

Fundamentals of Computer Security 9

CFS - Cryptographic File System

 First system to push encryption services in the File System layer

 Implemented in the User Layer

◼ No kernel recompilation required
◼ Portable

 Standard Unix FS API support

 Can use any file systems as its underlying storage

 Transparent encryption

 All or nothing encryption

Fundamentals of Computer Security 10

Data Flow in
Standard Vnode
File System

CFS

Fundamentals of Computer Security 11

Data Flow in NFS
Client and server

CFS

Network

NFS Client

NFS Server

RPC
XDR

Auth: uid/gid

Fundamentals of Computer Security 12

Level of Indirection

CFSD

CFS

Fundamentals of Computer Security 13

CFS

 CFSD – a modified NFS server

◼ Supports all normal NFS RPCs

◼ Provides additional RPCs

◼ Accepts RPC from localhost only

 No modification to NFS client

 Start CFSD at boot time

◼ Mount /cryptfs

 A virtual file system

Fundamentals of Computer Security 14

CFS

 Attach a cryptographic key to a directory

 Directory can be local or remote

Fundamentals of Computer Security 15

CFS

 Attach an encrypted directory

 Key verified by using a special file in directory encrypted by
the hash of the key

Fundamentals of Computer Security 16

CFS

 Detach an encrypted directory

 Additional commands

◼ cname

◼ ccat

Fundamentals of Computer Security 17

CFS - Security

 Uses DES in ECB – why ?
 Uses pass phrases

◼ Key 1

 Long Bit Mask (Prevent structural analysis)
◼ Key 2

 Encrypt blocks in ECB mode

 IV
◼ Prevent structural analysis across files
◼ XORed with each block
◼ No Chaining
◼ Stored in GID (High security mode)

Fundamentals of Computer Security 18

CFS - Security

 Filenames are encrypted and encoded in ASCII

◼ increases size of file names

 An attach can be marked “obscure”

◼ security through obscurity

 File sizes, access times and structure of directory
hierarchy is not encrypted

Fundamentals of Computer Security 19

CFS – Performance

 Data is copied several extra times

 No write cache, only read caches

Application
-> kernel

-> CFS daemon (User Layer)
-> back to the kernel

-> underlying file system.

Fundamentals of Computer Security 20

TCFS – Transparent CFS

 Implemented as a modified kernel-mode NFS client

◼ Kernel module recompilation required

◼ User level tools recompilation required

Fundamentals of Computer Security 21

TCFS

Network

TCFS NFS Client

NFS Server

RPC
XDR

mountd
ioctl

xattrd

Fundamentals of Computer Security 22

TCFS - Operation

 Server exports a directory
◼ /etc/exports

 NFS server not modified

 Client mounts a remote dir with type “tcfs”

 A modified mount command in nfs-utils

 Encrypted files are set with special attribute
◼ A modified xattrd

 User master key must be set to access files

/exports bar(rw,insecure)

