Public-Key Cryptography

Thanks to <u>Ari Juels</u> for parts of this deck!

The magic trick you regularly perform

- When you log into a merchant's website (via HTTPS):
 - You've often got no shared secret key or password for encryption or authentication
 - Attackers can remotely eavesdrop and tamper with your communications
- Yet somehow, you create a secure (confidential, integrity-protected) channel over which you can safely send:
 - SSNs
 - Credit card numbers
 - Passwords, etc.

What's going on?

Key exchange

- User and website somehow manage to choose and share a random, secret key K, despite:
 - No prior communication about K
 - Eavesdropper or malicious entity intercepting their communication

Diffie-Hellman key agreement

First practical public-key cryptosystem... and the simplest.

Goal

Alice and Bob want to share a secret key *K*, but:

- They've never met.
- They don't want Eve, who's eavesdropping, to learn K. •

Discrete log problem

DL Problem: Given a group G of order q and the pair (q, y), where

- *g* is a generator of *G* and
- $y = q^x$ for random $x \in [0, q-1]$,

compute $x = \log_q y$.

DL assumption: The DL problem is hard (for certain groups).

(Formally, given random y, the value x cannot be computed with non-negligible probability by a probabilistic polynomial-time adversary)

Typical choices of **G**

- A Diffie-Hellman setup for SSH (RFC 4419)
 - p = 2q+1, for primes p and q (or q | p 1)
 - Computation is performed mod p
 - g generates cyclic subgroup G of order q
 - So Alice's public-key is $A = g^a \mod p$, for $a \in_{\mathbb{R}} [0, q-1]$
 - Typical parameter choices: p is a 2048-bit prime, q is a 224-bit value
 - Public-key key sizes *much longer* than symmetric-key
- Another good choice is **G** on an elliptic curve
 - G a cyclic subgroup for an elliptic curve on a finite field
 - Yields very compact private keys, e.g., 256-bit (ECDSA in Bitcoin), and efficient computation.

Discrete log problem

DL Problem intuition:

Random values in exponent space are "hidden," e.g. x is hidden in

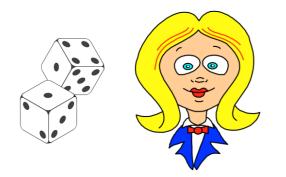
So we can "compute secretly" in the exponent space.

Note: We'll now omit mod p for visual clarity.

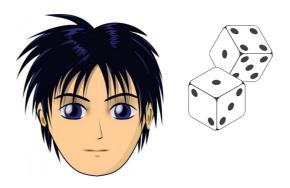
- hidden
- not hidden

DH key agreement

Step 1: Key generation



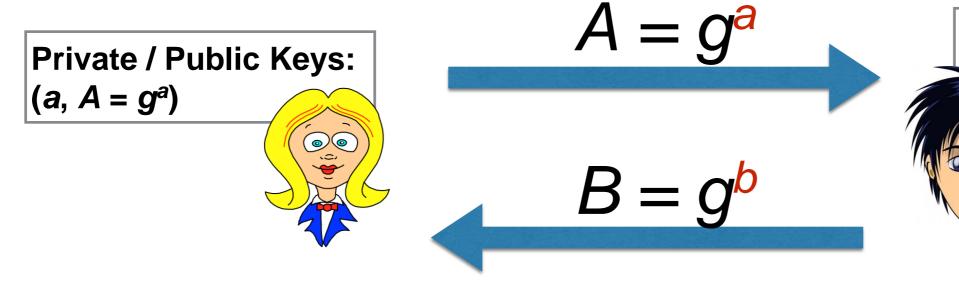
Random private key: a Public key: $A = g^a$



