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The modern computer
• In early history, people communicated at a distance via letters, messengers.. 

eventually telegraph

• Radio communication grew in the early 20th century; very convenient, but…

• Everyone could hear and eavesdrop on your transmissions!

• Radio changed the adversarial model!

• Especially during wartime, encryption became important.

• WWI hand ciphers gave way in WWII to cipher machines…



Enciphering machines
• During WWII, the Germans used 

machines in the Enigma family.

• These machines enciphered using 

electromechanical rotors.

• The Enigmas had many possible 

settings…

• An Allied cryptanalyst faced in 

practice an estimated 1023 possible 

settings.

• That’s a hundred thousand billion billion!

German Enigma

machine



How were these broken?
• “Bombes” were developed by British 

cryptologists to simulate Engima behavior.

• Initial design by Alan Turing

• A kind of proto-computer

• Bombes explored Enigma daily settings (the 

set and positions of rotors, the key, and the 

plugboard wirings).

• They enabled effective breaks of Enigma-

encoded messages: yielded part of the 

ULTRA intelligence that played an enormous 

part in Allied victories.

• Seen The Imitation Game?

Bombe reconstruction at Bletchley Park



Colossus
• Another component of ULTRA 

was the Colossus machine.

• Used to attack the Lorenz SZ40/42 in-
line cipher machine, not Enigma.

• It was the world’s first 
programmable electronic digital 
computing machine. 

• Codebreaking—infosec 
again—was intimately bound 
up in the birth of the 
programmable digital 
computer.

A Colossus Mark 2 computer being operated 

by Dorothy Du Boisson and Elsie Booker 

(1944-5) [U.K. National Archives, FO850/234]
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Computer Security FundamentalsMeet the Cast

Mallory 

(“mallicious”, bad guy)

MAlice

(innocent)
Bob

(mostly innocent, 

sometimes malicious)

Eve

(eavesdrops, 

passive malicious)

just listens

does

stuff 

too 

Trent

(trusted guy)k
k

Ek(M)

Read: http://downlode.org/etext/alicebob.html !
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Computer Security FundamentalsAn inconvenient truth

• Where does k come from ? (“key distribution”)

• Can Eve distinguish between Ek(M1) and Ek(M2) if she knows M1

and M2 ? Should not be able to !!! (“semantic security”)

• Make sure that Ek(M1)  Ek(M2) if M1  M2 (maybe not ?)

• Can Mallory modify Ek(M) into an Ek(Mmallory) ? (”malleability”)

• etc (! lots of stuff !) 

• Danger: things seem trivial and they are not – result: super weak 
systems !



Symmetric-key encryption

Alice Bob

K
(secret)

KC = encK[M]

Eve

What’s M?
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Computer Security FundamentalsCaesar Cipher

• Example: Cæsar cipher

– M = { sequences of letters }

– K = { i | i is an integer and 0 ≤ i ≤ 25 }

– E = { Ek | k  K and for all letters m,

Ek(m) = (m + k) mod 26 }

– D = { Dk | k  K and for all letters c,

Dk(c) = (26 + c – k) mod 26 }

– C = M
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Computer Security FundamentalsAttacks

• Opponent whose goal is to break cryptosystem is the adversary
– Assume adversary knows algorithm used, but not key

• Many types of attacks:
– ciphertext only: adversary has only ciphertext; goal is to find plaintext, possibly key
– known plaintext: adversary has ciphertext, corresponding plaintext; goal is to find key
– chosen plaintext: adversary may supply plaintext and obtain corresponding ciphertext; 

goal is to find key
– chosen ciphertext: adversary may supply ciphertext and obtain corresponding plaintext; 

goal is to find key
– etc
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Computer Security FundamentalsHow to attack?

• Mathematical attacks
–Based on analysis of underlying mathematics

• Statistical attacks
–Make assumptions about the distribution of letters, pairs of 

letters (digrams), triplets of letters (trigrams), etc.
• Called models of the language

–Examine ciphertext, correlate properties with the 
assumptions.
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Computer Security FundamentalsStatistics

• Compute frequency of each letter in ciphertext:

G 0.1 H 0.1 K 0.1 O 0.3

R 0.2 U 0.1 Z 0.1

• Apply 1-gram model of English

• Correlate and invert encryption
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Computer Security FundamentalsCaesar has a Problem ☺

• Key is too short

–Can be found by exhaustive search

–Statistical frequencies not concealed well

• They look too much like regular English letters

• So make it longer

–Multiple letters in key

– Idea is to smooth the statistical frequencies to make 
cryptanalysis harder
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Computer Security FundamentalsVigènere Cipher

• Like Cæsar cipher, but use a phrase

• Documented by Blaise de Vigenere (court of Henry III of France) in Paris, 1586 –
actually a variant of a cipher by a J.B. Porter