mount -t tcfs foo:/exports /mnt/tcfs

Fundamentals of Computer Security 23

TCFS - Operation

Fundamentals of Computer Security 24

TCFS – Key Management

 Raw key management

◼ New ioctls recognized by client

◼ Provides basis for other schemes

 Basic Key Management

◼ The key database

◼ sysadmin registers a user

/etc/tcfspwdb

Fundamentals of Computer Security 25

TCFS – Key Management

 User creates a master key

 sysadmin can remove a user

Fundamentals of Computer Security 26

TCFS – Key Management

 The Kerberized Key Management Scheme

Client

Kerberos
Server

TCFS Key
Server

NFS Server

Request ticket

Ticket for TCFSKS

Fundamentals of Computer Security 27

TCFS – Key Management

 The Kerberized Key Management Scheme

Client

Kerberos
Server

TCFS Key
Server

NFS Server

Request master key

Encrypted master key

Fundamentals of Computer Security 28

TCFS – Key Management

 The Kerberized Key Management Scheme

Client

Kerberos
Server

TCFS Key
Server

NFS Server

Request file

Return file

Fundamentals of Computer Security 29

TCFS – Key Management

 Group/Threshold Sharing

◼ Similar to secret splitting

◼ sysadmin creates a group

◼ # of users

◼ name of users

◼ threshold

◼ password

◼ User activates a group

tcfsaddgroup –g <group>

tcfsputkey –g <group>
tcfsrmkey –g <group>

Fundamentals of Computer Security 30

TCFS - Encryption

 Multiple cipher support
 File specific key
 File header

◼ file specific key
◼ cipher

 Block encryption
◼ block key

 Hash(File Key || Block no)

◼ Protection against structural analysis
◼ Authentication tag

 Hash(Block data || block key)
 Detect data change/swap

Fundamentals of Computer Security 31

TCFS - Encryption

Fundamentals of Computer Security 32

TCFS - Performance

 Less overhead than CFS

◼ data copied fewer times

 Random access is slower

 RTT for remote attribute checking makes is slower
than vanilla NFS

Fundamentals of Computer Security 33

Cryptfs: A Stackable Vnode Level Encryption
File System

User Space

Kernel Space

Process

Virtual File System (VFS)

Ext2 NFSFAT

A layer of abstraction

Fundamentals of Computer Security 34

Cryptfs

 VNodes

◼ open file, directory, device, socket

◼ Higher layers access all entities uniformly

 VNode stacking

◼ Modularize file system functions

Fundamentals of Computer Security 35

Cryptfs

A stackable Vnode interface

Fundamentals of Computer Security 36

Cryptfs – Key Management

 Root mounts an instance of Cryptfs

 User passphrases

 User Key = MD5Hash(passphrases)

 Special ioctl to manage keys

◼ set/reset/delete keys

 Two modes of operation

◼ Key lookup on user id alone

Fundamentals of Computer Security 37

Cryptfs – Key Management

◼ Key lookup on <user id, session id>

 What is a session? Unix sessions!

 Protected again user account compromise

 Keys associated with real UID, not effective ones

 Groups

◼ Decouple from unix groups

◼ Must share the key

◼ Use multiple keys in different sessions

Fundamentals of Computer Security 38

Cryptfs – Security

 block size = page size
 Cipher: Blowfish

◼ Does not change the size of file

 Mode: CBC
◼ Only inside a block/page
◼ Limits dependency between blocks
◼ Allows random access

 One IV per mount
 No file specific key
 Encrypt file and directory names

◼ uuencode
 3 bytes of binary = 4 bytes of ascii (44-111)
 File names become 33% longer

◼ Checksums for filenames

Fundamentals of Computer Security 40

Cryptfs: write bytes 9000-25000

Interposing
Layer

Interposed Layer

Fundamentals of Computer Security 41

Cryptfs

 Works on top of any native FS

 No other daemons required

 Portable

◼ Exceptions

 Exporting symbols

 Modifications to FS data structure

 Kernel resident

◼ Kernel memory is difficult to get at

 vs.:CFS stores in user level memory

◼ Fewer context switches than CFS and TCFS

Fundamentals of Computer Security 42

NCryptfs

 Advanced version of Cryptfs

 Attachments

◼ A single mount operation

◼ “Attach” an encrypted directory

under “/mnt/ncryptfs”

nc_attach -c blowfish /mnt/ncryptfs mail /home/kvthanga/mail
% Enter key:

