Fundamentals of Computer Security

Symmetric-key Encryption Ciphers

The modern computer

- In early history, people communicated at a distance via letters, messengers.. eventually telegraph
- Radio communication grew in the early 20th century; very convenient, but...
- Everyone could hear and eavesdrop on your transmissions!
- Radio changed the adversarial model!
- Especially during wartime, encryption became important.
- WWI hand ciphers gave way in WWII to cipher machines...

Enciphering machines

- During WWII, the Germans used machines in the Enigma family.
- These machines enciphered using electromechanical rotors.
- The Enigmas had many possible settings...
- An Allied cryptanalyst faced in practice an estimated 10^{23} possible settings.
- That's a hundred thousand billion billion!

German Enigma
machine

How were these broken?

- "Bombes" were developed by British cryptologists to simulate Engima behavior.
- Initial design by Alan Turing
- A kind of proto-computer
- Bombes explored Enigma daily settings (the set and positions of rotors, the key, and the plugboard wirings).
- They enabled effective breaks of Enigmaencoded messages: yielded part of the ULTRA intelligence that played an enormous part in Allied victories.
- Seen The Imitation Game?

Colossus

- Another component of ULTRA was the Colossus machine.
- Used to attack the Lorenz SZ40/42 inline cipher machine, not Enigma.
- It was the world's first programmable electronic digital computing machine.
- Codebreaking-infosec again-was intimately bound up in the birth of the programmable digital computer.

A Colossus Mark 2 computer being operated
by Dorothy Du Boisson and Elsie Booker (1944-5) [U.K. National Archives, FO850/234]

Meet the Cast

Read: http://downlode.org/etext/alicebob.html!

An inconvenient truth

- Where does k come from ? ("key distribution")
- Can Eve distinguish between $E_{k}\left(M_{1}\right)$ and $E_{k}\left(M_{2}\right)$ if she knows M_{1} and M_{2} ? Should not be able to !!! ("semantic security")
- Make sure that $E_{k}\left(M_{1}\right) \neq E_{k}\left(M_{2}\right)$ if $M_{1} \neq M_{2}$ (maybe not ?)
- Can Mallory modify $E_{k}(M)$ into an $E_{k}\left(M_{\text {mallory }}\right)$? ("malleability")
- etc (! lots of stuff !)
- Danger: things seem trivial and they are not - result: super weak systems!

Symmetric-key encryption

Caesar Cipher

- Example: Cæsar cipher
- $\mathrm{M}=\{$ sequences of letters $\}$
$-K=\{i \mid i$ is an integer and $0 \leq i \leq 25\}$
$-E=\left\{E_{k} \mid k \in K\right.$ and for all letters m,

$$
\left.E_{k}(m)=(m+k) \bmod 26\right\}
$$

$-\mathrm{D}=\left\{D_{k} \mid k \in \mathrm{~K}\right.$ and for all letters c,

$$
\left.D_{k}(c)=(26+c-k) \bmod 26\right\}
$$

$-\mathrm{C}=\mathrm{M}$

Attacks

- Opponent whose goal is to break cryptosystem is the adversary
- Assume adversary knows algorithm used, but not key
- Many types of attacks:
- ciphertext only: adversary has only ciphertext; goal is to find plaintext, possibly key
- known plaintext: adversary has ciphertext, corresponding plaintext; goal is to find key
- chosen plaintext: adversary may supply plaintext and obtain corresponding ciphertext; goal is to find key
- chosen ciphertext: adversary may supply ciphertext and obtain corresponding plaintext; goal is to find key
- etc

How to attack?

- Mathematical attacks
-Based on analysis of underlying mathematics
- Statistical attacks
-Make assumptions about the distribution of letters, pairs of letters (digrams), triplets of letters (trigrams), etc.
- Called models of the language
-Examine ciphertext, correlate properties with the assumptions.

Statistics

- Compute frequency of each letter in ciphertext:

$$
\begin{array}{lllllll}
\text { G } 0.1 & \text { H } & 0.1 & \text { K } & 0.1 & \text { O } & 0.3 \\
\text { R } & 0.2 & \text { U } & 0.1 & \text { Z } & 0.1 & \\
\end{array}
$$

- Apply 1-gram model of English
- Correlate and invert encryption

Caesar has a Problem ()

- Key is too short
-Can be found by exhaustive search
-Statistical frequencies not concealed well
- They look too much like regular English letters
- So make it longer
-Multiple letters in key
- Idea is to smooth the statistical frequencies to make cryptanalysis harder

Vigènere Cipher

- Like Cæsar cipher, but use a phrase
- Documented by Blaise de Vigenere (court of Henry III of France) in Paris, 1586 actually a variant of a cipher by a J.B. Porter
- Example
- Message THE BOY HAS THE BALL
- Key VIG
- Encipher using Cæsar cipher for each letter:
key VIGVIGVIGVIGVIGV
plain THEBOYHASTHEBALL cipher OPKWWECIYOPKWIRG

"Unbreakable" cipher: One-time pad

One-time pad

One-time pad

- KGB agents and controllers
- E.g., Colonel Rudolf Abel, active in NYC, 1950s
- Called "one-time pad" because...
- Hotlines between Moscow and Washington D.C., Canberra and Moscow, etc.

