Explicit Information Flow
in the HiStar OS

Nickolai Zeldovich, Silas Boyd-Wickizer,
Eddie Kohler, David Mazieres

Too much trusted software

Untrustworthy code a huge problem

Users willingly run malicious software

- Malware, spyware, ...

Even legitimate software is often vulnerable
- Symantec remote vulnerability

No sign that this problem is going away

Can an OS make untrustworthy code secure?

Example: Virus Scanner

* Goal: private files cannot go onto the network

Update
Process

Symantec™

Private [tmp Virus
User Files Database

Information Flow Control

* Goal: private files cannot go onto the network

Update
Process

Private tmp Virus
User Files Database

Buggy scanner leaks private data

Update
Process

Private tmp Virus
User Files Database

* Must restrict sockets to protect private date

Buggy scanner leaks private data

Update
Process

Private tmp Virus
User Files Database

* Must restrict scanner's abillity to use IP

Buggy scanner leaks private data

Update
Process

Private
User Files

Virus
Database

* Must run scanner in chroot jall

Buggy scanner leaks private data

,@ Update
Process

Private tmp Virus
User Files Database

e Must run scanner with different UID

Buggy scanner leaks private data

setproctitle:
0x6e371bc2

Update
Process

Private [tmp Virus
User Files Database

* Must restrict access to /proc, ...

Buggy scanner leaks private data

Private
User Files

disk
usage

tmp

Virus
Database

Update
Process

e Must restrict FS'es that virus scanner Caiirl

Buggy scanner leaks private data

Update
Process

Private tmp Virus
User Files Database

* List goes on —is there any hope?

What's going on?

* Kernel not designed to
enforce these policies

e Retrofitting difficult

- Need to track potentially
any memory observed or
modified by a system call!

- Hard to even enumerate

Hardware

Unix

What's going on?

* Kernel not designed to
enforce these policies

e Retrofitting difficult

- Need to track potentially
any memory observed or
modified by a system call!

- Hard to even enumerate

Hardware

Unix

HiStar Solution

* Make all state explicit, track all communication

Unix
Library

Hardware Hardware

Unix HiStar

HiStar: Contributions

* Narrow kernel interface, few comm. channels

- Minimal mechanism: enough for a Unix library
— Strong control over information flow

* Unix support implemented as user-level library

- Unix communication channels are made explicit,
in terms of HiStar's mechanisms

- Provides control over the gamut of Unix channels

HiStar kernel objects

Qainer

Direct ——— Device
(Directory) (Network)

A S

Segment Address Gate
(Data) Space Thread (IPC)

HiStar kernel objects

Think of labels as HLabe'
ut . t 9 bt .
a ‘tainted ! (C;:alner

(Directory)

Lkabel

\

Device
(Network)

A

Seg ment Address
(Data) Space

Thread

Label Label

Label

Gate
(IPC)

Label

HiStar: Unix process

Process
Container
Thread Address Code Data
Space Segment Segment
" AV 4 4

oy —
™ e e - -

Unix File Descriptors

Process A —» Process B

Kernel
State

Unix File Descriptors

* Tainted process only talks to other tainted procs

S
rocess A —%»> Process B
Kernel
State

Unix File Descriptors

N
@rocess A

—m

Process B

Kernel
State

* | ots of shared state in kernel, easy to miss

HiStar File Descriptors

Thread A Thread B
Y Y
Address Space A Address Space B

\/

File Descriptor Segment
(O_RDONLY)
Seek pointer: Oxa32f

HiStar File Descriptors

.
Thread S Thread B
Y - Y
Address Space@% Address Space B

\\/

File Descriptor Segment
(O_RDONLY)
Seek pointer: Oxa32f

* All shared state is now explicitly labeled
* Just need segment read/write checks

Taint Tracking Strawman

write(File)

S
Tainted@/
Thread A

File

Thread B

Taint Tracking Strawman

* Propagate taint when writing to file

write(File)

Tainte
Thread A

©

—

File

S

Thread B

Taint Tracking Strawman

* Propagate taint when writing to file
* \What happens when reading?