Fundamentals of Computer Security 43

NCryptfs

Mounts Attaches

Done by the superuser

- modify /etc/fstab

Can be done by any user

- A light weight mount

Encrypted directories can be
mounted on any other directory

Attaches are created only under
/mnt/ncryptfs

May execute many mount
commands

One mount to mount
/etc/ncryptfs

Directory mounted on must
already exist

No directories or files can be
created on /etc/ncryptfs

- Entries created in dcache

May hide underlying dirs Does not hide any underlying
data

OS have hard limits for mounts No limits

Fundamentals of Computer Security 44

NCryptfs

 Attachments

◼ Encryption key

◼ Authorizations

◼ Active Sessions

Fundamentals of Computer Security 45

NCryptfs

◼ Encryption key

 Long lived key for

◼ Data

◼ File names

▪ checksums

 No file specific key

 Created from hash of user passphrase

 Key related data is “pinned” in memory

◼ Pages with keys are not swapped

 Support multiple ciphers

 CFB - Cipher feedback mode of operation

◼ File size does not change

Fundamentals of Computer Security 46

NCryptfs

 Players

◼ System Administrator

 Mounts NCrytpfs

 Installs the NCryptfs kernel and user-space components

◼ Owners

 Controls encryption key

 Delegates access rights

◼ Reader & Writers

 Don’t have the encryption key

Fundamentals of Computer Security 47

NCryptfs

 Authorizations
◼ Gives an entity access to an attach

◼ Entity

 process, session, user or group

◼ Create an authorization

 Entity selects a passphrase

 Sends salted MD5 hash of it to owner
◼ Entity does not have to share passphrase with owner

◼ What is a salted MD5 hash?

 Owner adds hash to configuration file

Fundamentals of Computer Security 48

NCryptfs

◼ Use an authorization

 Creates a session

 Active sessions

◼ Entity

◼ Permissions granted to the entity - bitmask

 Unix permissions

◼ Read, Write, Execute

nc_auth /mnt/ncryptfs mail

Fundamentals of Computer Security 49

NCryptfs

 Detach

 Add an Authorization

 List Authorizations

 Delete an Authorization

 Revoke an active session

 List active sessions

 Bypass VFS Permissions

Fundamentals of Computer Security 50

NCryptfs

 Attach access control

◼ Attach – default everyone

◼ Authentication

 Attach names

◼ User specified

◼ NCryptfs

 u<userid>s<sessionid>

 Random name

◼ Prevents namespace clash

Fundamentals of Computer Security 51

NCryptfs

 Groups

◼ Supports native groups

 has to be setup ahead of time

◼ Support ad-hoc groups

 still need permission to modify low level objects

◼ Use Bypass VFS permission

Fundamentals of Computer Security 52

NCryptfs

Bypass VFS permission

current->fsuid = owner’s

Restore(current->fsuid)

Fundamentals of Computer Security 53

NCryptfs

 Timeouts

◼ Active sessions

 permission denied

 new file opens fail

 new file open suspends process until re-authentication

 all operations suspend process until re-authentication

◼ Authorizations

 new uses can’t create new sessions

 old sessions may continue

◼ Keys

 key is deleted or

 use denied for new files

◼ User space timeout callbacks

Fundamentals of Computer Security 54

NCryptfs

 Revocation
◼ Similar to timeout

◼ Can re-authenticate

 Portability
◼ Modification to task structure

 On-exit callbacks
◼ delete keys

◼ memory resources

 Challenge response authentication

◼ Cache clearing

eCryptfs from IBM

Motivation/ Problem

History and Overview

eCryptfs solutions

Design overview

Design Details

Key management

VFS operations

Using eCryptfs

Future enhancements

Motivation

Confidentiality when outside host operating environment.

Easy to use secure data store.

Convenient backup procedures.

Key retrieval.

Intuitive – minimal learning by users.

Policies and owners.

Cost of technology and adoption.

Knowledge and extent of risks

History/ Overview

Derived from Erez Zadok’s cryptfs (FIST framework).

Part of Linux from version 2.6.19 onwards.

Encryption at file level.

File contains metadata for decryption.

Native kernel FS (POSIX)- no need for patches.

Seamless security - data encryption on the fly

Seamless key mgmt - Linux kernel keyring.

Incremental development – current ver 0.1.

