

Virtual Machines

What is a Virtual Machine?

 Java Virtual Machine (Application
Virtualization)

 Software to simulate hardware

 Independent

 ‘Separate’

 Use one piece of hardware to simulate
many computers

 What are Virtual Machines?

 Why are they related to security?

 Getting past Virtual Machines

Topics

Flavors of Virtualization

 Hardware Virtual Machine

Emulation (full system virtualization)

 Complete hardware virtualization. Unmodified

Guest OS for a different CPU can run

Native Virtualization (full virtualization)

 Simulates hardware to run to run an unmodified

OS, but OS has to be for the same type of CPU

 Application Virtual Machine

(Paravirtualization)

Does not simulate hardware, but offers API

that requires OS modifications like JIT

compilers or interpreters

 Virtual Environment (Virtual Private Server)

Used to run applications, doesn’t simulate

a kernel

Operating System-Level Virtualization

 Machine Aggregation (clustering)

Use number of different computers to

simulate a more powerful single machine

Parallell Virtual Machine (PVM)

Message Parsing Interface (MPI)

Why use it?

 Running multiple operating systems

 Physical space

 Mobility (USB Drives)

 Sandboxing

 Honeypots

Hypervisor / VMM

 Platform allowing multiple operating

systems to run

 Abstraction layer for a virtual machine

Equivalence

Resource Control

Efficiency

Virtualization Requirements

 Popek and Goldberg Virtualization
Requirements

 Instruction Set Architecture must possess:

Operate in user mode or system mode

Uniformly addressable memory (relative to a
register)

 All instructions affecting the functioning of
the VMM are controlled by the VMM

 A computer is virtualizable if it is

virtualizable or a VMM without timing

dependencies can be constructed for it.

(Recursive)

 x86 processors compliant:

 Intel Virtulization Technology (IVT)

 Most P4, Pentium D, Xeon, Core Duo, Core 2 Duo

AMD Virtualiation (AMD-V, Pacifica)

 K8, all F’s and onwards

Explanation of the Diagram

 Kernels manage CPU, Memory and

devices and interfaces them with

applications

 VMM splits the left and right side to keep

them isolated

 Ring level determines the amount of

‘power that layer has

Sandboxing

 Installing new infrastructure software

 Installing downloaded software on the net

 Browsing Security – Undo Disk in VPC

Honeypots

 Used to detect malicious users

 Set up a VM network

 Let someone attack your system, then

watch them, since no useful information is

being stolen

 Only software layer being attacked

Misconceptions

 Virtual Machines aren’t an end-all security

guarantee

 Software still using CPU and memory of

host machine

 Equivalence, Resource Control and

Efficiency aren’t always completely

achieved

Detecting a VM

 Run loops on remote machine suspected

to be a VM

 Loops contain commands a certain VM

(Xen, VMWare) don’t do particularly well

 Run Loop they do well

 Detect differences of speed opposed to

non-VM’s

Java Virtual Machine Attack

 Attacking a JVM that permits untrusted

code to execute after it’s verified to be

type-safe

 Sending JVM a program and waiting for a

memory error

 Once it type-checks, it rearranges the

memory so the type system is defeated

The program

 Class A {

 A a1;

 A a2;

 B b;

 A a4;

 A a5;

 int i;

 A a7;

}

 Class B {

 A a1;

 A a2;

 A a3;

 A a4;

 A a5;

 A a6;

 A a7;

}

Memory Error

 The ith bit of a word is flipped for some

reason

 If 2i is larger than the object size, x xor 2i is

likely to point to the base of a B object.

 Then, there is an object with type A that

actually points to a B object

Exploiting the Memory Error

A p;

B q;

int offst = 6*4

void write(int addr,
int value) {

 p.i = addr – offst;

 q.a6.i = value;

}

 offst is the offset of the
field i from the object A

 i and a6 of object B are
equal offsets from their
bases

 If p and q are at the same
address, the second
statement writes at the
offset of an offset

 value is written at offst +
(addr – offst) = addr

Results

 This lets anyone calling write() to write

value v into address a

 Fill an array with machine code

 Overwrite a virtual method table with the

address of the array

 Remote code execution

VMware Attack

 NAT in VMware was not validating PORT

and EPRT commands from FTP

 Specially formatted commands allowed

heap-based buffer overflow

 Vulnerability allowed attacker to execute

code on host machine

