Fundamentals of Computer Security

Key Exchange Public Key Cryptography

Public Key Cryptography

- Fundamentals
- RSA

Computer Security Fundamentals

Key Exchange

- Compute a common, shared key
 - -Called a symmetric key exchange protocol
- Challenges:
 - –I don't know the other party
 - -Alice and Bob vs. Eve (who eavesdroppes)

Computer Security Fundamentals

One Idea

- Alice: generates random a
- Bob: generates random b
- Alice sends: m_a=g^a
- Bob sends: m_b=g^b
- Alice does: (m_b)^a =g^{ba} =key
- Bob does: (m_a)^b=g^{ab}=key
- Does it work ?!!! Seems very simple !

Computer Security Fundamentals

Make it difficult for bad guy

- Discrete logarithm problem hardness:
 - -Given integers *n* and *g* and prime number *p*, compute k such that $n = q^k \mod p$
 - -Solutions known for small p
 - -Solutions computationally infeasible as p grows large

Computer Security Fundamentals

Diffie-Hellman

- Constants: prime p, integer $g \neq 0, 1, p-1$
 - Known to all participants
- Alice chooses private key k_{Alice} , computes public key $K_{Alice} = g^{k_{Alice}} \mod p$
- To communicate with Bob, Alice computes

 $K_{shared} = K_{Boh}^{k} A lice \mod p$

• To communicate with Alice, Bob computes

$$K_{shared} = K_{Alice}^{k_{Bob}} \mod p$$

It can be shown these keys are equal

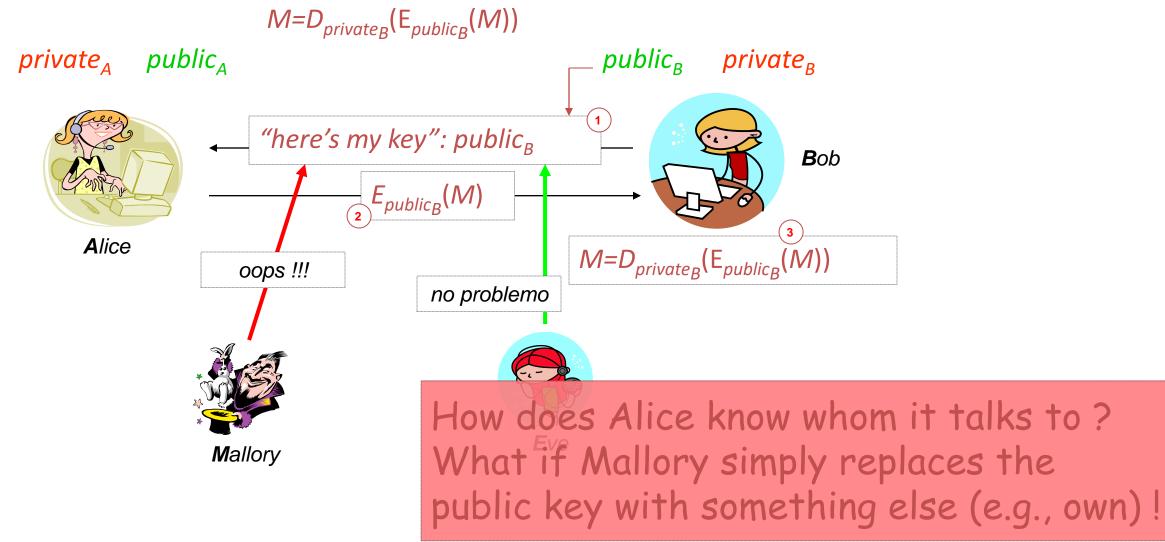
Computer Security Fundamentals

A couple of problems 🙂

- Man in The Middle (MITM) -solution: authenticate first
- Are we talking to the right person ?
- Forward Secrecy (PFS)
 - -future compromise does not impact past
 - -station to station (STS) Protocol

Computer Security Fundamentals

Public Key Encryption



Computer Security Fundamentals

"Signatures"