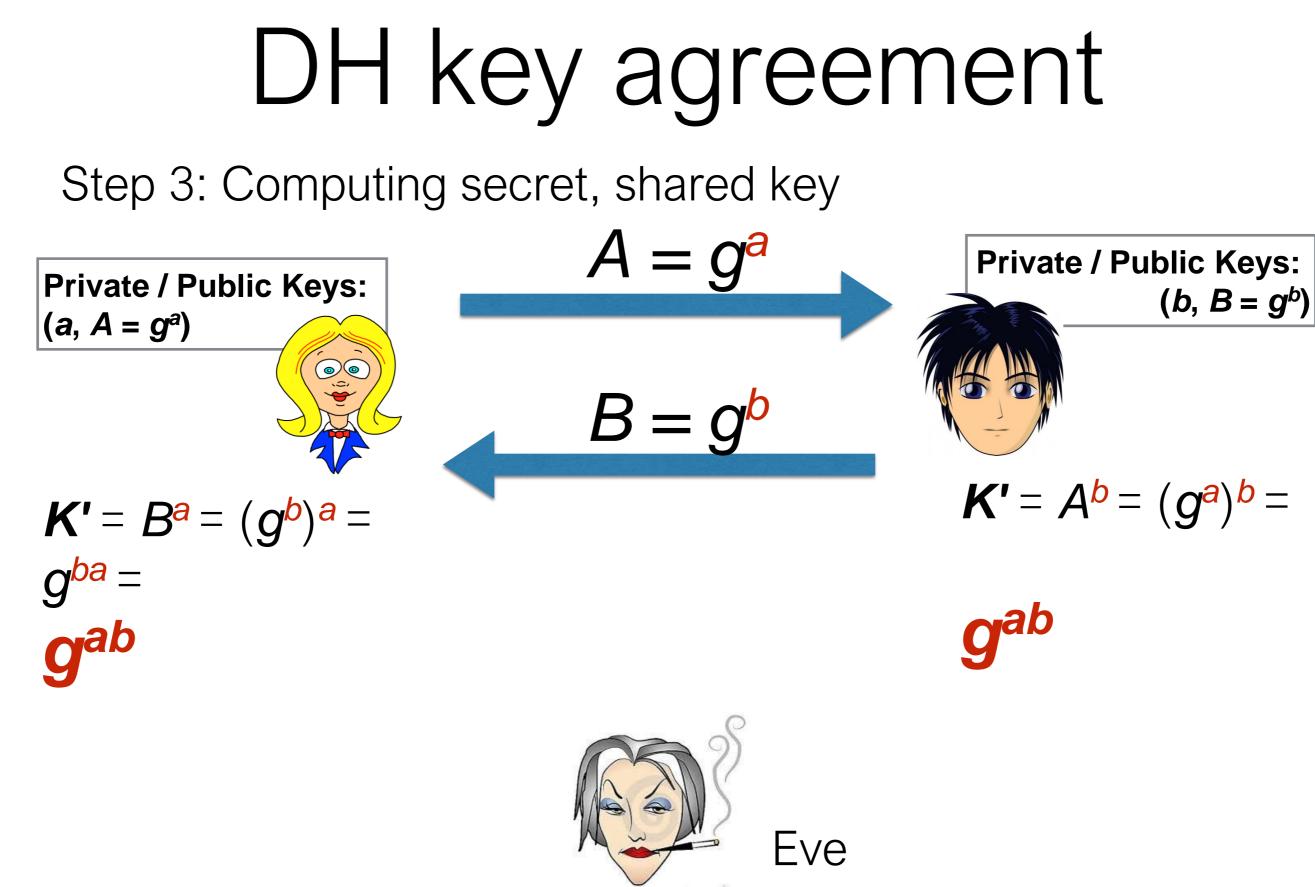
Random private key: b Public key: $B = g^b$