Why a new thing ?

 extends Cryptfs to provide advanced key management and
policy features

 stores cryptographic metadata in the header of each file
written, so that encrypted files can be copied between hosts

 the file will be decryptable with the proper key, and there is no
need to keep track of any additional information aside from what
is already in the encrypted file itself.

eCryptfs from IBM

Motivation/ Problem

History and Overview

eCryptfs solutions

Design overview

Design Details

Key management

VFS operations

Using eCryptfs

Future enhancements

eCryptfs solutions

Confidentiality - Integration of security into FS (Lotus Notes
analogy of secure transmission)

Ease of deployment – No kernel modifications, No separate
partition, per-file meta data

TPM utilization- generate key pair for session key encryption.

Key Escrow usage. (Author’s suggestion)

Easy Incremental backups.

Lower File System independent.

Design overview

eCryptfs from IBM

Motivation/ Problem

History and Overview

eCryptfs solutions

Design overview

Design Details

Key management

VFS operations

Using eCryptfs

Future enhancements

Details: enc/decrypt individual data extents

File Encryption Key
Encryption Key

(FEKEK)

Design Details

File format – Follows OpenPGP format

◼Deviation for PGP – Encryption on extents

◼Each extent has unique IVs.

◼Some extents contain only IVs for data extents

◼Sparse file support – fill encrypted 0s

◼CBC block cipher for extents

Design Details (Contd..)

File format (contd)

◼Page 0– Header, Page 1-n: Data + Extent.

◼Bytes 0-19- Standard information for file.

◼Marker– 32 bit number for uniquely identification

◼Byte 20 onwards

Set of all authentication tokens for the file

Encrypted File Encryption Key

PGP
File
header
format

Design Details (Contd..)

Kernel Crypto API

◼In kernel encryption – faster

◼Any symmetric cipher supported by cryptoAPI

IV (Initialization Vector)

◼Avoid risk of cryptanalysis- unique IV for extents

◼Initial IV – MD5 sum of file encryption key (KR)

Integrity verification

◼Keyed hash over extents using KR.

◼Generate hash whenever data changes

◼Verify during read, assert hash verifies.

Design Details (Contd..)

In-memory Cryptographic Context - Stored in user session’s
keyring.

◼Session key for the file.

◼Encryption status.

◼crypto API context – cipher, key size, etc

◼Size of the extents.

Key revocation

◼Acquire the passphrase and the session key from it.

◼Regenerate a new session key and encrypt all data once again.

Design Details (Contd..)

Is a stackable FS

◼Does not write directly onto block device.

◼Each VFS object maps onto a lower object.

◼Any POSIX compliant FS can act as a lower FS.

VFS objects’ private data holds:

◼The reference to lower objects.

◼Current context required for encryption/ decryption.

eCryptfs from IBM

Motivation/ Problem

History and Overview

eCryptfs solutions

Design overview

Design Details

Key management

VFS operations

Using eCryptfs

Future enhancements

In memory context in the inode

Authentication
token

Key management

Supports all ciphers and key sizes of cryptoAPI

Default AES-128

MD5 hash
64K times

User passphrase
+ Salt

Authentication
token

Random number
generator

N byte File
Encryption Key

File header

Encrypt using
Authentication

Token
File header

FEK

AT

User mode

Kernel mode

Key management (Contd…)

Encryption

◼Authentication token found in keyring after mount.

◼FEK encrypted with each user’s AT and stored in header.

◼Authentication token of each user stored in header

Decryption:

◼Authentication token matched with each token in header

◼File Encryption Key decrypted with proper AT and stored
in keyring – Support for multiple users

Key management (Contd..)

Pluggable Authentication Module – Configure
ways to authenticate the user (generate token)

◼Passphrase (salted)- Stored in keyring

◼Use passphrase to extract public key

◼Use this derived key in combination with key from
TPM

◼Use a smart card or USB to store the key

Pluggable PKI Module – use x509 certificates,
revocation lists etc and manage keys better

External PKI
module

Key identifier +
Encrypted data

Plain text data

Authenticates the identifier
and decrypts the data if valid

Key Callout, eCryptfs Daemon

Crypto metadata

File structure

eCryptfs layer

Kernel
Crypto API

Key extractor
(Key store)

Keystore
callout

VFS
syscall

Kernel User

PKI API

Filesytem

eCryptfs
daemon

PKI
module

Key management (Contd..)