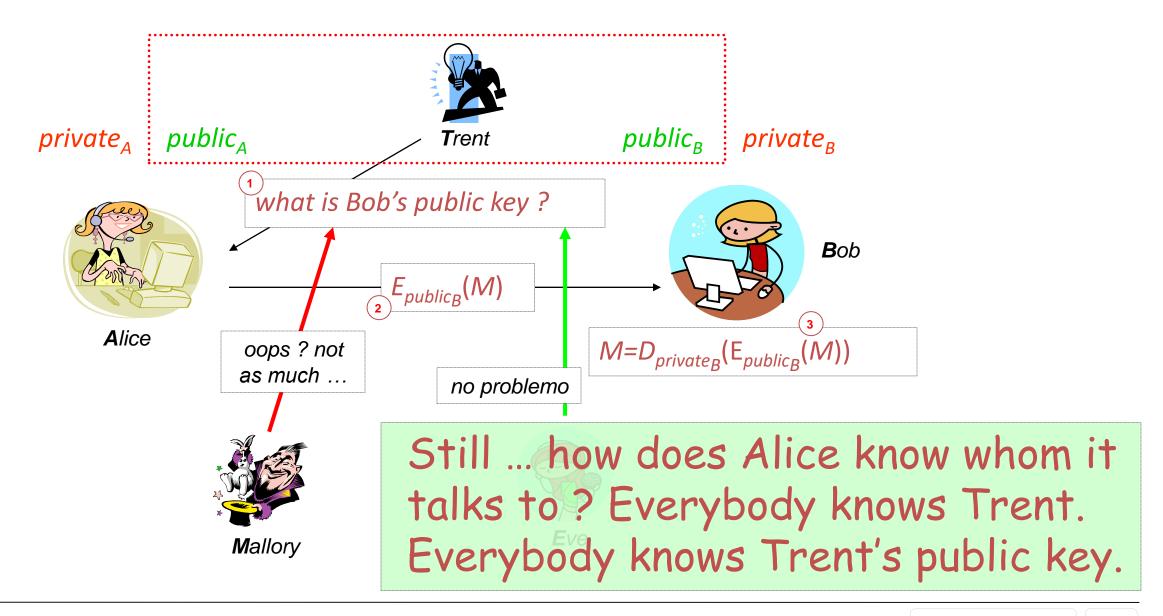
Signature ...

... something that only signer can produce ... and everybody can verify

verify = check for a unique association between the signer identity, text to be "signed" and the signature.

Computer Security Fundamentals

Certificate Authority



Computer Security Fundamentals

What does this give us (1)

- Confidentiality
 - Only the owner of the private key knows it, so text enciphered with public key cannot be read by anyone except the owner of the private key
- Authentication
 - Only the owner of the private key knows it, so text enciphered with private key must have been generated by the owner ("digital signature")
 - In real life: encrypt a hash of the text only !!!

Computer Security Fundamentals

4	4
-	÷.

What does this give us (2)

Integrity

 Enciphered letters cannot be changed undetectably without knowing private key

Non-Repudiation

 Message enciphered with private key came from someone who knew it

Computer Security Fundamentals

What we need to make it work

- 1. It must be computationally easy to encipher or decipher a message given the appropriate key
- 2. It must be computationally infeasible to derive the private key from the public key
- 3. It must be computationally infeasible to determine the private key from a chosen plaintext attack

Computer Security Fundamentals

Trapdoor

Trapdoor function (Diffie and Hellman 1976): function that is easy to compute but believed hard to invert without additional information (the "trapdoor"). We can then make the trapdoor the secret key \bigcirc

Example: factoring primes (computing $n=p^*q$ is easy, but given n, finding p and q is believed to be hard)

Things can be proven otherwise after a while: e.g., Merkle-Hellman Knapsack cryptosystem

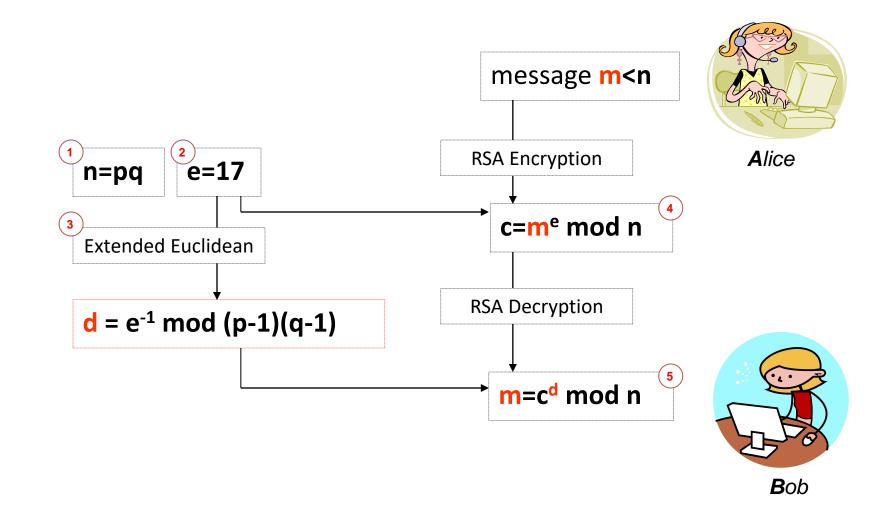
Not all hard problems are trapdoors: e.g., discrete logarithm problem-related functions