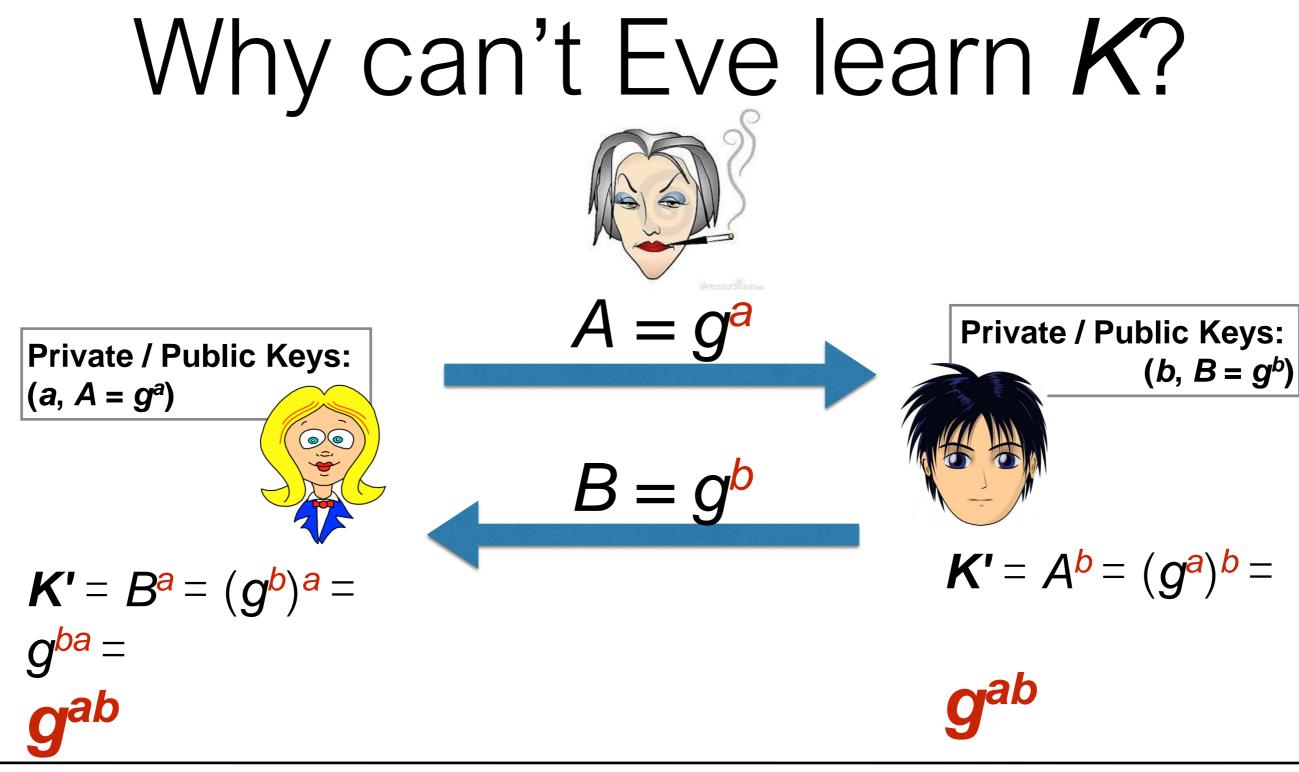
DH key agreement (unauthenticated, simplified)

Step 2: Public-key exchange



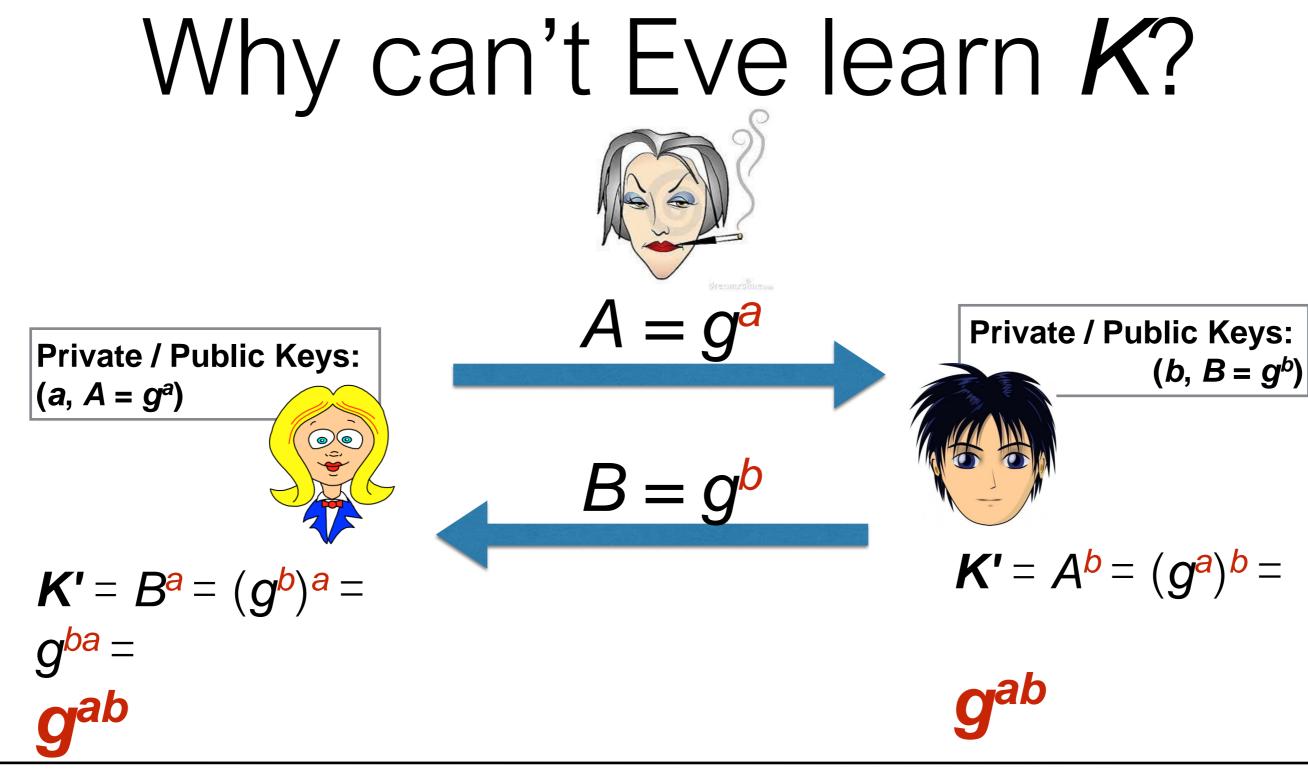
Private / Public Keys: ($b, B = g^b$)