• Example
– Message THE BOY HAS THE BALL

– Key VIG

– Encipher using Cæsar cipher for each letter:

key    VIGVIGVIGVIGVIGV

plain  THEBOYHASTHEBALL

cipher OPKWWECIYOPKWIRG



"Unbreakable" cipher: 

One-time pad

K = 1001010

C = encK[M]

M = 0101101
K = 1001010
C = 1100111

C = 1100111

⊕
M = 0101101

⊕

Key K random bit string; same 
length as message 

Ciphertext C is 
bitwise XOR of K 

and C

Decrypt by 
XORing out K;

M = C⊕ K



One-time pad

K = 1001010

C = encK[M]

M = 0101101
K = 1001010

C = 1100111

C = 1100111

M = 0101101

⊕ ⊕

Perfect secrecy if every K equally likely… because:
* For any M, every possible C equally likely!
* So C reveals no information about M!
(C. Shannon, 1949)



One-time pad
• KGB agents and controllers

• E.g., Colonel Rudolf Abel, active in 
NYC, 1950s

• Called "one-time pad" because…

• Hotlines between Moscow and 
Washington D.C., Canberra and 
Moscow, etc.
• U.S.-Moscow line created in1963 after Cuban 

missile crisis

• Teleprinters with one-time tape system 

• Keying tapes delivered via embassies

• Canberra-Moscow broken because Soviets 
reused Moscow-D.C. pad!



Unbreakable, but…

• One-time pad is one-time
• Breakable if used twice



One-time pad—reloaded

K = 1001010
M = 0101101

C = 1100111

⊕
K = 1001010
M' = 0101100⊕
C' = 1100110

C , C'

Eve



Unbreakable, but…

• One-time pad is one-time

• Breakable if used twice

• Key must be perfectly random

• Randomness is a scarce resource

• Key length = message length very cumbersome!

• E.g., how can Alice encrypt her laptop hard drive?

• Alice carries around hard drive containing the key?
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Computer Security FundamentalsOverview

Alice

Bob

Mallory Eve

cipherm3 m2 m1
…

m1 m2 m3
…

cipher-1

ci

The compromise of 
individual blocks 

should not lead to the 
compromise of past 

communication !
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Computer Security FundamentalsChallenges

• Using a cipher requires knowledge of threats in the 

environment in which it will be used

– Is the set of possible messages small?

–Do the messages exhibit regularities that remain after en-

cipherment?

–Can an active wire-tapper rearrange or change parts of the 

message?
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Computer Security FundamentalsBirthday paradox

• With 23 people in the same room chance of same birthday 

is over  50% !!!

• For N possible values expect a collision after seeing 

approx. sqrt(N) of them

• If N=2n (n-bit key) after 2n/2 (“birthday bound”) messages a 

collision is expected !
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Computer Security Fundamentals“Birthday attack” in action

• For 64-bit key, after seeing 232 transactions Eve can 

find message sent with same key ! (how can she 

know ? Using keyed MAC of standard message 

header ?)

• Eve can then substitute old messages for new ones 

(e.g., reversing money transfers)
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Computer Security Fundamentals“meet in the middle” attack

• aka. “collision attack”

• Cousin of Birthday Attack

• C = EK2(EK1(M))

• This does not have 2n bit security !

• Why ?

• To find out whether C is an encryption of M:

–T: Build table EK(M) for all K

–Compute DK(C) for all K and lookup in T

–Takes 2n+1 steps only
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Computer Security Fundamentals“pre-computation” attack

• If set of possible messages M is small

• Public key cipher f used

• Idea: pre-compute set of possible cipher-texts f(M), 

build table (m, f(m))

• When cipher-text f(m) appears, use table to find m

• Also called forward searches
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Computer Security FundamentalsPre-computation in action

• Cathy knows Alice will send Bob one of 

two enciphered messages: BUY or SELL

• Using publicB, Cathy pre-computes

m1 = EpublicB
(“BUY”)

m2 = EpublicB
(“SELL”)

• Cathy sees Alice send Bob m2

• Cathy knows Alice sent SELL
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Computer Security FundamentalsFun non-obvious example

• Digitized sound

–Seems like far too many possible plaintexts

• Initial calculations suggest 232 such plaintexts

–Analysis of redundancy in human speech reduced 

this to about 100,000 (≈ 217)

• small enough to worry about pre-computation attacks
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Computer Security FundamentalsIssue: mis-ordered blocks

• Alice sends Bob message

–Message is LIVE (11 08 21 04)

–Enciphered message is 44 57 21 16

• Eve intercepts it, rearranges blocks

–Now enciphered message is 16 21 57 44

• Bob gets enciphered message, deciphers it

–He sees EVIL
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Computer Security FundamentalsHandling mis-ordered blocks

• Signing each block won’t stop it !