Key Callout

◼Means of communication between kernel and
user module – Parses policy information on target

◼Finds passphrase or public keys of users

eCryptfs Daemon

◼Means to get to the user X-session if need to be
prompted for a passphrase

Key Escrow

◼ A centralized trusted party stores all keys

Secret sharing/ splitting

◼In a dynamic environment, this could be used for
a balance between key secrecy and sharing

VFS Operations (version 0.1)

Mount

Helper
application

User session
keyring

User passphrase Authentication token

eCryptfs

Set up context
for new files

Mount parameter id

Set up context
for new files

Authentication
token from

key ring

VFS Operations (Contd..)

File Open – Existing file

◼Validate the unique eCryptfs marker

◼Match the Authentication token

◼Decrypt File Encryption Key

◼Root IV = N bytes of MD5(File Encryption Key)

◼Update the context in the inode with

File Encryption key

Key size

Cipher name

Root IV

Number of header pages and extent size

VFS Operations (Contd..)

File Open – New file

◼Generate a File Encryption Key in kernel

◼Fill inode context

Cipher name – AES 128

Root IV – N bytes of MD5(File Encryption Key)

Header page – 1, extent size – kernel page size

◼Initialize the kernel crypto API context for the file

CBC mode

◼Get Authentication token, Encrypt FEK with it

◼Header to be written to disk on close

VFS Operations (Contd..)

Page Read/ Write

◼File is open and inode contains relevant context

◼Lower page index= index + Num of header pages

◼IV = Root IV + page index

◼Fetch the key and cipher used from context

◼Calculate the extent boundaries for operation

◼Set up state to be used by crypto API

◼Read – Disk -> Encrypted page + context ->
crypto API -> Clear text page -> Caller

◼Write – Caller -> Clear text page + context ->
crypto API -> Encrypted text page -> Disk

VFS Operations (Contd..)

File truncation

◼File size updated in header

◼Write encrypted 0s after new EOF

File Append

◼Translated into write to the appropriate page in
the lower file

File Close

◼Free up associated VFS objects

◼If new file, write the header on disk

◼Existing file, no change to the on disk header

eCryptfs from IBM

Motivation/ Problem

History and Overview

eCryptfs solutions

Design overview

Design Details

Key management

VFS operations

Using eCryptfs

Future enhancements

Using eCryptfs

Linux Journal article dated 04/01/07 – Detailed
usage instructions

◼Sample usage

#modprobe ecryptfs - Load the module

#mount –t ecryptfs /sec /sec – overlay mount

Enter passphrase:

Enter cipher:

#cat “Hello world” > secret.txt

◼PKI modules can be selected by mount options
for public key support

Future work

Incremental development – versions 0.1, 0.2,
0.3 planned

◼Mount wide public key support

◼Filename and metadata (size and attributes)
encryption

◼eCryptfs policy generators using generic utils

◼Convenient GUI for ease of use

◼Timeouts as supported by Ncryptfs

Yet to address

◼Temporary files left unencrypted

◼Data on swap partition unencrypted (!!!)

EFS (Microsoft)

Background of Invention
Objects and Summary of invention
General architecture
Components of EFS
EFS Driver
File System Run Time Library (FSRTL)
FSRTL callouts
EFS service
Win32 API
Data Encryption/ Decryption/ Recovery
General operations
Miscellaneous details
Security holes in EFS

Overview

Q: Forward
secrecy?

Background of Invention

Problem: Protecting sensitive data on disk

Solution: Encrypt sensitive data

Associated problems with naïve approach

◼Users choose weak passwords

◼Lost keys – share keys, compromise security

◼Key revocation

◼Overhead in encrypting each file

◼Intermediate temporary files

◼Application level encryption– key prone to attack

◼Not scalable to large number of users

Objects/ Summary of Invention

Secure Storage- Integrate security into storage

Security transparent to legitimate users

Share data legitimately and securely

Extensible – Adding new users/ ciphers

Data recovery when user key lost

Symmetric + Asymmetric – Performance

Reference cipher: RSA + DES

Quick idea

◼User chooses to encrypt – System generates a key (FEK)
and prepares the context.