Intuition:

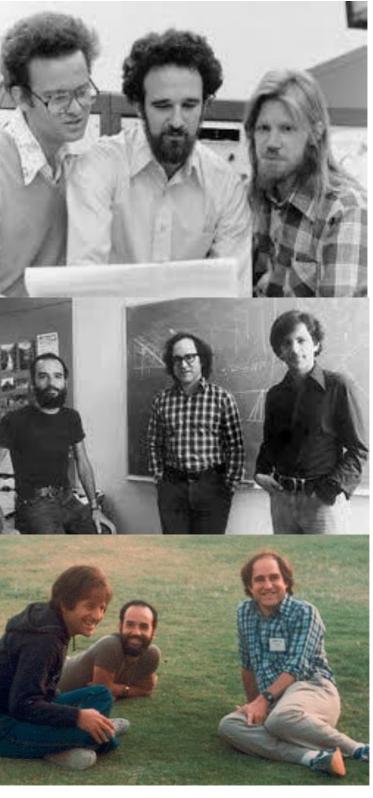
- Values in red are in *exponent space, so they remain hidden.* •
- Alice can *multiply* hidden value b by *known* value a; vice versa for Bob. •
- Eve doesn't know *a* or *b*, can't do secret multiplication (DH assumption). •
- Eve can only compute, e.g., $AB = g^a g^b = g^{a+b}$.



- g^{ab} is hashed to obtain symmetric key, e.g., AES key
- I.e., *K* = *H*(*K*')

Seminal papers

- [DH] W. Diffie and M. Hellman, New directions in cryptography, IEEE TIT 22(6):644-654 (1976)
 - First practical public-key cryptographic algorithm—for key exchange (not encryption)
 - Many other conceptual contributions, e.g.,
 - Notion of digital signatures
 - Relationship between crypto and complexity theory
 - · Idea that crypto should be predicated on seemingly hard problems
 - Requirement for average-case hardness given random selection of instance
- [RSA] R. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, CACM 21(2):120-126 (1978)
 - First public-key encryption *and* digital signature scheme
 - Introduced Alice and Bob



RSA encryption

- Uses modular exponentiation (like D-H)
- Security related to hardness of *factoring*
 - Given pq for large primes p and q, compute p and q

