
CSE509: (Intro to) Systems Security

Fall 2012
Radu Sion

© 2005-12

Intro

Symmetric Key Encryption

Hash Functions

Systems Security August 28, 2012 2

A message from our sponsors: What this class *is*

• Fundamentals

– Systems Security, crypto

• How do things work

• Why

• How to design secure stuff

• Focus mostly on systems. But
of course everything is
networked today anyway

Systems Security August 28, 2012 3

Another one from our sponsors: What this class is *not*

• How to install XXX

• Command line options of XXX

• Latest iexplorer buffer overflow bug

• Latest McAffee/XXX products

• Network administration

• How to break your gf/bf email account

Systems Security August 28, 2012 4

Ground Rules

• Dates are listed online now

• Zero tolerance to academic dishonesty

• Informal class, ask questions anytime

• Read your assigned readings !

• Call me Radu

• Questions: office hours, or I can call you

• Email: cse509@cs

• Suggest cool alternatives to project

• Have fun !

Systems Security August 28, 2012 5

Evaluation

• 3 Homeworks

• Midterm

• In class Pop quizzes

• Final

• 2 Projects (or you can suggest a security
project you would like to do for credit
and convince me it is worth doing)

• http://www.cs.stonybrook.edu/~cse509

Systems Security August 28, 2012 6

Your Background

• C programming

• Assembler programming (project 2)
– You may learn this on the way

• Understanding of
– TCP/IP and networking in general

– Operating systems

Systems Security August 28, 2012 7

Classical Cryptography

• Single/Symmetric Key Encryption

• Cryptographic Hash Functions

Systems Security August 28, 2012 8

Basic Blocks: Meet the Cast

Mallory

(“mallicious”, bad guy)

M
Alice

(innocent)
Bob

(mostly innocent,

sometimes malicious)

Eve

(eavesdrops,

passive malicious)

just listens

does

stuff

too

Trent

(trusted guy) k
k

Ek(M)

Read: http://downlode.org/etext/alicebob.html !

Systems Security August 28, 2012 9

Basic Blocks: First questions !

• Where does k come from ? (key distribution – chicken and egg problem)

• Can Eve distinguish between Ek(M1) and Ek(M2) if

she knows M1 and M2 ? Should not be able to !!!
(indistinguishability under the choosen plain text attack – IND-CPA – see later)

• Make sure that Ek(M1) Ek(M2) if M1 M2 (maybe not ?)

• Can Mallory modify Ek(M) into an Ek(Mmallory) ?
(non-malleability – see later)

• etc (! lots of stuff !) – danger: things seem trivial

and they are not – result: super weak systems !

Systems Security August 28, 2012 10

Example

• Example: Cæsar cipher

– M = { sequences of letters }

– K = { i | i is an integer and 0 ≤ i ≤ 25 }

– E = { Ek | k K and for all letters m,

 Ek(m) = (m + k) mod 26 }

– D = { Dk | k K and for all letters c,

 Dk(c) = (26 + c – k) mod 26 }

– C = M

Systems Security August 28, 2012 11

Attacks

• Opponent whose goal is to break cryptosystem is the
adversary
– Assume adversary knows algorithm used, but not key

• Many types of attacks:
– ciphertext only: adversary has only ciphertext; goal is to find

plaintext, possibly key

– known plaintext: adversary has ciphertext, corresponding plaintext;
goal is to find key

– chosen plaintext: adversary may supply plaintext and obtain
corresponding ciphertext; goal is to find key

– chosen ciphertext: adversary may supply ciphertext and obtain
corresponding plaintext; goal is to find key

– etc

Systems Security August 28, 2012 12

Basis for Attacks

• Mathematical attacks

– Based on analysis of underlying mathematics

• Statistical attacks

– Make assumptions about the distribution of
letters, pairs of letters (digrams), triplets of
letters (trigrams), etc.

• Called models of the language

– Examine ciphertext, correlate properties with
the assumptions.

Systems Security August 28, 2012 13

Statistical Attack: e.g., for known language

• Compute frequency of each letter in

ciphertext:

 G 0.1 H 0.1 K 0.1 O 0.3

 R 0.2 U 0.1 Z 0.1

• Apply 1-gram model of English

• Correlate and invert encryption

Systems Security August 28, 2012 14

Cæsar’s Problem

• Key is too short

– Can be found by exhaustive search

– Statistical frequencies not concealed well

• They look too much like regular English letters

• So make it longer

– Multiple letters in key

– Idea is to smooth the statistical frequencies

to make cryptanalysis harder

Systems Security August 28, 2012 15

Vigènere Cipher

• Like Cæsar cipher, but use a phrase

• Documented by Blaise de Vigenere (court of
Henry III of France) in Paris, 1586 – actually
a variant of a cipher by a J.B. Porter

• Example
– Message THE BOY HAS THE BALL

– Key VIG

– Encipher using Cæsar cipher for each letter:
key VIGVIGVIGVIGVIGV

plain THEBOYHASTHEBALL

cipher OPKWWECIYOPKWIRG

Systems Security August 28, 2012 16

Holy Grail: The One-Time Pad

• A Vigenère cipher with a random key at least

as long as the message

– Provably unbreakable

– Why? Look at ciphertext DXQR. Equally likely to

correspond to plaintext DOIT (key AJIY) and to

plaintext DONT (key AJDY) and any other 4 letters

– Warning: keys must be random, or you can attack

the cipher by trying to regenerate the key

• Approximations, such as using pseudorandom number

generators to generate keys, are not random

Systems Security August 28, 2012 17

Cryptographic Hash Functions

• Mathematical function to generate a set of
k bits from a set of n bits (where k ≤ n).