• Two approaches:

–Crypto-hash the entire message and sign it

–Place sequence numbers in each block of message, so 

recipient can tell intended order, then sign each block
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Computer Security FundamentalsMore issues

• If plaintext repeats, ciphertext may too

• Example using DES:

– input (in hex):

3231 3433 3635 3837 3231 3433 3635 3837

– corresponding output (in hex):

ef7c 4bb2 b4ce 6f3b ef7c 4bb2 b4ce 6f3b

• Fix: cascade blocks together (chaining)

–More details later
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Computer Security FundamentalsSo what is going on then?

• Use of strong cryptosystems, well-chosen (or random) 

keys not enough to be secure

• Other factors:

–Protocols directing use of cryptosystems

–Ancillary information added by protocols

– Implementation (not discussed here)

–Maintenance and operation (not discussed here)
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Computer Security FundamentalsStream ciphers, block ciphers
• E encryption function

–Ek(b) encryption of message b with key k

– In what follows, m = b1b2 …, each bi of fixed length

• Block  cipher

–Ek(m) = Ek(b1)Ek(b2) …

• Stream cipher

– k = k1k2 …

–Ek(m) = Ek1(b1)Ek2(b2) …

– If k1k2 … repeats itself, cipher is periodic and the length 
of its period is one cycle of k1k2 …
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Computer Security FundamentalsExamples

• Vigenère cipher

–bi = 1 character, k = k1k2 … where ki = 1 

character

–Each bi enciphered using ki mod length(k)

–Stream cipher

• DES

–bi = 64 bits, k = 56 bits

–Each bi enciphered separately using k

–Block cipher
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Computer Security FundamentalsStream ciphers

• Often (try to) approximate one-time pad by 
xor’ing each bit of key with one bit of message

–Example:

m = 00101

k =  10010

c =  10111

• But how to generate a good key?
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Computer Security FundamentalsSynchronous Stream Ciphers

• n-stage Linear Feedback Shift Register:

–n bit register r = r0…rn–1

–n bit “tap sequence” t = t0…tn–1

–Use:

•Use rn–1 as key bit

•Compute x = r0t0  …  rn–1tn–1

•Shift r one bit to right, dropping rn–1, x becomes r0
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Computer Security FundamentalsExample
• 4-stage LFSR; t = 1001

r ki new bit computation new r
0010 0 01001001 = 0 0001

0001 1 01000011 = 1 1000

1000 0 11000001 = 1 1100

1100 0 11100001 = 1 1110

1110 0 11101001 = 1 1111

1111 1 11101011 = 0 0111

0111 0 01101011 = 1 1011

– Key sequence has period of 15 (010001011101110)
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Computer Security FundamentalsMake it difficult for bad guy

• n-stage Non-Linear Feedback Shift Register: 

–n bit register r = r0…rn–1

–Use:
• Use rn–1 as key bit

• Compute x = f(r0, …, rn–1); f is any function

• Shift r one bit to right, dropping rn–1, x becomes r0

Note same operation as LFSR but more general bit 
replacement function
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Computer Security FundamentalsExample
• 4-stage NLFSR; f(r0, r1, r2, r3) = (r0 & r2) | r3

r ki new bit computation new r
1100 0 (1 & 0) | 0 = 0 0110

0110 0 (0 & 1) | 0 = 0 0011

0011 1 (0 & 1) | 1 = 1 1001

1001 1 (1 & 0) | 1 = 1 1100

1100 0 (1 & 0) | 0 = 0 0110

0110 0 (0 & 1) | 0 = 0 0011

0011 1 (0 & 1) | 1 = 1 1001

–Key sequence has period of 4 (0011)



40August 22, 2022

Computer Security FundamentalsMaking it even more difficult
• NLFSRs not common

–We don’t know how to design them to have long period

• Alternate approach: output feedback mode

– For E encipherment function, k key, r register:

• Compute r= Ek(r); key bit is rightmost bit of r

• Set r to r and iterate, repeatedly enciphering register and extracting 
key bits, until message enciphered

–Variant: use a counter that is incremented for each 
encipherment rather than a register

• Take rightmost bit of Ek(i), where i is number of encipherment
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Computer Security FundamentalsCipher Feedback Mode (CFB)

• Cipher feedback mode: 1 bit of ciphertext fed into n bit register

– Self-healing property: if ciphertext bit received incorrectly, it and next n bits 
decipher incorrectly; but after that, the ciphertext bits decipher correctly

– Need to know k, E to decipher ciphertext

k
Ek(r)r

… E …



mi

ci
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Computer Security FundamentalsCFB
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Computer Security FundamentalsBlock Ciphers