te D-H) Actoring Mpute p and q

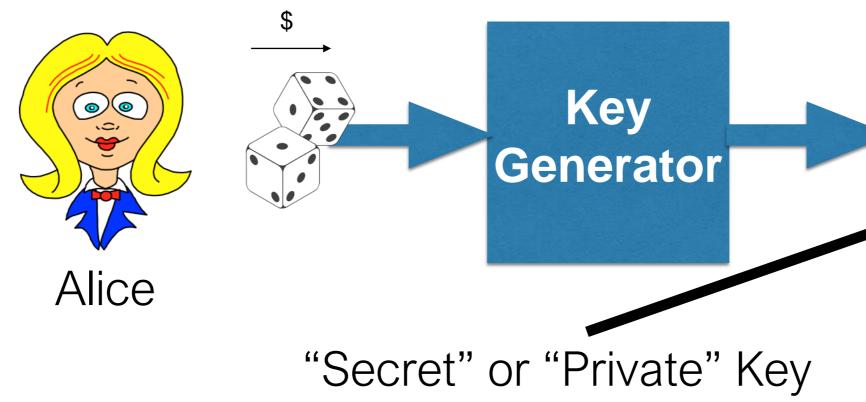
IT'S JUST AN ALGORITHM

RSA' PUBLIC-KEY CRYPTOSYSTEM US PATENT # 4,405,829

$P \notin Q PRIME$ N = PQED = I