CSE509: (Intro to) Systems Security

Fall 2012

Radu Sion

Semantic Security

- Security: plaintext recovery, key recovery
- Perfect: One Time Pad
 - Impractical !
- What else ?
 - Computationally restricted adversary
 - Come up with "close to perfect" security.

E() is **indistinguishable under a chosen plaintext attack** ("semantically secure") if no probabilistic polynomial time-bounded Mallory can succeed significantly better than guessing.

Semantic Security: extension to symmetric key

Deterministic, stateless schemes are insecure !

Semantic security implies *bit security* !

Why/how $(M_1 = not(M_2))$? Btw. what is bit security ? \bigcirc

- RSA
 - non-semantically secure ! Why ?!
- RSA + padding (e.g., RSA-OAEP)
 semantically secure
- Goldwasser Micali
 - semantically secure

For each plaintext bit of "1" (respectively "0") the ciphertext will contain a QR (respectively a QNR).

Key = knowledge of p and q

Variants: IND-CCA2 (adaptive)

E() is **indistinguishable under a chosen cipher-text attack** if no probabilistic polynomial time-bounded Mallory can succeed significantly better than guessing.

Adversary takes over equipment temporarily.