◼Data encrypted transparently using context

◼FEK encrypted with user public key in the file

General Architecture where EFS exists

Workstation/ Server/
Standalone system

Processor

Memory

Operating System (Win NT)

File System (NTFS)

Set of APIs

I/O devices

Non volatile storage device

Swap space – VM

General Architecture where EFS exists

Encrypting File system and Method

Background of Invention
Objects and Summary of invention
General architecture of EFS
Components of EFS
EFS Driver
File System Run Time Library (FSRTL)
FSRTL callouts
EFS service
Win32 API
Data Encryption/ Decryption/ Recovery
General operations
Miscellaneous details
Security holes in EFS

Components of EFS

EFS Driver (EFSD)

Sits above NTFS

Instantiation of EFSD

Registers FSRTL CB with NTFS

EFSD <-> EFSS

◼Key mgmt services

◼Generate keys, Extract key from metadata, Get updated key

◼GenerateSessionKey for secure communication

◼Session Key used for EFSS<->EFSD<->FSRTL

EFSD <-> FSRTL through NTFS

◼To perform FS operations read/write

◼Update with latest key

EFS FSRTL (FS Run Time Library)

Implements callout functions for FS operations

Generic Data Transformation interface

FSRTL uses this for data encryption

Gets FEK from EFSD

Maintains cryptographic context

EFSD and FSRTL – Part of same component

EFSD <-> FSRTL through NTFS to maintain
consistent FS state

Encrypting File system and Method

Background of Invention
Objects and Summary of invention
General architecture
Components of EFS
EFS Driver
File System Run Time Library (FSRTL)
FSRTL callouts
EFS service
Win32 API
Data Encryption/ Decryption/ Recovery
General operations
Miscellaneous details
Security holes in EFS

EFS FSRTL Callout Functions

FileCreate for existing file

◼Called by NTFS if it determines FSRTL is interested in it.

◼Reads metadata from file and fills context

◼EFSD later reads context, gets key from EFSS

◼EFSD sets up key context with the key and stores in NTFS

FileCreate for new file

◼Called by NTFS if the directory is set as encrypted.

◼Fills up context as requisition for new key

◼EFSD requests new key from EFSS

◼EFSD sets up key context with the key and stores in NTFS

EFS FSRTL Callout Functions (Contd..)

Filecontrol_1

◼Called by NTFS when the state of the file changes

◼If encrypting – no other operations until complete

Filecontrol_2

◼Communication between EFSD and FSRTL

◼Various requests with associated data for context preparation

◼EFS_SET_ATTR – write new metadata to FSRTL

◼EFS_GET_ATTR – get stored metadata from FSRTL

◼EFS_DECRYPT_BEGIN – FSRTL locks file until decrypt ends

◼EFS_DEL_ATTR – Decryption done, delete metadata

◼EFS_ENCRYPT_DONE – Encryption done, allow other
operations

EFS FSRTL Callout Functions (Contd..)

AfterReadProcess

◼FS calls this if stream needs to be decrypted

◼FSRTL decrypts the stream, FS returns to user

BeforeWriteProcess

◼FS calls this if stream needs to be encrypted

◼FSRTL encrypts the stream, FS stores on disk

CleanUp

◼FS calls this before freeing resources for stream

◼FSRTL frees up its context and resources allocated

EFS FSRTL Callout Functions (Contd..)