MOD (P-1)(Q-1)C = M^E MOD NM = C^D MOD N

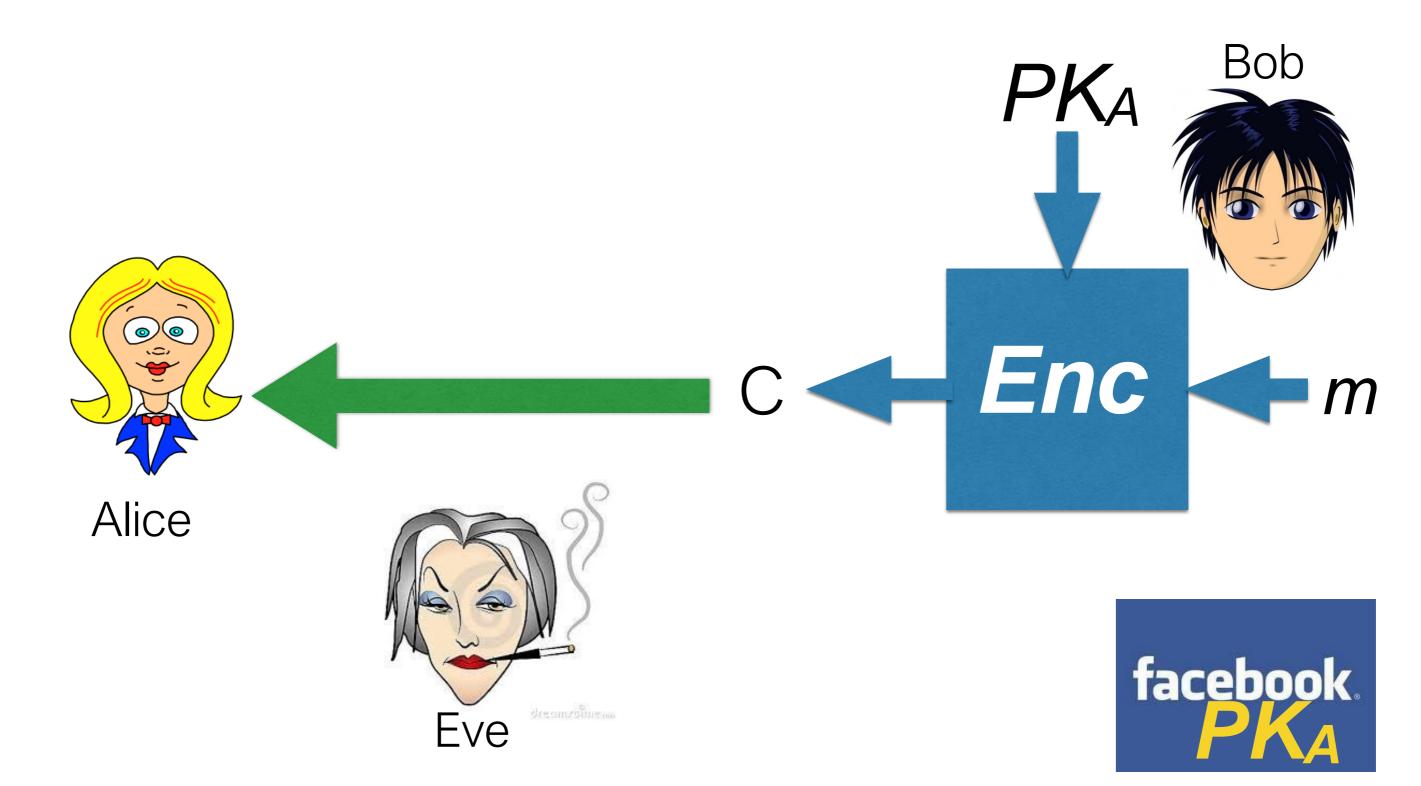
RSA

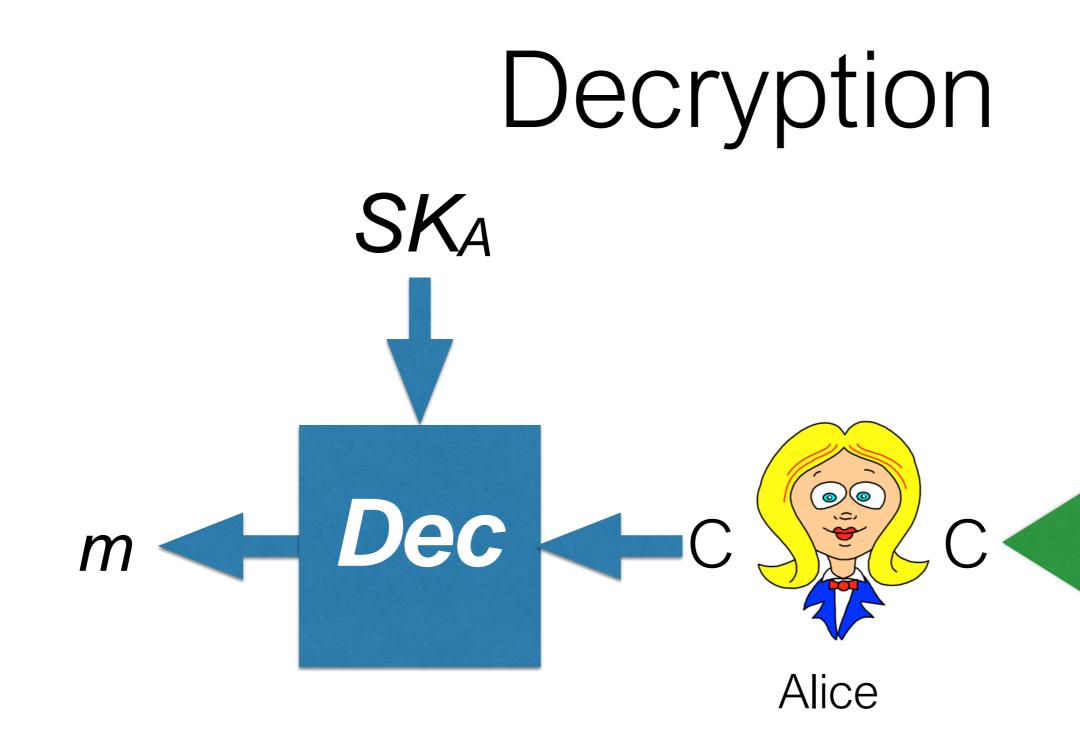
Public-key encryption (a la RSA) • Key generation

