Perfect Security?

- Security: plaintext recovery, key recovery
- Perfect: One Time Pad
 - Impractical!
- What else?
 - Computationally restricted adversary
 - Come up with “close to perfect” security.
Semantic Security (==IND-CPA) Game

len(M1)=len(M2) ?

E() is **indistinguishable under a chosen plaintext attack** (“semantically secure”) if no probabilistic polynomial time-bounded Mallory can succeed significantly better than guessing.
Semantic Security: extension to symmetric key

\[E_s(M) \]

Mallory

\[M_2 \xrightarrow{1} M_1 \xrightarrow{2} E_s(M_x) \]

Oracle

\[x = x' \]

Alice

\[x = x' \]
Semantic Security: why do we care ?!

Deterministic, stateless schemes are insecure!
Semantic Security: why do we care ?!

Semantic security implies *bit security* !

Why/how \(M_1 = \text{not}(M_2) \)? Btw. what is bit security ? 😊
Examples

• RSA
 – non-semantically secure! Why ?!
• RSA + padding (e.g., RSA-OAEP)
 – semantically secure
• Goldwasser Micali
 – semantically secure
For each plaintext bit of “1” (respectively “0”) the ciphertext will contain a QR (respectively a QNR).

Key = knowledge of p and q
Variants: IND-CCA2 (adaptive)

E() is **indistinguishable under a chosen cipher-text attack** if no probabilistic polynomial time-bounded Mallory can succeed significantly better than guessing.
IND-CCA: why do we care ?!

Adversary takes over equipment temporarily.
Relationships

IND-CPA IND-CCA

IND-CCA2