
Fundamentals of Computer Security
Fall 2022

Radu Sion

Thanks to Ari Juels for parts of this deck!

Hash Functions

https://zxr.io/
https://www.arijuels.com/

Hash functions
The workhorses of modern cryptography

H

3August 29, 2022

Computer Security FundamentalsDefinition

Cryptographic hash h: A→B:
1. For any x A, h(x) is easy to compute

2. h(x) is of fixed length for any x (compression)

3. For any y B, it is computationally infeasible to find x A such that
h(x) = y. (pre-image resistance)

4. It is computationally infeasible to find any two inputs x, x A such
that x ≠ x and h(x) = h(x) (collision resistance)

5. Alternate form of 3 (stronger): Given any x A, it is computationally
infeasible to find a different x A such that h(x) = h(x). (second pre-
image resistance)

Hash function
Maps message x of any length to
short, fixed-length, random-looking
digest H(x)

H

message x ∈ {0,1}* digest H(x) ∈ {0,1}n

e49b69c1 efbe4786

0fc19dc6 240ca1cc

2de92c6f 4a7484aa

5cb0a9dc 76f988da

e.g., n = 256

Hash function
Think of it as both:

• A unique “fingerprint” of message x

• A very lossy compression of message x

H

message x ∈ {0,1}*

e49b69c1 efbe4786

0fc19dc6 240ca1cc

2de92c6f 4a7484aa

5cb0a9dc 76f988da

digest H(x) ∈ {0,1}n

Cryptographic hash function

• Common examples: MD5, SHA-1, SHA-256 (n = 256)

• H(x) should be easy to compute

• Two key security properties for a crypto hash function H:

1. pre-image resistance:

• Image is any n-bit value y

• Given image y, a preimage is any x s.t. H(x) = y

• Preimage resistance: given random y (uniform over {0,1}n), it's

infeasible to find image x, i.e., x such that

H(x) = y

Pre-image resistance

H
e49b69c1 efbe4786

0fc19dc6 240ca1cc

2de92c6f 4a7484aa

5cb0a9dc 76f988da?

Note, though, that for one image, there are

infinitely many preimages ! (Why?)

imagepreimage

Collision-resistance

2. Collision-resistance: It is hard to find

any pair of inputs (w,x) such that

H(w) = H(x) = y

H
e49b69c1 efbe4786

0fc19dc6 240ca1cc

2de92c6f 4a7484aa

5cb0a9dc 76f988da

x

w

?

Random Oracle Model (ROM)

• Simple concept

• Captures other, even stronger security
properties than preimage- and collision-
resistance

• In this class, we’ll use this ideal model of hash
functions.

x
question

y
answer

Random Oracle Model (ROM)
• Someone (NIST, NSA, Ron Rivest, God) wrote infinitely long

tape of cells in the sky

• Each cell contains uniformly random n-bit (e.g., 256-bit) value

• Each bitstring x (arbitrary length) corresponds to unique cell
• I.e., x = ‘0’ mapped to first cell, x = `1’ to second, x = `00’ to third, x = `01’

to fourth, etc.

• H(x) outputs value in cell for x

428a2f98 71374491

b5c0fbcf e9b5dba5,

3956c25b 59f111f1

923f82a4 ab1c5ed5

d807aa98 12835b01

243185be 550c7dc3

72be5d74 80deb1fe

9bdc06a7 c19bf174

e49b69c1 efbe4786

0fc19dc6 240ca1cc

2de92c6f 4a7484aa

5cb0a9dc 76f988da

……

`0' `1' `00' …

428a2f98 71374491

b5c0fbcf e9b5dba5,

3956c25b 59f111f1

923f82a4 ab1c5ed5

d807aa98 12835b01

243185be 550c7dc3

72be5d74 80deb1fe

9bdc06a7 c19bf174

e49b69c1 efbe4786

0fc19dc6 240ca1cc

2de92c6f 4a7484aa

5cb0a9dc 76f988da

……

Random Oracle Model (ROM)

Hx

y

Random Oracle Model (ROM)
• Of course, a real hash function doesn’t have these

ideal properties. (We’ll talk about examples.)

• But well designed and properly used, comes close

• The ROM is useful for:
• Conceptual simplicity;

• Mathematically rigorous but simple proofs of security;

• Understanding how to use hash functions.

428a2f98 71374491

b5c0fbcf e9b5dba5,

3956c25b 59f111f1

923f82a4 ab1c5ed5

d807aa98 12835b01

243185be 550c7dc3

72be5d74 80deb1fe

9bdc06a7 c19bf174

e49b69c1 efbe4786

0fc19dc6 240ca1cc

2de92c6f 4a7484aa

5cb0a9dc 76f988da

……

Random Oracle Model (ROM)
• The ROM implies preimage resistance.