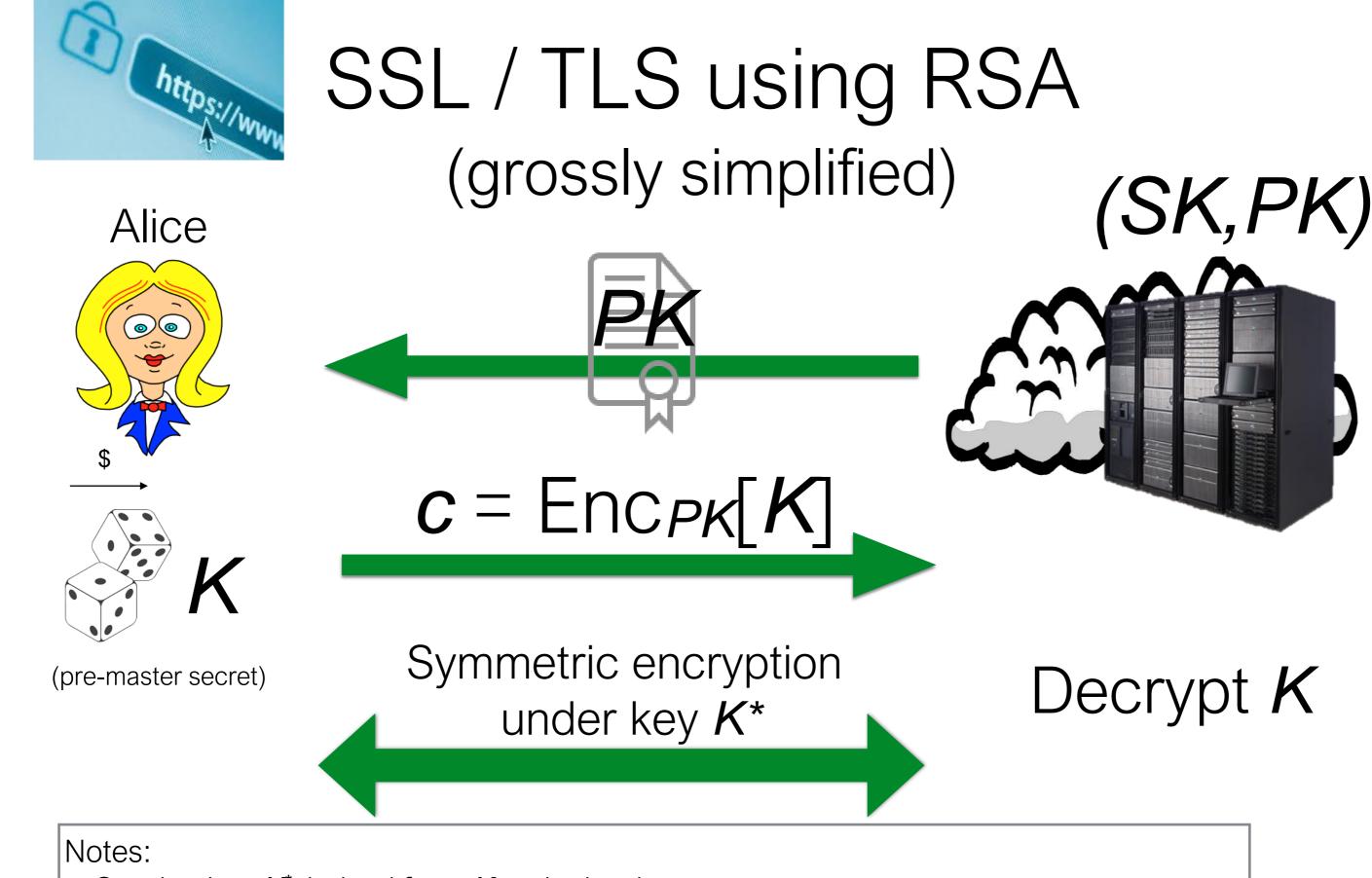


 (SK_A, PK_A) Public Key

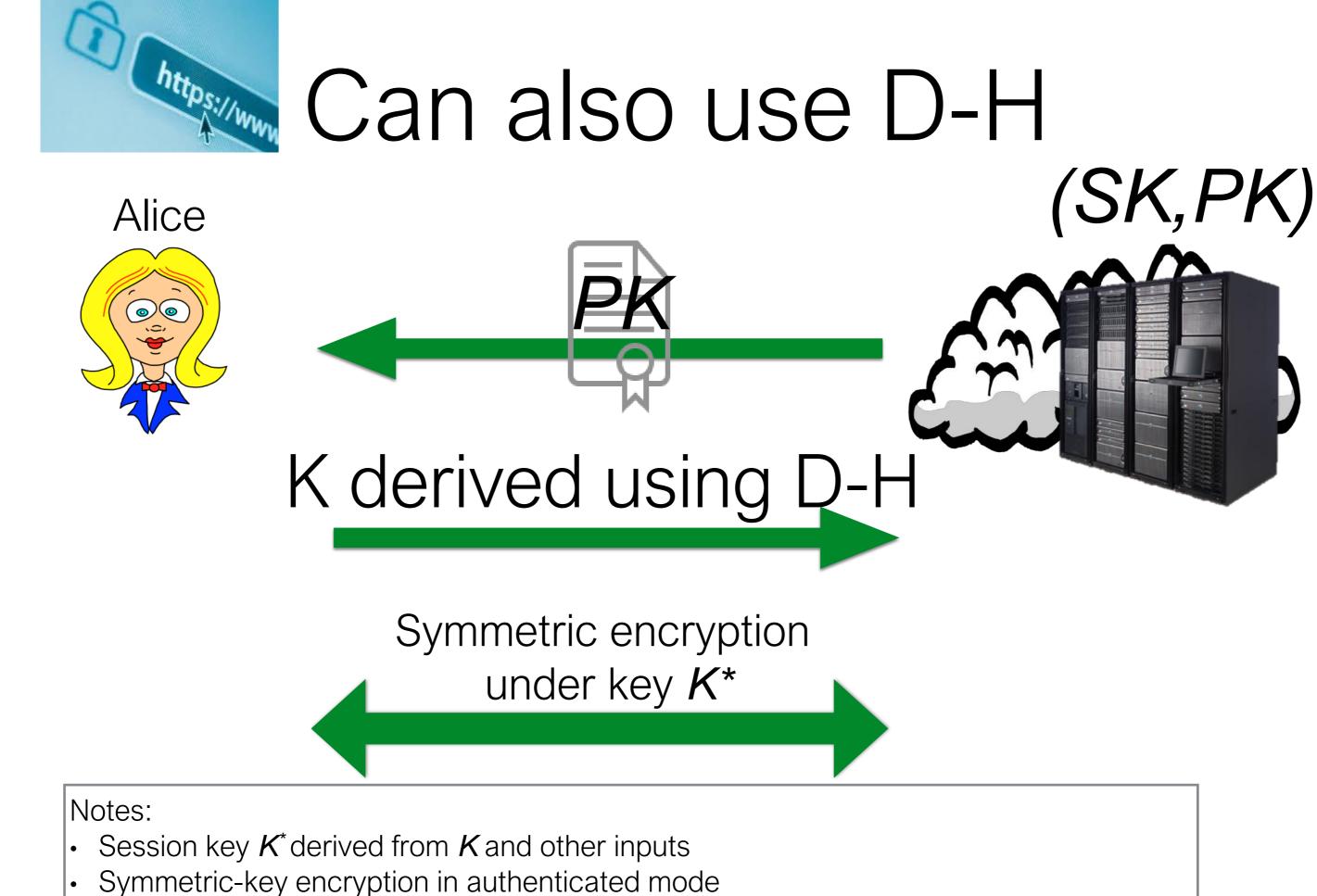
Encryption







- Session key K^{*} derived from K and other inputs
- Symmetric-key encryption in authenticated mode
- Whole protocol is *extremely* complicated, with cipher-suite negotiation, etc.



Whole protocol is *extremely* complicated, with cipher-suite negotiation, etc.

What can we learn from this design?

- Why do Alice and the server switch to symmetric-key encryption?
 - Public-key encryption allows negotiation of secrets over public channels.
 - But symmetric-key encryption is far faster than public-key encryption.
 - E.g., 32,000 RSA decryptions / second in coprocessor (Freescale C293)
 - Intel AES-NI: about 1.3 cycles / byte for AES-128 (CBC-decrypt) on single-core Intel Core i7 Extreme Edition, i7-980
 - A hybrid approach achieves the best of both worlds...
 - Can also be used for message encryption via "key wrapping"
 - $C = (Enc_{PK}[K], enc_{K}[m])$
 - Enc is public-key, enc is symmetric-key

How hard is it to break RSA?

- Best known general attack involves factoring N = pq
- Difficulty of best classical factoring algorithm (general number field) sieve) grows super-polynomially (but sub-exponentially)

$$\exp\left(\left(\sqrt[3]{\frac{64}{9}} + o(1)\right)(\ln n)^{\frac{1}{3}}(\ln \ln n)^{\frac{2}{3}}\right) = L_n\left[\frac{1}{3}, \sqrt[3]{\frac{64}{9}}\right]$$

- Here, *n* is bit length
- Note that faster computers *favor defenders*.
- A better method could arise, e.g.,
 - Algorithmic breakthrough
 - Factoring quantum computer (for which poly-time algorithms are known)...
- Similar story for D-H

In-class exercise

- Apart from TLS, what are some good applications of public-key encryption?
- Why is symmetric-key encryption alone not sufficient to achieve them?

Some applications of public-key encryption

- Secure e-mail
 - S/MIME
- Hard-drive encryption
 - E.g., FileVault, PGP full-disk encryption use RSA
 - Don't need secret key to add files!