Tainte
Thread A

S

—

File

S

read(File)

Thread B

Taint Tracking Strawman

read(File)

N\
d® ® ACCESS

Tainte .
Thread A — File m Thread B

Strawman has Covert Channel

S
Tainted@/
Thread A

File O

File 1

Thread B

Strawman has Covert Channel

write(File 1)

File O

S
Tainted@/

Thread A \

O

-

File @

O

Thread B

Strawman has Covert Channel

read(File O
read(File 1

S
Tainted@/

File O \

Thread A \

O

-

Thread B

File 1®/

O

Strawman has Covert Channel

send email:
“secret=1"

S
Tainted@/

File O \

Thread A \

O

-

Thread B

File 1®/

O

Strawman has Covert Channel

e \What if we taint B
when it reads File 17

read(File OU
read(File 1)

S
Tainted@/

File O \

Thread A \

O

-

File 1®/

O

-
Thread @%@

Strawman has Covert Channel

e \What if we taint B

when it reads File 17

File O

—» Thread 0

S
Tainted@/

Thread A \

O

-

File @—» Thread @

O

read(File 0)

read(File 1)

Strawman has Covert Channel

e \What if we taint B
when it reads File 17

send email:
“secret=1"

Fle0 —»

S
Tainted@/

Thread A \

O

-

Thread O \
Network

File 1 —>

O

\)(
Thread @

send email:
“secret=0"

HiStar: Immutable File Labels

e | abel (taint level) is state that must be tracked
* [mmutable labels solve this problem!

write(...) read(...)
Untainted

Thread A @

Tainted&
File

s File \
Tainted /(/ Thread B

Who creates tainted files?

e Tainted thread can't modify untainted directory
to place the new file there...

Create .
Tainted File R" Directory
|

A4
| @ Un’::aiilre]ted
Ul e Thread B
Thread A \ _ N
Tamte@

File

HiStar: Untainted thread

pre-creates tainted file
e Existence and label of tainted file

Thread C provide no information about A
Create .
Tainted File ﬁ’ Directory
Y
Q | Untamted
Tainted@/ | File H .
Thread A \ y - read
Talnte@

Reading a tainted file

e Existence and label of tainted file

Thread C provide no information about A

Directory

| |
, Y

- d@ Un’::aiilre\ted
ainte ' Thread B
Thread A _ N
Tamte@

File

Reading a tainted file

Thread C

e Existence and label of tainted file

provide no information about A

Directory

|
Y

readdir():

T. File's Iabe]

S Untajnted
Tainted@/ </: File
Thread A
Tainted

Thread B

File

Reading a tainted file

Thread C

Thread A

Untainted ~N
S - S
Fil
Tainted </t e Thread B
Tainted

e Existence and label of tainted file
provide no information about A

* Neither does B's decision to taint

Directory

| | Taint self
| 4

File

HiStar avoids file covert channels

* [mmutable labels prevent covert channels that
communicate through label state

* Untainted threads pre-allocate tainted files

- File existence or label provides no secret information
* Threads taint themselves to read tainted files

- Tainted file's label accessible via parent directory

Problems with IPC

e |PC with tainted client | ' Client

- Taint server thread Threa(i
during request N

ELECT ..

Server
\ Threads /

Time

Problems with IPC

e |PC with tainted client | ' Client

- Taint server thread Threa(i
during request @

(SELECT .2
O

Server
\ Threads /

Time

Problems with IPC

e |PC with tainted client | ' Client

- Taint server thread
during request

Thread
S

Time

é

Results

Server

\ Threads /

Problems with IPC

e |PC with tainted client | ' Client

- Taint server thread
during request

- Secrecy preserved?

Thread
S

Results

Y

Time

Server
\ Threads /

Problems with IPC

e |PC with tainted clien

- Taint server thread
during request

- Secrecy preserved?
* Lots of client calls

— Limit server threads?
Leaks information...

- Otherwise, no control
over resources!

t 1 Client
Thread

S

Results

Y

Time

-
%,

Server
\ Threads /

Gates make resources explicit

* Client donates initial
resources (thread)

Client

Thread

ELECT ..

N

Time

Server

\ Threads /

Gates make resources explicit

e Client donates initial
resources (thread)

e Client thread runs in

Client
Thread

S

ELECT ..