Computer Security Fundamentals

RSA: Rivest, Shamir, Adelman

- Exponentiation cipher
- Relies on the difficulty of determining the number of numbers relatively prime to a large integer n
- Or equivalently, on the difficulty of factoring of large numbers into prime factors

Computer Security Fundamentals



Computer Security Fundamentals

More boring version

- Key generation
 - Choose large primes p,q; let n=pq
 - Choose e relatively prime to (p-1)(q-1) (to have inverse !)
 - Public key <e,n>
 - Private key $\langle d,n \rangle$ where $d = e^{-1} \mod (p-1)(q-1)$
 - Can do it fast using Extended Euclidean
- Encrypt: c = m^e mod n
- Decrypt: m = c^d mod n
- $de = 1 \mod (p-1)(q-1)$, so $m = (me)d \mod n$
- Breakable if we can factor 😳

Computer Security Fundamentals

Larger Messages?

- Break message into pieces no greater in value than n-1 (why ?)
- Encrypt each part separately
- Use some sort of "chaining" to avoid blockrelated attacks
- Will likely use some padding etc. We discuss this later.

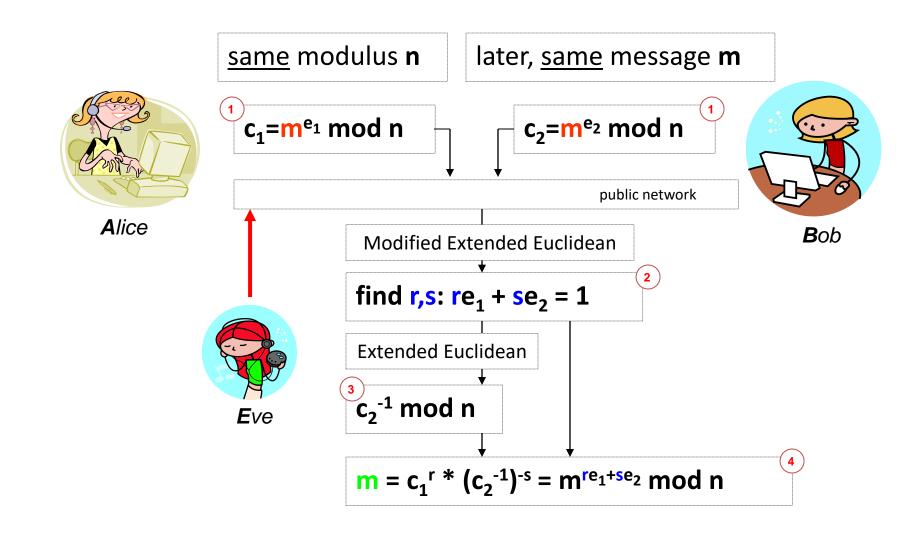
Computer Security Fundamentals

Ground Rules

- Attack: Exhaustive search for key
- Attack: Factoring n
- Timing Attacks: how long does encryption take ? leaks information about the key
 - Solutions ?
- Attack: maintain dictionary of encrypted (public key) messages ("forward search")
- Common modulus problem
- etc. (many solved using smart padding)

Computer Security Fundamentals

RSA Common Modulus Problem



Computer Security Fundamentals

More Problems (2)

- Malleable (public key is known!)
- Probing
 - If I get e(m), I can check if m=m'
 - Solution: random pad we discuss semantic security later
- Efficiency: can be made faster (modulo calculus tricks)
- Potential use interference: Encryption with Signatures
- Generating keys expensive
 - Select large primes
 - Find e relatively prime to (p-1)(q-1)
 - In practice, often e=3,5,17,65537
- For x<n no modular reduction takes place !!!
 - Also, given a signatures for m1, m2; can compute signature for (some) other messages

September 7, 2022

21

Computer Security Fundamentals

- Man in the middle solution: authentication and signatures on certain messages by first acquiring public/private key pairs
 - -But why not use these keys to communicate then (instead of generating key every time)?
 - Perfect forward secrecy 😳

Computer Security Fundamentals

22

Which one should go first: -Authentication or Key Exchange ?

Computer Security Fundamentals