• Encipher, decipher multiple bits at once

• Each block enciphered independently

• Problem: identical plaintext blocks produce 
identical ciphertext blocks

–Example: two database records
• MEMBER: HOLLY INCOME $100,000

• MEMBER: HEIDI INCOME $100,000

–Encipherment:
• ABCQZRME GHQMRSIB CTXUVYSS RMGRPFQN

• ABCQZRME ORMPABRZ CTXUVYSS RMGRPFQN



Block cipher

AESkey K ∈ {0,1}256

message M ∈ {0,1}128

AES-256 on a 

single block

ciphertext C ∈ {0,1}128

E.g., Advanced Encryption Standard (AES)



Plaintext M

m1 m2 m3 m4

Various possible additions / interconnections:

What if M is long?
Mode of operation

K KK K

c1
Ciphertext C

c2 c3 c4



Plaintext M

m1 m2 m3 m4

K KK K

c1
Ciphertext C

c2 c3 c4

Electronic Code Book (ECB) mode

Identical message blocks ➜ identical ciphertext blocks!



ECB leaks information

ECB encryption
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Computer Security FundamentalsIdea

• Insert information about block’s position into the plaintext 

block, then encipher.

• Cipher block chaining mode (CBC):

–Exclusive-or current plaintext block with previous ciphertext 

block:

• c0 = Ek(m0  I)

• ci = Ek(mi  ci–1) for i > 0

where I is the initialization vector



Cipher-Block Chaining (CBC) mode

m2

c2

m1

c1

m3

c3

m4

c4

...

Plaintext M

Ciphertext C

Fresh(!),

random 

initialization 

vector

(IV)

• Identical message blocks now encrypted differently

• Approach similar to Merkle-Damgard

⊕ ⊕ ⊕ ⊕
K K K K
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Computer Security FundamentalsIssue with chaining

How do we access/decrypt random blocks 

without having to decrypt everything 

“before”?
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Computer Security FundamentalsSolution: CTR

• Counter mode (CTR):

–Key constructed by encrypting block counter 

• ki = Ek(unique_nonce||i)

•ci = mi  ki

e.g. unique_nonce=(message number)

–Question: why do we need the nonce ? 

–Careful: never use same (k,nonce) pair !!!
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Computer Security FundamentalsCTR



What if we choose the wrong mode?

User-supplied password 

hints

• Adobe breach leaked 153 million passwords in 2013

• Encrypted using ECB, not hashed with salt

• Key remained secret, but…



xkcd on the 

Adobe breach



Integrity problem

K = 1001010
M = 0101101

C = 1100111

⊕
C' = 1100110

C ⇒ C'

Eve

M' = 0101100



What about integrity?
• Also want Eve not to modify C (and potentially M) without detection

• Authenticated encryption modes (e.g., OCB) ensure such integrity.

• Can also use a message authentication code (MAC)

• E.g., HMAC (Bellare, Canetti, Krawczyk 1996), uses hash function

• Encrypt + MAC

Alice Bob

KEve

C = encK[M]

K



Kerckhoffs’s Principle

• “The design of a [crypto]system 

should not require secrecy…”

• Counterintuitive!

• Encryption should be secure even if 

the adversary (Eve) knows the 

algorithm enc. 

• Thus:

• Security relies on secrecy of key K

• Key K must be random and of adequate 

length (e.g., 128 bits)

Jean Guillaume 

Auguste Victor 

François Hubert 

Kerckhoffs (1835-

1903)



In fact, everyone knows enc

• Advanced Encryption Standard (AES)

• Published by NIST in 2001 after five-year contest (FIPS PUB 197)

• Extremely wide use (TLS, NSA top secret, etc.)

• Block cipher with 128, 192, and 256-bit key variants based on 

Rijndael cipher

• 128-bit message blocks (as we've seen)

• Very fast

• 1500 Mbps with AES-NI on 2.4 GHz Intel Westmere (IPSec, 1kB packets, with 

hyperthreading, AES-128-GCM) [Source: 2010 Intel whitepaper 324238-001]

• There are other good ciphers, but AES dominates
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Computer Security FundamentalsOptional for next week

For +0.5% credit.

Install openssl and decrypt any of the following ciphertexts: 

U2FsdGVkX18Avp0s9oaA8I2HeaLoCG1gZyRmoLWWBFZXcrm/1ZsXSjxc2XTpbPZw

U2FsdGVkX18KRUFApfRXdayMo8sYd96zEAdPXyA4hzMBdWxqVigJGsLs4okBhwje

U2FsdGVkX1/DUTj3FPMhUWb/hgxIchBN6LWoRbLm2L/CARN/VSAYlg==

U2FsdGVkX1/+vE2czERZciAIJteLkzndHwW9QrdibZ/Z6q8=