Server

server address space, | |ceode W,

executing server code

Time

&
-

- DB
Server

Server

\ Threads /

Gates make resources explicit

e Client donates initial
resources (thread)

e Client thread runs in

Client
Thread

S

server address space, | |gege (0,
executing server code | resuits

Time

&
-

- DB
Server

Server

\ Threads /

Gates make resources explicit

* Client donates initial Client @ Sgrl\?er
resources (thread) Thread
e
e Client thread runs in
server address space, S
executing server code S
etur
at
* No implicit resource Rosulls Server
allocation — no leaks _ Threads /

Time

How do we get anything out?

&

))
Alice's Virus
Files Scanner

“Owner” privilege

* Yellow objects can only interact with other
yellow objects, or objects with yellow star

 Small, trusted shell can isolate a large,
frequently-changing virus scanner

=

S . S .
Alice s@/ Virus @/ *Allce S

Files Scanner shell

Multiple categories of taint

Bob's Virus ¥ Bob's
Files Scanner shell

S . S .
Alice s@/ Virus @/ *Allce S

Files Scanner shell

* Owner privilege and information flow control
are the only access control mechanism

* Anyone can allocate a new category, gets star

What about “root”?

* Huge security hole for information flow control
- Observe/modify anything — violate any security policy

* Make it explicit
- Can be controlled as necessary

HiStar root privileges are explicit

* Kernel gives no special treatment to root

*Alice's * root's * Bob's
shell shell shell

))
@Alice's Bob's

Files Files

HiStar root privileges are explicit

* Users can keep secret data inaccessible to root

*Alice's * root's * Bob's

shell . shell * shell

! !
@Alice's Bob's
Files Files
Bob's

ecret File

What about inaccessible files?

* Noone has privilege to access Bob's Secret Files

*Alice's * root's * Bob's
shell ~ shell shell

4 4
@Alice's Bob's
Files Files
Bob's

ecret File

HiStar resource allocation

_ bob’s
_ - Container

P l

A l

Bob's Fileg\ * & 'b'
OD'S

HiStar resource allocation

e Create a new sub-container for secret files

: .
R ! Container

|
Bob's File A/
Q* Bob's Bovb's
o

e
* shell Secret Fil

_ bob’s
_- Container ~, Bob's Secre&

HiStar resource allocation

e Create a new sub-container for secret files

: .
R ! Container

|
Bob's File A/
g* Bob's Bovb's
o

shell Secret Fil

_ bob’s
_- Container ~, Bob's Secre&

HiStar resource allocation

e Create a new sub-container for secret files

e Bob can delete sub-container even if he cannot
otherwise access it!

g

-
s’

Bob's
Contain

-
”

A

Y

Bob's Secret
Container

er A
Unlink

Bob's Fileg*

Bob's
shell

v

e

Bob's
Secret Files

HiStar resource allocation

e Create a new sub-container for secret files

e Bob can delete sub-container even if he cannot
otherwise access it!

g

-
s’
-
”

A

Bob's Fileg\

Bob's
Contain

g

Y

* Bob's

Bob's Secret
Container

v

Bob's
Secret Files

HiStar resource allocation

e Create a new sub-container for secret files

e Bob can delete sub-container even if he cannot
otherwise access It!

Bob's
_ - Container

g

-’
A l

A l

Bob's Fileg\ % & 'b'
OD'S

HiStar resource allocation

e Root has control

all resources, via the

root container

g

s’
”
”’
”’

A

Bob's Fileq\

over Root

Contain

.

-
-
-

A

Bob's
Container

\4
* Bob's

”N

~

Persistent Storage

* Unix: file system implemented in the kernel

- Many potential pitfalls leading to covert channels:
mtime, atime, link counts, ...

- Would be great to implement it in user-space as well

e HiStar: Single-level store (ala Multics / EROS)

- All kernel objects stored on disk — memory is a cache
- No difference between disk & memory objects

File System

* Implemented at user-level, using same objects
* Security checks separate from FS implementation

Container
[tmp
Filename Segment Segment Container
- >
one- -~ [tmp/one [tmp/two
(WO - e e e e e e e === - 7\

HiStar kernel design

» Kernel operations make information flow explicit

- Explicit operation for thread to taint itself
» Kernel never implicitly changes labels

- EXxplicit resource allocation: gates, pre-created files
» Kernel never implicitly allocates resources

e Kernel has no concept of superuser

- Users can explicitly grant their privileges to root
- Root owns the top-level container

Applications

* Many Unix applications
- gcc, gdb, openssh, ...

