Certificate Authorities
Signatures
Random Numbers
Cryptography Building Blocks (cont’d)

- Signatures
- Certificate Authorities (rev’d)
- Random Numbers
Signatures: overview

\[M = D_{\text{private}_A}(E_{\text{public}_A}(M)) = D_{\text{public}_A}(E_{\text{private}_A}(M)) \]

\[S_A(M) = E_{\text{private}_A}(M) \]

\[M = D_{\text{public}_B}(S_A(M)) ? \]
Main idea

Signature …

… something that only signer can produce
… and everybody can verify

verify = check for a unique association between
the signer identity, text to be “signed” and the
signature.
What comes first: Encrypt then sign?

- Mallory: replaces signature with own!
- Other problems with RSA!!!
- Not useful: only illegible ciphertext is non-repudiable

When a principal signs material that has already been encrypted, it should not be inferred that the principal knows the content of the message.

If a signature is affixed to encrypted data, then ... a third party certainly cannot assume that the signature is authentic, so non-repudiation is lost.
What comes first: Sign then encrypt?

• Malicious Bob: sureptitious forwarding
 • decrypts $E_{public_B}(S_A(M))$
 • produces $E_{public_C}(S_A(M))$ and …
 • … sends it to Carol
• Carol now believes Alice said M (to her)
How do we fix the mess? Examples ...

1. $E_{public B}(S_A(M;B))$

2. $E_{public B}(S_A(M;A;B))$

3. $S_A(E_{public B}(S_A(M)))$

4. $E_{public B}(S_A(E_{public B}(M)))$
Can we sign/encrypt with same key-pair?

In RSA $S(m) = D(m)$. If we sign arbitrary stuff, e.g., $m = E(M)$, then in effect we reveal $M = D(E(M))$!

If you are a service, do not sign arbitrary stuff. Always sign a hash only!

Do not re-use key pair for different purposes!
Certificate Authority (Trent is one 😊)

1. \(S_T(\text{time, expiration, \text{“Bob”}, public_B}) \)

2. \(E_{public_B}(M) \)

3. \(M = D_{private_B}(E_{public_B}(M)) \)

Alice

“certificate authority”

Bob

“public key certificate”

Trent

private_A \quad public_A

private_B \quad public_B

Mallory

Eve

“no problema”
Problem

Alice needs Trent’s public key to validate received certificate:

– Needs to verify signature
– Problem pushed “up” a level
– Two approaches:
 • Merkle trees
 • Signature chains (* we discuss this *)
Cross Certification Issues

• Multiple CAs (validation issue)
 – Alice’s CA is Trent; Bob’s CA is Tim; how can Alice validate Bob’s certificate?
 – Have Trent and Tim cross-certify
 • Each issues certificate for the other
Signature Chains

- If we have the following certificates:
 - Trent<<Alice>>
 - Tim<<Bob>>
 - Trent<<Tim>>
 - Tim<<Trent>>

- How does Alice validate Bob’s certificate?
 - Get Trent<<Tim>>
 - Use public key of Trent to validate Trent<<Tim>>
 - Use Trent<<Tim>> to validate Tim<<Bob>>
Key Revocation

• Certificates invalidated *before* expiration
 – Usually due to compromised key
 – May be due to change in circumstance (*e.g.*, someone leaving company)

• Problems
 – Is entity revoking certificate authorized to do so?
 – Does revocation propagate fast enough?
 • network delays, infrastructure problems
CRLs

- *Certificate revocation list*
- Online Certificate Status Protocol (RFC 2560)
- X.509: only certificate issuer can revoke
- PGP
 - signers can revoke signatures
 - owners can revoke certificates
 - or allow others to do so
Reality Check: use session key for actual communication.

Station to Station protocol. Use PKI for signatures, variant of Diffie Hellman for key exchange.

$E'_{k}(M)$

$E' = \text{symmetric encryption}$
Final Thoughts: Authentication vs. Key Exchange

- Which one should come first?
- Should we maybe couple them?
- Why?
What is “Random” (cryptographically speaking)?

Cryptographically random numbers: a sequence of numbers X_1, X_2, \ldots such that for any integer $k > 0$, it is impossible for an observer to predict X_k even if all of X_1, \ldots, X_{k-1} are known.
Random Number Generators (RNGs)

True RNGs cannot be deterministically algorithmic in a closed system. “Anyone who considers arithmetic methods … is in a state of sin” (von Neuman)

There exists a certain “flow” of randomness/chaos that is preserved within the system.

True randomness can only (arguably) be achieved by a hardware device that extract randomness from real-life processes (e.g. thermal noise, RF).
What is “Pseudorandom”?

Idea: simulate a sequence of cryptographically random numbers but generate them by an algorithm.

Cryptographically pseudo-random numbers: a sequence of numbers X_1, X_2, \ldots such that for any integer $k > 0$, it is **hard** for an observer to predict X_k even if all of X_1, \ldots, X_{k-1} are known.
Approximating randomness (e.g., attempting to achieve a uniform distribution) – will always have period (finite output space), many other defects!

Examples:

- Linear congruential generators: \(X_i = (aX_{i-1} + b) \mod n \)
- Mersenne Twister (for Monte Carlo simulations)
 - make it secure by using a hash
Strong mixing function: function of 2 or more inputs with each bit of output depending on some nonlinear function of all input bits:

- Examples: DES, MD5, SHA-1
- Use on UNIX-based systems:

 (date; ps gaux) | md5
Cool Result

“pseudo-random number generators exist iff. one-way functions exist”