- U.S.-Moscow line created in1963 after Cuban missile crisis
- Teleprinters with one-time tape system
- Keying tapes delivered via embassies
- Canberra-Moscow broken because Soviets reused Moscow-D.C. pad!

Unbreakable, but...

- One-time pad is one-time
- Breakable if used twice

One-time pad—reloaded

Unbreakable, but...

- One-time pad is one-time
- Breakable if used twice
- Key must be perfectly random
- Randomness is a scarce resource
- Key length = message length very cumbersome!
- E.g., how can Alice encrypt her laptop hard drive?
- Alice carries around hard drive containing the key?

Overview

Challenges

- Using a cipher requires knowledge of threats in the environment in which it will be used
-Is the set of possible messages small?
-Do the messages exhibit regularities that remain after encipherment?
-Can an active wire-tapper rearrange or change parts of the message?

Birthday paradox

- With 23 people in the same room chance of same birthday is over 50% !!!
- For N possible values expect a collision after seeing approx. sqrt(N) of them
- If $\mathrm{N}=2^{\mathrm{n}}$ (n -bit key) after $2^{\mathrm{n} / 2}$ ("birthday bound") messages a collision is expected!

"Birthday attack" in action

- For 64-bit key, after seeing 2^{32} transactions Eve can find message sent with same key! (how can she know? Using keyed MAC of standard message header ?)
- Eve can then substitute old messages for new ones (e.g., reversing money transfers)

"meet in the middle" attack

- aka. "collision attack"
- Cousin of Birthday Attack
- $\mathrm{C}=\mathrm{E}_{\mathrm{K} 2}\left(\mathrm{E}_{\mathrm{K} 1}(\mathrm{M})\right)$
- This does not have 2 n bit security !
- Why ?
- To find out whether C is an encryption of M :
$-T$: Build table $E_{K}(M)$ for all K
- Compute $D_{K}(C)$ for all K and lookup in T
- Takes $2^{\text {n+1 }}$ steps only

"pre-computation" attack

- If set of possible messages M is small
- Public key cipher f used
- Idea: pre-compute set of possible cipher-texts $f(M)$, build table ($m, f(m)$)
- When cipher-text $f(m)$ appears, use table to find m
- Also called forward searches

Pre-computation in action

- Cathy knows Alice will send Bob one of two enciphered messages: BUY or SELL
- Using public ${ }_{B}$, Cathy pre-computes

$$
\begin{aligned}
& m_{1}=\mathrm{E}_{\text {publicB }} \text { ("BUY") } \\
& m_{2}=\mathrm{E}_{\text {publicB }} \text { ("SELL") }
\end{aligned}
$$

- Cathy sees Alice send Bob m_{2}
- Cathy knows Alice sent SELL

Fun non-obvious example

- Digitized sound
-Seems like far too many possible plaintexts
- Initial calculations suggest 2^{32} such plaintexts
-Analysis of redundancy in human speech reduced this to about 100,000 ($\approx 2^{17}$)
- small enough to worry about pre-computation attacks

Issue: mis-ordered blocks

- Alice sends Bob message
-Message is LIVE (11 0821 04)
-Enciphered message is 44572116
- Eve intercepts it, rearranges blocks
-Now enciphered message is 16215744
- Bob gets enciphered message, deciphers it
-He sees EVIL

Handling mis-ordered blocks

- Signing each block won't stop it !
- Two approaches:
-Crypto-hash the entire message and sign it
-Place sequence numbers in each block of message, so recipient can tell intended order, then sign each block

More issues

- If plaintext repeats, ciphertext may too
- Example using DES:
-input (in hex):
32313433363538373231343336353837
- corresponding output (in hex):
ef7c 4bb2 b4ce 6f3b ef7c 4bb2 b4ce 6f3b
- Fix: cascade blocks together (chaining)
- More details later

So what is going on then?