* High-security applications alongside with Unix

- Untrusted virus scanners (already described)
- VPN/Internet data separation (see paper)
- login with user-supplied authentication code (next)

Login on Unix

* Login must run as root
- Only root can setuid() to grant user privileges

* Why is this bad?
- Login is complicated (Kerberos, PAM, ...)
- Bugs lead to complete system compromise

Login on HiStar

User: Bob Alice's * - W
Pass: 1bob Auth. Service H(alic3)
Login
Process
Bob's PW:
Auth. Service . H(1bob)

 Each user can provide their own auth. service

Login on HiStar

Alice's Y&
Auth. Service

H(alic3)

Login
Process

Pass: 1bob

N

Bob's -

Auth. Service

PW:
H(1bob)

 Each user can provide their own auth. service

Login on HiStar

Alice's & PW:
Auth. Service - H(alic3)
Pass: 1bob
Login *W
Process TN
\ Bob's PW:
Auth. Service ~™ H(1bob)

LOK *

Password disclosure

Alice's ¢ _ Pw-q
3)

Auth. Service H(alic
Pass: 1bob
Login /
Process
Bob's PW:
Auth. Service . H(1bob)

* \What if Bob mistypes his username as “alice™?

Password disclosure

Alice's ¢ _ Pw-q
3)

Auth. Service H(alic
Pass: 1bob
Process
Bob's - PW:
Auth. Service . H(1bob)

* \What if Bob mistypes his username as “alice™?

Avoiding password disclosure

e |t's all about information flow

- HiStar enforces:
- “Password cannot go out onto the network”

* Detalls in the paper

Reducing trusted code

* HiStar allows developers to reduce trusted code
- No code with every user's privilege during login
- No trusted code needed to initiate authentication
- 110-line trusted wrapper for complex virus scanner

e Small kernel: 16,000 lines of code

HiStar Conclusion

e HiStar reduces amount of trusted code

- Enforce security properties on untrusted code
using strict information flow control

 Kernel interface eliminates covert channels
- Make everything explicit: labels, resources

* Unix library makes Unix information flow explicit
- Superuser by convention, not by design

What about Asbestos?

* Different goal: Unix vs. specialized web server

- HiStar closes covert channels inherent in the
Asbestos design (mutable labels, IPC, ...)

- Lower-level kernel interface

* Process vs Container+ Thread+AS+Segments+Gates
» 2 times less kernel code than Asbestos
e Generality shown by the user-space Unix library

- System-wide support for persistent storage
* Asbestos uses trusted user-space file server

- Resources are manageable
* |In Asbestos, reboot to kill runaway process

How is this different from EROS?

* To isolate in EROS, must strictly partition the
capabilities between isolated applications

* | abels enforce policy without affecting structure
- Can impose policies on existing code (see paper)

7.5

6.5

5.5

4.5

3.5

2.5

1.5

0.5-

Benchmarks, relative to Linux

Comparable performance
to Linux and OpenBSD

Application-level benchmarks
and disk benchmarks

Linux
B HiStar
OpenBSD

\J \J \J \J \J
gcc wget Clam pipe disk disk create fork
AV read write 10k exec

files

7.5

6.5

5.5

4.5

3.5

2.5

1.5

0.5-

Benchmarks, relative to Linux

HiStar allows use of group sync.
Application either runs to completion, or
appears to never start (single-level store)

217x faster!

Synchronous creation of 10,000 files

Linux
B HiStar
OpenBSD

1

e

gcc

wget

Clam
AV

pipe disk
read

disk

write

create fork

10k exec
files

7.5

6.5

5.5

4.5

3.5

2.5

1.5

0.5-

Benchmarks, relative to Linux

Linux: 9 syscalls per iteration
HiStar: 317 syscalls per iteration

[.5x slower

Linux
B HiStar
OpenBSD

1

e

gcc

wget

Clam
AV

pipe disk
read

disk

write

create fork

10k exec
files