• If I give you randomly selected image y and ask you
to find an x such that H(x) = y, what’s the best you
can do?
• If n = 256, expected number of guesses is 2256

• Huge number!
• 2256 is (way) more than the number of atoms in the Earth

428a2f98 71374491

b5c0fbcf e9b5dba5,

3956c25b 59f111f1

923f82a4 ab1c5ed5

d807aa98 12835b01

243185be 550c7dc3

72be5d74 80deb1fe

9bdc06a7 c19bf174

e49b69c1 efbe4786

0fc19dc6 240ca1cc

2de92c6f 4a7484aa

5cb0a9dc 76f988da

……

In-class exercise

Random Oracle Model (ROM)
• If I ask you to find an x such that H(x) = y

ends in 0000 (binary)…

• How many guesses on average / expectation?

• Maximum number of guesses?

428a2f98 71374491

b5c0fbcf e9b5dba5,

3956c25b 59f111f1

923f82a4 ab1c5ed5

d807aa98 12835b01

243185be 550c7dc3

72be5d74 80deb1fe

9bdc06a7 c19bf174

e49b69c1 efbe4786

0fc19dc6 240ca1cc

2de92c6f 4a7484aa

5cb0a9dc 76f988da

……

Random Oracle Model (ROM)

From Ron Rivest’s MD5 FAQ:

Q. I understand how MD5 works, but I can't figure out how
to decrypt the resulting ciphertext. Can you please explain
how to decrypt an MD5 output?

A. MD5 is not an encryption algorithm---it is a message
digest algorithm. There should be no feasible way to
determine the input, given the output. That is one of the
required properties of a message digest algorithm.

Now for a little

digression about

birthdays…

Birthday paradox

• There are N (=365) days in an (ordinary) year.

• Suppose there are k people in the room.

• Assume (uniformly) randomly distributed

birthdays.

• How large must k be for it to be likely (prob.

≥1/2) that two people share a birthday?

Birthday paradox

• Think of this as a "balls and

bins" experiment.

Jan. 1 Jan. 2 Jan. 3 Dec. 30 Dec. 31

…

Birthday paradox

Jan. 1 Jan. 2 Jan. 3

…

Dec. 30 Dec. 31

…

• Think of this as a "balls and

bins" experiment.

Birthday paradox

Jan. 1 Jan. 2 Jan. 3

…

Dec. 30 Dec. 31

…

• Think of this as a "balls and

bins" experiment.

!

Birthday paradox

Jan. 1 Jan. 2 Jan. 3

…

Dec. 30 Dec. 31

…

• We're going to throw k balls into N bins
• i.e., assign k birthdays over a year

• Let Xij denote event that ball j lands in same bin as
ball i
• I.e., Xij = 1 if so
• I.e., Xij = 0 if not

• Thus, there's a collision if X = Σi,j Xij ≥ 1

Birthday paradox

Jan. 1 Jan. 2 Jan. 3

…

Dec. 30 Dec. 31

…

• There's a collision if X = Σi,j Xij ≥ 1
• What's E[Xij]?

• 1/N
• How many distinct (i,j) pairs of balls?

• C(k,2) =k (k-1) / 2

Birthday paradox

Jan. 1 Jan. 2 Jan. 3

…

Dec. 30 Dec. 31

…

• Thus, E[X] = C(k,2) / N ≈ k2 / 2N
• Heuristically, collision w.p. ≈ 1/2 for E[X] ≈ 1/2

• (At most prob. = 1/2)
• Now, E[X] ≈ 1/2 when

• k2 ≈ N, i.e., k≈√N

Birthday paradox

Jan. 1 Jan. 2 Jan. 3

…

Dec. 30 Dec. 31

…

• There are N = 365 days in an (ordinary) year
• √ 365 < 20
• In fact:

• Prob ≈ 50.7% for k = 23
• It's pretty much certain that two people in this room share a

birthday!
• For k = 80, ≈ 99.99% chance!
• (Actually, 41% chance that three people share a birthday!)

• That's the paradox…

Birthday paradox illuminates

collision-resistance
• ROM + birthday paradox ⇒ collision-resistance

• How do I find a collision?
Do

• Pick a random x

• Compute y = H(x) and store it

Until a collision is found

• Given 256-bit hash, like throwing balls into 2256 buckets
• By birthday paradox, collision w.p. ≈ 1/2 on 2128 throws

• 2128 more than, e.g., number of atoms in bodies of all people in NYC

• General rule of thumb in cryptography:192-bit
security, meaning 2192 work for attacker, is “strong”

26August 29, 2022

Computer Security FundamentalsOverall Intuition

• A hash is a one-way, non-invertible function of that produces
unique (with high likely-hood), fixed-size outputs for different
inputs.

