
CSE509: (Intro to) Systems Security

Fall 2012
Radu Sion

© 2005-12
parts © by Matt Bishop, used with permission

Access Control

Systems Security September 25, 2012 2

Access Control

• Overview

• Access Control Matrix Model

• Protection State Transitions

– Commands

– Conditional Commands

• Mechanisms

– Access control lists

– Capability lists

– Locks and keys

– Rings-based access control

– Propagated access control lists

3

Overview

• Protection state of system

– Describes current settings, values of system

relevant to protection

• Access control matrix

– Describes protection state precisely

– Matrix describing rights of subjects

– State transitions change elements of matrix

Systems Security

Systems Security 4

Description

objects (entities)

su
b
je

ct
s

s1

s2

…

sn

o1 … om s1 … sn

• Subjects S = { s1,…,sn }

• Objects O = { o1,…,om }

• Rights R = { r1,…,rk }

• Entries A[si, oj]  R

• A[si, oj] = { rx, …, ry }

means subject si has rights

rx, …, ry over object oj

Systems Security 5

Example 1

• Processes p, q

• Files f, g

• Rights r, w, x, a, o

 f g p q

p rwo r rwxo w

q a ro r rwxo

Systems Security 6

Example 2

• Procedures inc_ctr, dec_ctr, manage

• Variable counter

• Rights +, –, call

 counter inc_ctr dec_ctr manage

inc_ctr +

dec_ctr –

manage call call call

Systems Security 7

State Transitions

• Change the protection state of system

• |– represents transition

– Xi |–  Xi+1: command  moves system from

state Xi to Xi+1

– Xi |– * Xi+1: a sequence of commands moves

system from state Xi to Xi+1

• Commands often called transformation

procedures

Systems Security 8

Primitive Operations

• create subject s; create object o

– Creates new row, column in ACM; creates new column
in ACM

• destroy subject s; destroy object o

– Deletes row, column from ACM; deletes column from
ACM

• enter r into A[s, o]

– Adds r rights for subject s over object o

• delete r from A[s, o]

– Removes r rights from subject s over object o

Systems Security 9

Creating File

• Process p creates file f with r and w

permission
 command create•file(p, f)
 create object f;

 enter own into A[p, f];

 enter r into A[p, f];

 enter w into A[p, f];

 end

Systems Security 10

Mono-Operational Commands

• Make process p the owner of file g
 command make•owner(p, g)
 enter own into A[p, g];

 end

• Mono-operational command

– Single primitive operation in this command

Systems Security 11

Conditional Commands

• Let p give q r rights over f, if p owns f
 command grant•read•file•1(p, f, q)
 if own in A[p, f]

 then

 enter r into A[q, f];

 end

• Mono-conditional command

– Single condition in this command

Systems Security 12

Multiple Conditions

• Let p give q r and w rights over f, if p
owns f and p has c rights over q

 command grant•read•file•2(p, f, q)
 if own in A[p, f] and c in A[p, q]

 then

 enter r into A[q, f];

 enter w into A[q, f];

 end

Systems Security 13

Copy Right

• Allows possessor to give rights to another

• Often attached to a right, so only applies to

that right

– r is read right that cannot be copied

– rc is read right that can be copied

• Is copy flag copied when giving r rights?

– Depends on model, instantiation of model

Systems Security 14

Own Right

• Usually allows possessor to change entries

in corresponding AC Matrix column

– So owner of object can add, delete rights for

others

– May depend on what system allows

• Can’t give rights to specific (set of) users

• Can’t pass copy flag to specific (set of) users

Systems Security 15

Attenuation of Privilege

• Intuitive principle says you can’t give

rights you do not possess

– Restricts addition of rights within a system

– Usually ignored for owner

• Why? Mostly owner can grant herself any rights !

Systems Security 16

Access Control Safety

• System AC Safety

– Start with access control matrix A

– Leak: commands can add right r to an

element of A not containing r

– Safe: System is safe with respect to r if r

cannot be leaked

• Are algorithms implemented correctly ?

Systems Security 17

Example: File System

• Superuser has access to all files

• Users have access to own files

• What is Safety here ?

– only user A can authenticate as user A

– no “change mode”, “change owner” commands

– only superuser can get superuser privileges

• Question: how useful is “safety” ?

– doesn’t differentate leaks vs. authorized transfers

– solution: “trust” framework

Systems Security 18

(Un)Decidability of Safety

• Given initial state X0 = (S0, O0, A0), set of primitive commands c, can
we reach a state Xn where s,o such that An[s,o] includes a right r not in
A0[s,o]? (is a rights leak possible?)