- Use of strong cryptosystems, well-chosen (or random) keys not enough to be secure
- Other factors:
- Protocols directing use of cryptosystems
-Ancillary information added by protocols
- Implementation (not discussed here)
- Maintenance and operation (not discussed here)

Stream ciphers, block ciphers

- E encryption function
$-E_{k}(b)$ encryption of message b with key k
- In what follows, $m=b_{1} b_{2} \ldots$, each b_{i} of fixed length
- Block cipher
$-E_{k}(m)=E_{k}\left(b_{1}\right) E_{k}\left(b_{2}\right) \ldots$
- Stream cipher
$-k=k_{1} k_{2} \ldots$
$-E_{k}(m)=E_{k 1}\left(b_{1}\right) E_{k 2}\left(b_{2}\right) \ldots$
-If $k_{1} k_{2} \ldots$ repeats itself, cipher is periodic and the length of its period is one cycle of $k_{1} k_{2} \ldots$

Examples

- Vigenère cipher
$-b_{i}=1$ character, $k=k_{1} k_{2} \ldots$ where $k_{i}=1$ character
- Each b_{i} enciphered using $k_{i \text { mod length(k) }}$
-Stream cipher
- DES
$-b_{i}=64$ bits, $k=56$ bits
-Each b_{i} enciphered separately using k
-Block cipher

Stream ciphers

- Often (try to) approximate one-time pad by xor'ing each bit of key with one bit of message -Example:

$$
\begin{aligned}
& m=00101 \\
& k=10010 \\
& c=10111
\end{aligned}
$$

- But how to generate a good key?

Synchronous Stream Ciphers

- n-stage Linear Feedback Shift Register:
$-n$ bit register $r=r_{0} \ldots r_{n-1}$
$-n$ bit "tap sequence" $t=t_{0} \ldots t_{n-1}$
-Use:
- Use r_{n-1} as key bit
- Compute $x=r_{0} t_{0} \oplus \ldots \oplus r_{n-1} t_{n-1}$
- Shift r one bit to right, dropping r_{n-1}, x becomes r_{0}

Example

- 4-stage LFSR; $t=1001$

r	k_{i}	new bit computation	new r
0010	0	$01 \oplus 00 \oplus 10 \oplus 01=0$	0001
0001	1	$01 \oplus 00 \oplus 00 \oplus 11=1$	1000
1000	0	$11 \oplus 00 \oplus 00 \oplus 01=1$	1100
1100	0	$11 \oplus 10 \oplus 00 \oplus 01=1$	1110
1110	0	$11 \oplus 10 \oplus 10 \oplus 01=1$	1111
1111	1	$11 \oplus 10 \oplus 10 \oplus 11=0$	0111
0111	0	$01 \oplus 10 \oplus 10 \oplus 11=1$	1011
- Key sequence has period of $15(010001011101110)$			

Make it difficult for bad guy

- n-stage Non-Linear Feedback Shift Register:
$-n$ bit register $r=r_{0} \ldots r_{n-1}$
-Use:
- Use r_{n-1} as key bit
- Compute $x=f\left(r_{0}, \ldots, r_{n-1}\right) ; f$ is any function
- Shift r one bit to right, dropping r_{n-1}, x becomes r_{0}

Note same operation as LFSR but more general bit replacement function

Example

- 4-stage NLFSR; $f\left(r_{0}, r_{1}, r_{2}, r_{3}\right)=\left(r_{0} \& r_{2}\right) \mid r_{3}$

	k_{i}	new bit com	putation	new r
1100	0	(1 \& 0)	$0=0$	0110
0110	0	$(0 \& 1)$	$0=0$	0011
0011	1	(0 \& 1)	$1=1$	1001
1001	1	$(1 \& 0)$	$1=1$	1100
1100	0	$(1 \& 0)$	$0=0$	0110
0110	0	$(0 \& 1)$	$0=0$	0011
011	1	(0 \& 1)	$1=1$	100

-Key sequence has period of 4 (0011)

Making it even more difficult

- NLFSRs not common
- We don't know how to design them to have long period
- Alternate approach: output feedback mode
-For E encipherment function, k key, r register:
- Compute $r^{\prime}=E_{k}(r)$; key bit is rightmost bit of r^{\prime}
- Set r to r^{\prime} and iterate, repeatedly enciphering register and extracting key bits, until message enciphered
- Variant: use a counter that is incremented for each encipherment rather than a register
- Take rightmost bit of $E_{k}(i)$, where i is number of encipherment

Cipher Feedback Mode (CFB)

- Cipher feedback mode: 1 bit of ciphertext fed into n bit register
- Self-healing property: if ciphertext bit received incorrectly, it and next n bits decipher incorrectly; but after that, the ciphertext bits decipher correctly
- Need to know k, E to decipher ciphertext