– k is usually smaller then n

• Example: ASCII parity bit

– ASCII has 7 bits; 8th bit is “parity”

– Even parity: even number of 1 bits

– Odd parity: odd number of 1 bits

Systems Security August 28, 2012 18

Example Use

• Bob receives “10111101” as bits.

– Sender is using even parity; 6 1 bits, so

character was received correctly

• Note: could be garbled, but 2 bits would need to

have been changed to preserve parity

– Sender is using odd parity; even number of 1

bits, so character was not received correctly

Systems Security August 28, 2012 19

Definition

Cryptographic hash h: AB:

1. For any x A, h(x) is easy to compute

2. h(x) is of fixed length for any x (compression)

3. For any y B, it is computationally infeasible to find
x A such that h(x) = y. (pre-image resistance)

4. It is computationally infeasible to find any two inputs
x, x A such that x ≠ x and h(x) = h(x) (collision
resistance)

5. Alternate form of 3 (stronger): Given any x A, it is
computationally infeasible to find a different x A
such that h(x) = h(x). (second pre-image resistance)

Systems Security August 28, 2012 20

Collisions

• If x ≠ x and h(x) = h(x), x and x are a
collision

– Pigeonhole principle: if there are n
containers for n+1 objects, then at least one
container will have 2 objects in it.

– Application: if there are 32 files and 8
possible cryptographic checksum values, at
least one value corresponds to at least 4 files

Systems Security August 28, 2012 21

Intuition

• A hash is a one-way, non-invertible
function of that produces unique (with
high likely-hood), fixed-size outputs for
different inputs.

• The probability of any bit flipping in the
output bit-string should be always ½ for
any change (even one bit) in the input
(“randomness”).

Systems Security August 28, 2012 22

MD5

• Basic idea: Continuously update hash value
with 512 bit blocks of message

– 128 bit initial value for hash

– Bit operations to “compress”

• Compression function: Update 128 bit hash
with 512 bit block

– Pass 1: Based on bits in first word, select
bits in second or third word

– Pass 2: Repeat, selecting based on last word

– Pass 3: xor bits in words

– Pass 4: y (x or ~z)

Systems Security August 28, 2012 23

MD5

Systems Security August 28, 2012 24

Example: MD5

md5_digest("The quick brown fox jumps over the lazy dog")

= 9e107d9d372bb6826bd81d3542a419d6

md5_digest("The quick brown fox jumps over the lazy cog")

= 1055d3e698d289f2af8663725127bd4b

Systems Security August 28, 2012 25

Weaknesses

• Length Extension

– h(m||X) can be built out of h(m) and X !!!

• Partial Message Collision

– if we find m’m such that h(m’)=h(m) then

h(m||X)=h(m’||X) because h(m||X) h(h(m)||X)

Systems Security August 28, 2012 26

Fixes for weak hashes

• Slow (claim full n-bit security)

– slow_coolhash(m)=h(h(m)||m)

• Faster (but claim only n/2- bit security !)

– faster_coolhash(m)=h(h(m))

Systems Security August 28, 2012 27

Hashes to (not) use

• MD5

– Output 128-bit

– Designed by Ron Rivest, 1991

– Wang et. al.: collision in 1 hr using cluster (2004)

– Klima: collision with 1 min on laptop (2006)

• SHA-1

– Output 160-bit

– Designed by NSA

– ”broken” by Wang et. al. – attack requires < 269 ops to
find collision (exhaustive would take 280) (2005)

Systems Security August 28, 2012 28

Hashes to (not) use

• Do not use at all the following:

– MD5, SHA-0/1, any other obscure “secret” ones

• For use in civilian/.com setting (until 2010/15):

– SHA-256/512

Systems Security August 28, 2012 29

Cryptographic One-Way Hash Functions ?! Why ?

• Unique identifiers

– Handy because small

• Used in more complex protocols

– Pre-commitment (because one-way)

• Cool result: “pseudo-random number
generators exist iff. one-way functions exist”

Systems Security August 28, 2012 30

Keyed Hashes

• MAC(msg)=H(H(key,msg,key),msg)

• Usage: append this to message to allow
authentication

Systems Security August 28, 2012 31

Why Keyed Hashes ?

• Want to enable only a certain party to verify
authenticity of data for which it has a MAC
(for example).

• Want to prevent Mallory to alter message
and simply replace MAC (cannot do it now
– doesn’t know the secret key)