• Decidability: Given a system where each command consists of a single
primitive command (mono-operational), there exists an algorithm that
will determine if a protection system with initial state X0 is safe with
respect to right r.

• Undecidability: For a given state of an arbitrary protection system the
problem of determining if it is safe with respect to a given right is
undecidable (proof: halting problem, “leak” = halting state).

M. A. Harrison, W. L. Ruzzo and J. D. Ullman, Protection in operating systems, Comm. of the ACM, Vol. 19 (1976)

Systems Security 19

Access Control Mechanisms

• Access control lists

• Capabilities

• Locks and keys

• Rings-based access control

• Propagated access control lists

Systems Security 20

Access Control Lists

• Columns of access control matrix

 file1 file2 file3

Andy rx r rwo

Betty rwxo r

Charlie rx rwo w

ACLs:

• file1: { (Andy, rx) (Betty, rwxo) (Charlie, rx) }

• file2: { (Andy, r) (Betty, r) (Charlie, rwo) }

• file3: { (Andy, rwo) (Charlie, w) }

Systems Security 21

Default Permissions

• Normal: if not named, no rights over file

– Principle of Fail-Safe Defaults

• If many subjects, may use groups or
wildcards in ACL

– UNICOS: entries are (user, group, rights)

• If user is in group, has rights over file

• ‘*’ is wildcard for user, group

– (holly, *, r): holly can read file regardless of her group

– (*, gleep, w): anyone in group gleep can write file

Systems Security 22

Abbreviations

• ACLs can be very long !

• Idea: combine users

– UNIX: 3 classes of users: owner, group, rest

– rwx rwx rwx

 rest

 group

 owner

– Ownership assigned based on creating process

• Some systems: if directory has setgid permission, file group owned by

group of directory (SunOS, Solaris)

Systems Security 23

ACLs + Abbreviations

• Augment abbreviated lists with ACLs

– Intent is to shorten ACL

• ACLs override abbreviations

– Exact method varies

• Example: IBM AIX

– Base permissions are abbreviations, extended permissions

are ACLs with user, group

– ACL entries can add rights, but on deny, access is denied

Systems Security 24

Permissions in IBM AIX

attributes:

base permissions

 owner(bishop): rw-

 group(sys): r--

 others: ---

extended permissions enabled

 specify rw- u:holly

 permit -w- u:heidi, g=sys

 permit rw- u:matt

 deny -w- u:holly, g=faculty

Systems Security 25

ACL Modification

• Who can do this?

– Creator is given own right that allows this

– System R provides a grant modifier (like a

copy flag) allowing a right to be transferred,

so ownership not needed

• Transferring right to another modifies ACL

Systems Security 26

Privileged Users

• Do ACLs apply to privileged users (root)?

– Solaris: abbreviated lists do not, but full-blown

ACL entries do

– Other vendors: varies

Systems Security 27

Groups and Wildcards

• Classic form: no; in practice, usually

– AIX: base perms gave group sys read only
 permit -w- u:heidi, g=sys

 line adds write permission for heidi when in that group

– UNICOS:

• holly : gleep : r

– user holly in group gleep can read file

• holly : * : r

– user holly in any group can read file

• * : gleep : r

– any user in group gleep can read file

Systems Security 28

Conflicts

• Deny access if any entry would deny access

– AIX: if any entry denies access, regardless or rights
given so far, access is denied

• Apply first entry matching subject

– Cisco routers: run packet through access control rules
(ACL entries) in order; on a match, stop, and forward
the packet; if no matches, deny

• Note default is deny for fail-safe defaults

Systems Security 29

Handling Default Permissions

• Apply ACL entry, and if none use defaults

– Cisco router: apply matching access control

rule, if any; otherwise, use default rule (deny)

• Augment defaults with those in the

appropriate ACL entry

– AIX: extended permissions augment base

permissions

Systems Security 30

Revocation Question

• How do you remove subject’s rights to a file?

– Owner deletes subject’s entries from ACL, or

rights from subject’s entry in ACL

• What if ownership not involved?