Block Ciphers

- Encipher, decipher multiple bits at once
- Each block enciphered independently
- Problem: identical plaintext blocks produce identical ciphertext blocks
-Example: two database records
- MEMBER: HOLLY INCOME \$100,000
- MEMBER: HEIDI INCOME \$100,000
-Encipherment:
- ABCQZRME GHQMRSIB CTXUVYSS RMGRPFQN
- ABCQZRME ORMPABRZ CTXUVYSS RMGRPFQN

Block cipher

E.g., Advanced Encryption Standard (AES)

What if M is long? Mode of operation

Ciphertext \boldsymbol{C}
Various possible additions / interconnections:

Electronic Code Book (ECB) mode

Identical message blocks \rightarrow identical ciphertext blocks!

ECB leaks information

Idea

- Insert information about block's position into the plaintext block, then encipher.
- Cipher block chaining mode (CBC):
-Exclusive-or current plaintext block with previous ciphertext block:
- $c_{0}=E_{k}\left(m_{0} \oplus l\right)$
- $c_{i}=E_{k}\left(m_{i} \oplus c_{i-1}\right)$ for $\mathrm{i}>0$
where $/$ is the initialization vector

Cipher-Block Chaining (CBC) mode

- Identical message blocks now encrypted differently
- Approach similar to Merkle-Damgard

Issue with chaining

How do we access/decrypt random blocks without having to decrypt everything
"before"?

Solution: CTR

- Counter mode (CTR):
-Key constructed by encrypting block counter
- $k_{\mathrm{i}}=E_{k}$ (unique_nonce||i)
$\cdot C_{i}=m_{i} \oplus k_{i}$
e.g. unique_nonce=(message number)
-Question: why do we need the nonce?
-Careful: never use same (k,nonce) pair !!!

Counter (CTR) mode encryption

What if we choose the wrong mode?

- Adobe breach leaked 153 million passwords in 2013
- Encrypted using ECB, not hashed with salt
- Key remained secret, but...

HACKERS RECENTLY LEAKED 153 MILLION ADOBE USER
EMAILS, ENCRYPTED PASSWORDS, AND PASSWORD HINTS.
ADOBE ENCRYPTED THE PASSWORDS IMPROPERLY, MISUSING BLOCK-MODE 3DES. THE RESULT IS SOMETHING WONDERFUL:

Integrity problem

$\bigoplus_{M=0101101}^{K=1001010}$

$$
C \Rightarrow C^{\prime}
$$

$M^{\prime}=0101100$

$$
C=1100111
$$

$$
C^{\prime}=1100110
$$

What about integrity?

- Also want Eve not to modify C (and potentially M) without detection
- Authenticated encryption modes (e.g., OCB) ensure such integrity.
- Can also use a message authentication code (MAC)
- E.g., HMAC (Bellare, Canetti, Krawczyk 1996), uses hash function
- Encrypt + MAC

Kerckhoffs's Principle

. "The design of a [crypto]system should not require secrecy..."

- Counterintuitive!
- Encryption should be secure even if the adversary (Eve) knows the algorithm enc.
- Thus:
- Security relies on secrecy of key \boldsymbol{K}
- Key \boldsymbol{K} must be random and of adequate length (e.g., 128 bits)

Jean Guillaume
Auguste Victor
François Hubert
Kerckhoffs (1835-
1903)

In fact, everyone knows enc

- Advanced Encryption Standard (AES)
- Published by NIST in 2001 after five-year contest (FIPS PUB 197)
- Extremely wide use (TLS, NSA top secret, etc.)
- Block cipher with 128,192 , and 256 -bit key variants based on Rijndael cipher
- 128-bit message blocks (as we've seen)
- Very fast
- 1500 Mbps with AES-NI on 2.4 GHz Intel Westmere (IPSec, 1kB packets, with hyperthreading, AES-128-GCM) [Source: 2010 Intel whitepaper 324238-001]
- There are other good ciphers, but AES dominates

Optional for next week

For +0.5\% credit. Install openssl and decrypt any of the following ciphertexts:

U2FsdGVkX18Avp0s9oaA8I2HeaLoCG1gZyRmoLWWBFZXcrm/1ZsXSjxc2XTpbPZw

U2FsdGVkX18KRUFApfRXdayMo8sYd96zEAdPXyA4hzMBdWxqVigJGsLs4okBhwje

U2FsdGVkX1/DUTj3FPMhUWb/hgxIchBN6LWoRbLm2L/CARN/VSAYIg==

U2FsdGVkX1/+vE2czERZciAIJteLkzndHwW9QrdibZ/Z6q8=

