
Public-Key Cryptography

Thanks to Ari Juels for parts of this deck!

https://www.arijuels.com/


The magic trick you regularly perform

• When you log into a merchant’s 

website (via HTTPS):

• You’ve often got no shared secret key or 

password for encryption or authentication

• Attackers can remotely eavesdrop and 

tamper with your communications 

• Yet somehow, you create a secure 

(confidential, integrity-protected) 

channel over which you can safely 

send:

• SSNs

• Credit card numbers

• Passwords, etc.



What's going on?

• Key exchange

• User and website somehow manage to choose 

and share a random, secret key K, despite:

• No prior communication about K

• Eavesdropper or malicious entity intercepting their 

communication



Diffie-Hellman 

key agreement

First practical public-key cryptosystem… and the simplest. 



Goal

Alice Bob

Eve

Alice and Bob want to share a secret key K, but:
• They’ve never met.

• They don’t want Eve, who’s eavesdropping, to learn K.

K K



Discrete log problem

DL Problem: Given a group G of order q and the 

pair (g,y), where

• g is a generator of G and

• y = gx for random x ∈ [0,q-1],

compute x = logg y .

DL assumption: The DL problem is hard (for certain groups). 

(Formally, given random y, the value x cannot be computed with non-negligible probability by 

a probabilistic polynomial-time adversary)



Typical choices of G
• A Diffie-Hellman setup for SSH (RFC 4419)

• p = 2q+1, for primes p and q (or q | p - 1)

• Computation is performed mod p

• g generates cyclic subgroup G of order q

• So Alice’s public-key is A = ga mod p, for a ∈R [0,q-1]

• Typical parameter choices: p is a 2048-bit prime, q is a 224-bit value

• Public-key key sizes much longer than symmetric-key

• Another good choice is G on an elliptic curve

• G a cyclic subgroup for an elliptic curve on a finite field

• Yields very compact private keys, e.g., 256-bit (ECDSA in Bitcoin), and efficient computation.



Discrete log problem

DL Problem intuition:

Random values in exponent space are “hidden,” 

e.g. x is hidden in

y=gx.

So we can “compute secretly” in the exponent 

space.

Note: We'll now omit mod p for visual clarity. 

hidden

not hidden



DH key agreement

Eve

Step 1: Key generation

Random private key: a

Public key: A = ga

Random private key: b

Public key: B = gb



DH key agreement
(unauthenticated, simplified)

Eve

Step 2: Public-key exchange

Private / Public Keys: 

(a, A = ga)

Private / Public Keys: 

(b, B = gb)
A = ga

B = gb



DH key agreement

Eve

Step 3: Computing secret, shared key

Private / Public Keys: 

(a, A = ga)

Private / Public Keys: 

(b, B = gb)

K' = Ba = (gb)a =

gba =

gab

K' = Ab = (ga)b =

gab

A = ga

B = gb



Why can’t Eve learn K?

Private / Public Keys: 

(a, A = ga)

Private / Public Keys: 

(b, B = gb)

K' = Ba = (gb)a =

gba =

gab

K' = Ab = (ga)b =

gab

Intuition:

• Values in red are in exponent space, so they remain hidden.

• Alice can multiply hidden value b by known value a; vice versa for Bob.

• Eve doesn’t know a or b, can’t do secret multiplication (DH assumption).

• Eve can only compute, e.g., AB = ga gb = ga+b..

A = ga

B = gb



Why can’t Eve learn K?

Private / Public Keys: 

(a, A = ga)

Private / Public Keys: 

(b, B = gb)

K' = Ba = (gb)a =

gba =

gab

K' = Ab = (ga)b =

gab

• gab is hashed to obtain symmetric key, e.g., AES key

• I.e., K = H(K')

A = ga

B = gb



Seminal papers
• [DH] W. Diffie and M. Hellman, New directions in 

cryptography, IEEE TIT 22(6):644-654 (1976)

• First practical public-key cryptographic algorithm—for key 

exchange (not encryption)

• Many other conceptual contributions, e.g.,

• Notion of digital signatures

• Relationship between crypto and complexity theory

• Idea that crypto should be predicated on seemingly hard problems

• Requirement for average-case hardness given random selection of 

instance

• [RSA] R. Rivest, A. Shamir, and L. Adleman, A 

method for obtaining digital signatures and public-

key cryptosystems, CACM 21(2):120-126 (1978)

• First public-key encryption and digital signature scheme

• Introduced Alice and Bob



RSA encryption

• Uses modular exponentiation (like D-H)

• Security related to hardness of factoring

• Given pq for large primes p and q, compute p and q



RSA



Public-key encryption

(a la RSA)
• Key generation

Alice

$

Key

Generator (SKA, PKA)

“Secret” or “Private” Key

Public Key



Encryption

Alice

PKA

Bob

Eve

m

PKA

EncC



m

SKA

Decryption

Alice

Bob

CDec

Eve

C



SSL / TLS using RSA
(grossly simplified)

Alice

PK

$

K
(pre-master secret)

c = EncPK[K]

Decrypt K

(SK,PK)

Symmetric encryption

under key K*

Notes: 

• Session key K* derived from K and other inputs

• Symmetric-key encryption in authenticated mode

• Whole protocol is extremely complicated, with cipher-suite negotiation, etc.



Can also use D-H
Alice

PK

K derived using D-H

(SK,PK)

Symmetric encryption

under key K*

Notes: 

• Session key K* derived from K and other inputs

• Symmetric-key encryption in authenticated mode

• Whole protocol is extremely complicated, with cipher-suite negotiation, etc.



What can we learn from this design?

• Why do Alice and the server switch to symmetric-key 

encryption?

• Public-key encryption allows negotiation of secrets over public 

channels.

• But symmetric-key encryption is far faster than public-key encryption.

• E.g., 32,000 RSA decryptions / second in coprocessor (Freescale C293)

• Intel AES-NI: about 1.3 cycles / byte for AES-128 (CBC-decrypt) on single-core Intel 

Core i7 Extreme Edition, i7-980 

• A hybrid approach achieves the best of both worlds…

• Can also be used for message encryption via “key wrapping”

• C = (EncPK[K], encK[m])

• Enc is public-key, enc is symmetric-key



How hard is it to break RSA?

• Best known general attack involves factoring N = pq

• Difficulty of best classical factoring algorithm (general number field 

sieve) grows super-polynomially (but sub-exponentially)

• Here, n is bit length

• Note that faster computers favor defenders. 

• A better method could arise, e.g., 

• Algorithmic breakthrough

• Factoring quantum computer (for which poly-time algorithms are known)…

• Similar story for D-H



• Apart from TLS, what are some 

good applications of public-key 

encryption?

• Why is symmetric-key encryption 

alone not sufficient to achieve them?

In-class exercise



Some applications of 

public-key encryption

• Secure e-mail 

• S/MIME

• Hard-drive encryption

• E.g., FileVault, PGP full-disk encryption 

use RSA

• Don't need secret key to add files!