– Depends on system

– System R: restore protection state to what it was

before right was given

• May mean deleting descendent rights too …

Systems Security 31

Windows ACLs

• Different sets of rights

– Basic: read, write, execute, delete, change permission,

take ownership

– Generic: no access, read (read/execute), change

(read/write/execute/delete), full control (all), special

access (assign any of the basics)

– Directory: no access, read (read/execute files in

directory), list, add, add and read, change (create, add,

read, execute, write files; delete subdirectories), full

control, special access

Systems Security 32

Accessing Files

• User not in file’s ACL nor in any group

named in file’s ACL: deny access

• ACL entry denies user access: deny access

• Take union of rights of all ACL entries

giving user access: user has this set of rights

over file

Systems Security 33

Capability Lists

• Rows of access control matrix

 file1 file2 file3

Andy rx r rwo

Betty rwxo r

Charlie rx rwo w

C-Lists:

• Andy: { (file1, rx) (file2, r) (file3, rwo) }

• Betty: { (file1, rwxo) (file2, r) }

• Charlie: { (file1, rx) (file2, rwo) (file3, w) }

Systems Security 34

Semantics

• “bus ticket”

– Mere possession indicates rights that subject has over
object

– Object identified by capability (as part of the token)

• Name may be a reference, location, or something else

– Architectural construct in capability-based addressing;
this just focuses on protection aspects

• Must prevent process from altering capabilities

– Otherwise subject could change rights encoded in
capability or object to which they refer

Systems Security 35

Implementation

• Tagged architecture

– Bits protect individual words

• B5700: tag was 3 bits and indicated how word was to be
treated (pointer, type, descriptor, etc.)

• Paging/segmentation protections

– Like tags, but put capabilities in a read-only
segment or page (CAP system did this)

– Programs must refer to them by pointers

• Otherwise, program could use a copy of the capability -
which it could modify

Systems Security 36

Implementation (con’t)

• Cryptography

– Associate with each capability a cryptographic checksum
enciphered using a key known to OS

– When process presents capability, OS validates checksum

– Example: Amoeba, a distributed capability-based system

• Capability is (name, creating_server, rights, check_field) and is
given to owner of object

• check_field is 48-bit random number; also stored in table
corresponding to creating_server

• To validate, system compares check_field of capability with that
stored in creating_server table

• Vulnerable if capability disclosed to another process

Systems Security 37

Question

• But why not simply copy capability ?

– What can the OS do to distinguish this case ?

Systems Security 38

Amplification

• temporary elevation/increase of privileges

• Needed for modular programming

– Module pushes, pops data onto stack
module stack … endmodule.

– Variable x declared of type stack
var x: module;

– Only stack module can alter, read x

• So process doesn’t get capability, but needs it when x is
referenced—a problem!

– Solution: give process the required capabilities
while it is in module

Systems Security 39

Examples

• HYDRA: templates

– Associated with each procedure, function in module

– Adds rights to process capability while the procedure or function
is being executed

– Rights deleted on exit

• Intel iAPX 432: access descriptors for objects

– These are really capabilities

– 1 bit in this controls amplification

– When ADT constructed, permission bits of type control object set
to what procedure needs

– On call, if amplification bit in this permission is set, the above
bits or’ed with rights in access descriptor of object being passed

Systems Security 40

Revocation

• Scan all C-lists, remove relevant capabilities

– Far too expensive!

• Use indirection

– Each object has entry in a global object table

– Names in capabilities name the entry, not the object

• To revoke, zap the entry in the table

• Can have multiple entries for a single object to allow
control of different sets of rights and/or groups of users for
each object

– Example: Amoeba: owner requests server change
random number in server table

• All capabilities for that object now invalid

Systems Security 41

Heidi (High)

Lou (Lo w)

Lough (Lo w)

rw*lough

rw*lough

C-List

r*lough

C-List

Heidi (High)

Lou (Lo w)

Lough (Lo w)

rw*lough

rw*lough

C-List

r*lough

C-List

rw*lough

• Problems if you don’t control copying of capabilities

The capability to write file lough is Low, and Heidi is High

so she reads (copies) the capability; now she can write to a

Low file, violating the *-property! (Bell-LaPadula)

Limits

Systems Security 42

Remedies

• Label capability itself

– Rights in capability depends on relation between its
compartment and that of object to which it refers

• In example, as as capability copied to High, and High
dominates object compartment (Low), write right removed

• Check to see if passing capability violates security
properties

– In example, it does, so copying refused

• Distinguish between “read” and “copy capability”

– Take-Grant Protection Model does this (“read”, “take”)

Systems Security 43

ACLs vs. Capabilities

• Both theoretically equivalent; consider 2 questions

1. Given a subject, what objects can it access, and how?

2. Given an object, what subjects can access it, and how?

– ACLs answer second easily; C-Lists, first

• second question has been of most interest in the
past thus ACL-based systems more common than
capability-based systems

– As first question becomes more important (in incident
response, for example), this may change

Systems Security 44

Locks and Keys

• Associate information (lock) with object,

information (key) with subject

– Latter controls what the subject can access and how

– Subject presents key; if it corresponds to any of the

locks on the object, access granted

• This can be dynamic

– ACLs, C-Lists static and must be manually changed

– Locks and keys can change based on system

constraints, other factors (not necessarily manual)