• The probability of any bit flipping in the output bit-string
should be always ½ for any change (even one bit) in the input
(“randomness”).

Applications of hashing

Software verification

software x H(x)

Alice

Application: software verification

H(x)

Alice

Why?

software x H(x)

Alice

software e(vil)

What property of H prevents

this attack?

software e

software x H(x)

Alice

• Case 1: Software vendor /
attacker sends x to most
users, but e, with backdoor,
to victims.
• Collision-resistance!

• Attacker needs to create x, e such
that H(x) = H(e).

• Case 2: Evil organization
(other than vendor)
distributes e to victims.
• Attacker needs to create e such

that H(e) = H(x).

• Preimage resistance! (In ROM)

Application:

Password hashing

P = “CatPajamas”

P

H

H(P)

Alice

to verify an incoming password…

P’

P’

H

H(P’) = H(P)

Alice

?

Password attack path

Attacker repeatedly guesses P’
until H(P’) = H(P) and thus P’ = P

How can attackers

crack hashes?
• Preimage resistance? Isn't H hard to invert?

• Yes, but only for random digest (ROM tape cell) y

• Hash image H(P) of common password P isn't

randomly generated!

• Attacker can search space of such hashes

• H("123456"), H("password1"), etc.

"123456"
"password1"

Worse still…
If everyone uses same hash function H,
then attacker:

• Compiles dictionary of common password / hash
pairs (P, H(P))

• Given H(P), looks up P in the dictionary!

Password Hash

d807aa98 12835b01

243185be 550c7dc3…

72be5d74 80deb1fe

9bdc06a7 c19bf174…

123456

password1

Password-Cracking Dictionary

Alice's

account

d807aa98 12835b01

243185be 550c7dc3…H(P) =

• Can we somehow use different hash function for every user?

• Idea: Hash with unique per-user bitstring called salt

• Server stores not H(P) for Alice but (saltAlice, H(saltAlice || P))

• Approximates different hash for each user

• Salt not secret!

• Otherwise, can't verify passwords

Salting password hashes

Salting password hashes
In the ROM…

without salt. H(P)
H(P)

Alice

Bob

Same attack dictionary works across different users

In the ROM…

with salt. H(saltA ||P)
H(saltB ||P)

Alice

Bob

Different, independent parts of tape → no shared dictionary

Salting password hashes

H(saltA ||P) H(saltB ||P)

Alice Bob

Different, independent parts of tape → no shared dictionary

• Now, dictionary attack no longer possible!
• Attacker must do online, brute-force

guessing.
• Salt "hardens" passwords.

Salting password hashes

salted-password database

Another defense:

Resource-intensive hashing

• Idea: Make H slow (but feasible) to compute
• Approach: Many iterations of H to slow process

• E.g., store H 2048(P)
• Computationally intensive

• Pro: slows attacker

• Con: slows user

• Example: bcrypt, default in BSD (based on Blowfish
cipher)

• Newer approach: Heavy use of fast memory (cache)
• Examples: scrypt, Argon2
• Used today in cryptocurrencies (e.g., Litecoin,

Ethereum)

Hashing application:

User authentication (S/KEY)

x[0]

x[1]

x[2]

Alice Bob

Alice:x[2]

"Alice", z = x[1]

H(z) = x[2]

Hashing application:

User authentication (S/KEY)

x[0]

x[1]

x[2]

Alice Bob

Alice:x[1]

"Alice", z = x[0]

H(z) = x[1]

Message-Authentication Code

(MAC)

(Naive)

Alice Bob

K

(x, H[K||x])

K

Commitment

Commitment
• Suppose:

• Alice chooses short message m
• E.g., m ∈ {0,1}, i.e., one bit

• Alice gives us C = H(m)

• Easy to compute m from C = H(m)
• Like brute-force password cracking

• C = H(0) or H(1)?

• Can Alice somehow use H to hide m?

Commitment
• Alice chooses random, secret key r

• E.g., r ⟸ {0,1}128

• Suppose Alice gives us C = H(m || r)…

• …but not r

• Now hard to compute m!

• Why?

Alice

C

Hide and go seek in the ROM

C

output

• Alice computes C by querying cell for m
|| r
• Call this the "red cell"

• To confirm m, need to find the red cell
in the tape
• Can't tell if cell is red unless queried!

C

m || r

Hide and go seek in the ROM

C

output

• But there are many, many possible values
(2128

) of r !
• So many candidate red cells

• Far too many candidates to search exhaustively!

• Commitment is (computationally) hiding

C

m || r

But…

C

output

If Alice reveals ("decommits") m, r, we

can verify commitment by checking:

C = H(m || r)

C

m || r

What if Alice

changes her mind / cheats?