AttachVolume

◼FS calls this on first user [en/de]cryption on the volume

◼FSRTL requests attachment to the device

◼All calls routed to EFS Driver before NTFS

DismountVolume

◼FS calls this if when drive ejected or power off

◼Free allocated resources during AttachVolume

EFS Service

EFS Service

Part of Win NT security service

Secure communication with kernel through LSA

Talks to CryptoAPI in user space

Services provided
◼Generate Session Key

◼Generate File Encryption Key (FEK)

◼Extract FEK from metadata using user’s private keys

◼Win32 API support

EFSD and EFSS synchronize with one other on
startup and exchange session key

Encrypting File system and Method

Background of Invention
Objects and Summary of invention
General architecture
Components of EFS
EFS Driver
File System Run Time Library (FSRTL)
FSRTL callouts
EFS service
Win32 API
Data Encryption/ Decryption/ Recovery
General operations
Miscellaneous details
Security holes in EFS

Win32 API

User mode services by EFSS to use encryption

Interfaces provided for operations on plain text files

◼EncryptFile

◼DecryptFile

Interfaces provided for backup encrypted files

◼OpenRawFile

◼ReadRawFile

◼WriteRawFile

◼CloseRawFile

During raw file transfer, EFSS informs FSRTL through
FileControl_2 not to encrypt/decrypt data

Overview

Data Encryption

Encryption Key – Rand num

Ref symmetric cipher DES

Data Decryption Field - DDF

Data Recovery Field - DRF

Private keys on smart card
– not used during encryption

Ref asymmetric cipher RSA

Not tied to any cipher or
key length

Data Decryption

User private key is
used to decrypt

each DDF

One of them will
decrypt the key

FEK used to decrypt
the cipher text

FEK and Decryption stored
in context info

Ease of random access

Data Recovery

When users leave/ lose keys

Search starts from DDF and
goes on to DRF

Reveals only FEK not user
private key

Domain policy decides the
recovery agents

Policy contains public keys

Agent specifies private key

Policy MD5 hashed to ensure
authenticity

Hash value authenticated
before using the policy

Encrypting File system and Method

Background of Invention
Objects and Summary of invention
General architecture
Components of EFS
EFS Driver
File System Run Time Library (FSRTL)
FSRTL callouts
EFS service
Win32 API
Data Encryption/ Decryption/ Recovery
General operations
Miscellaneous details
Security holes in EFS

General operation – Create/ Open

EFS creates a
new context for

the file

API calls land at
I/O layer.

Decides apt FS

If stream needs
encryption, call

FSRTL

New file- Request for FEK
Existing file – Load meta
data from file to context.

Request verification

Verification: Pass
metadata to EFSS

New FEK: Request
new key from

EFSS

Generic Win32
API for file

create/ open

Stores the updated
metadata from EFS

driver onto disk

Mark file as
encrypted

General operation – Read

Args: File
Offset, Length,

Buffer, Key

AfterRead
Callout

General operation – Write

Deletes the
clear text copy

BeforeWrite
Callout

General operation – Win32 EncryptFile

Directory is
simply marked
as its data is
not encrypted

General operation – Win32 DecryptFile

Directory is
simply marked
as its data is
not encrypted

Make a copy of
the original file

Overwrite the
original with

plaintext

Miscellaneous details

Intermediate/ Temporary files encrypted too

EFSD uses non paged pool of memory

◼FEK and other context details not swapped to disk

Data sharing

◼FEK encrypted with public keys of all legitimate users

Easy to use - no administrative effort involved

Support for encryption on remote server

◼Server support for EFS, Data on wire in plaintext

File copy across FS

◼Copy across EFS aware FS – encrypted content

◼Copy to EFS unaware FS (FAT32) – plaintext data copied

Security holes in EFS (Win 2K)

Administrator – Default Recovery agent

◼Has access to all user data

◼Win XP has no default recovery agent – Policy decides agents

User Private key protection

◼Protected by user password only – Not encrypted

◼Weak Hashes of pass-phrases are kept !!!

◼Key lies in all kinds of other places that are accessible at
various times to different principals (e.g., pass reset etc.)

No secure deletion in place

◼After encrypting files, plaintext version only deleted

◼Win XP does not yet solve this problem

◼Use third part tools for secure deletion

Directory contents not encrypted