Systems Security 45

Cryptographic Implementation

• Enciphering with lock; deciphering with key

– Encipher object o; store Ek(o)

– Use subject’s key k to compute Dk(Ek(o))

– Any of n can access o: store

o = (E1(o), …, En(o))

– Requires consent of all n to access o: store

o = (E1(E2(…(En(o))…))

Systems Security 46

Example: IBM

• IBM 370: process gets access key; pages
get storage key and fetch bit

– Fetch bit clear: read access only

– Fetch bit set, access key 0: process can write to
(any) page

– Fetch bit set, access key matches storage key:
process can write to page

– Fetch bit set, access key non-zero and does not
match storage key: no access allowed

Systems Security 47

Example: Cisco Router

• Dynamic access control lists
access-list 100 permit tcp any host 10.1.1.1 eq telnet

access-list 100 dynamic test timeout 180 permit ip any host \

 10.1.2.3 time-range my-time

time-range my-time

 periodic weekdays 9:00 to 17:00

line vty 0 2

 login local

 autocommand access-enable host timeout 10

• Limits external access to 10.1.2.3 to 9AM–5PM

– Adds temporary entry for connecting host once user
supplies name, password to router

– Connections good for 180 minutes

• Drops access control entry after that

Systems Security 48

Type Checking

• Lock is type, key is operation

– Example: UNIX system call write can’t work
on directory object but does work on file

– Example: split I&D space of PDP-11

– Example: countering buffer overflow attacks on
the stack by putting stack on non-executable
pages/segments

• Then code uploaded to buffer won’t execute

• Does not stop other forms of this attack, though …

Systems Security 49

More Examples

• LOCK system:

– Compiler produces “data”

– Trusted process must change this type to “executable”

before program can be executed

• Sidewinder firewall

– Subjects assigned domain, objects assigned type

• Example: ingress packets get one type, egress packets another

– All actions controlled by type, so ingress packets

cannot masquerade as egress packets (and vice versa)

Systems Security 50

Ring-Based Access Control

… Privileges

increase
0 1 n

• Process (segment) accesses

 another segment

• Read

• Execute

• Gate is an entry point for

 calling segment

• Rights:

• r read

• w write

• a append

• e execute

Systems Security 51

Reading/Writing/Appending

• Procedure executing in ring r

• Data segment with access bracket (a1, a2)

• Mandatory access rule

– r ≤ a1 allow access

– a1 < r ≤ a2 allow r access; not w, a access

– a2 < r deny all access

Systems Security 52

Executing

• Procedure executing in ring r

• Call procedure in segment with access bracket
(a1, a2) and call bracket (a2, a3)

– Often written (a1, a2 , a3)

• Mandatory access rule

– r < a1 allow access; ring-crossing fault

– a1 ≤ r ≤ a2 allow access; no ring-crossing fault

– a2 < r ≤ a3 allow access if through valid gate

– a3 < r deny all access

Systems Security 53

Versions

• Multics

– 8 rings (from 0 to 7)

• Digital Equipment’s VAX

– 4 levels of privilege: user, monitor, executive,

kernel

• Older systems

– 2 levels of privilege: user, supervisor

Systems Security 54

PACLs

• Propagated Access Control List

• Creator kept with PACL, copies

– Only owner can change PACL

– Subject reads object: object’s PACL associated

with subject

– Subject writes object: subject’s PACL associated

with object

• Notation: PACLs means s created object;

PACL(e) is PACL associated with entity e

Systems Security 55

Multiple Creators

• Betty reads Ann’s file dates
PACL(Betty) = PACLBetty  PACL(dates)= PACLBetty  PACLAnn

• Betty creates file datescopy

 PACL(datescopy) = PACLBetty  PACLAnn

• PACLBetty allows Cher to access objects, but
PACLAnn does not; both allow June to access objects

– June can read datescopy

– Cher cannot read datescopy

• Can be augmented by discretionary AC, e.g. ACLs

– Betty decides Cher should not read datescopy

Systems Security 56

PACL vs. ACL

• ACL

– associated with object

– static, with object

• PACL

– associated with data,

– follows information flow

– slower (implementation)

– ORCON Policies

Systems Security 57

Key Points

• AC matrix - simple abstraction mechanism for
representing protection state
– 6 primitive operations alter matrix

– transitions can be expressed as commands composed of
these operations and, possibly, conditions

• AC mechanisms control users accessing resources

• Many different forms
– ACLs, capabilities, locks and keys

• Type checking too

– Ring-based mechanisms

– PACLs