• Alice commits to m = 1
• i.e., computes C = H(1 || r)

• Gives us C

• Alice wants to decommit m = 0
• i.e., give us 0, s such that C = H(0 || s)

• Infeasible!

• Why?
• Breaks collision resistance of H!

• Alice must find H(1 || r) = H(0 || s)

A good

commitment scheme is…

• Efficient: Easy to compute C

• Hiding: Hard to compute m from

commitment C

• Binding: Hard to change m for given

commitment C

• I.e., hard to decommit some m' ≠ m

Commitment application:

Time capsule

C = H(m || r)

Alice

m = “Alice is

Satoshi Nakamoto”

random secret

key r

Year 2007

C
2007

Commitment application: Time capsule

Alice

Years 2008-17

Who is Satoshi Nakamoto?

2008

Application: Time capsule

m,r

Alice C

m = “Alice is

Satoshi Nakamoto”

random secret

key r

Year 2017
2007

C = H(m || r)

Application: Time

capsule

m,r

Alice C

m = “Alice is

Satoshi Nakamoto”

random secret

key r

Year 2015
2007

C = H(m || r)
New evidence from

2007!

woman

Commitment application: Time capsule

Alice

C
2007

• Why does it matter that:

• Commitment is

hiding?

• Commitment is

binding?

Commitment application:

Fair coin toss… over the

telephone

Alice Bob

Heads!
Sorry!

Tails!

A bad way to do it…

Commitment application:

Fair coin toss… over the

telephone

Alice Bob

C = H("heads" || r)

"heads"!

"heads", r
C = H("heads" || r)

Now the game is exactly like

that played in person

Alice Bob

Alice flips coin and covers

with her hand

Bob guesses "heads"!

Alice lifts her hand

Other applications of hashing

• Digital signatures

• “Compress” message to reduce signing computation

• Tamper-prevention

• E.g., International Criminal Tribunal for Rwanda evidence

• Bitcoin

• “Proof of Work” involves use of hash function (SHA-256)

• Many, many other uses

Real hash functions (and a caveat)

Some common hash functions

• MD5

• Highly influential design by Ron Rivest in 1991

• Strong attack against collision-resistance

shown in 2004 (Wang and Yu)

• Attack exploited in the wild in Flame malware in

2012

• Used to create rogue Microsoft certificate because…

• Still in common use through 2012!

65August 29, 2022

Computer Security FundamentalsExample MD5 Digest

md5_digest("The quick brown fox jumps over the lazy dog") =
9e107d9d372bb6826bd81d3542a419d6

md5_digest("The quick brown fox jumps over the lazy cog") =
1055d3e698d289f2af8663725127bd4b

Some common hash functions
• SHA-1

• Designed by NIST / NSA; Influenced by MD5
• Some theoretical weaknesses shown in 2005 by Wang,

Yin, and Yu
• First collision demonstrated on 23 Feb. 2017 by Google /

CWI

• Still in pretty common use!

Some common hash functions

• SHA-2 family

• In common use (e.g., SHA-256 used to

authenticate Debian GNU/Linux software

packages, in Bitcoin, etc.)

• Includes: SHA-224, SHA-256, SHA-384, SHA-

512, SHA-512/224, SHA-512/256

• Designed by NSA

• Published in 2001

Performance with

Intel SSE instruction

SHA-3
• Public competition organized by NIST in 2007 to develop new

cryptographic hash algorithm

• 64 entrants (Oct. 2008)

• 5 finalists (Dec. 2010)

• Winner: Keccak (Oct. 2012)
• Bertoni et al.

• Standardized by NIST as SHA-3

• SHA-3 is a "backup" algorithm
• No known weaknesses of SHA-2, e.g., length-extension attacks

• Different design principle (“sponge”) than Merkle-Damgård

• Evidently useable for commitment directly, without HMAC

70August 29, 2022

Computer Security FundamentalsHashes to (not) use

• Do not use at all the following:

–MD5, SHA-0/1, any other obscure “secret” ones

• For use in civilian/.com setting (until 2025):

– SHA-256/512, SHA3

Hashing for passwords

• Argon2

• Winner of Password Hashing Competition in 2015

• One of a number of memory-hard hash functions

• Why memory-hardness?

• General-purpose vs. special-purpose hashing hardware

•Balloon hashing
• Like Argon2, but with memory-hardness that's proven in the
ROM

Takeaways

Hash functions are powerful!
• Ideal model: Random Oracle Model

• “tape in the sky”

• Well-known hash function: SHA-256 (SHA-2 family)

• Applications we saw today
• Password protection

• File integrity

• User authentication

• Coin flipping over the phone

• Lots of other applications!

