Biometrics & Privacy

Stefan Katzenbeisser
Security Engineering Group
Technische Universität Darmstadt

skatzenbeisser@acm.org
http://www.seceng.informatik.tu-darmstadt.de
Goal: Identification of people through “intrinsic” features of a person

Advantages:
- Feature cannot be lost or stolen
- Easy to use, no password necessary
- Uniqueness
- Forgery resistance (?)

Disadvantages:
- Privacy problems
- Low level of acceptance
- May be measured without consent of user
- No revocation mechanism
Requirements

- **Universality**: Every person has the feature
- **Uniqueness**: Feature is unique for a person
- **Permanence**: Feature does not change over time
- Feature can be measured with sensors
- **Performance**: Fast and accurate measurements
- **Acceptance** of user
- **Security** against forgeries
Enrollment

- Registering a user is called **enrollment**
- During the process, the biometrics are measured and ...
- ... a „template“ is stored
- Subsequent measurements are matched against templates only
- Can be combined with preprocessing to identify “robust” features
- Examples:
 - Fingerprints: minutiae extraction
 - Face recognition: computation of eigenfaces
 - DNA: extraction of Short Tandem Repeats
Verification

- Matching a “template“ against a new measurement
- Must be robust against noise in measurements
- Essentially a classification problem
 ➔ well-studied in statistics
- Classification will **never** be perfect due to inherent statistical variation
Parameters of a Biometric System (1)

- **False positives**: Unauthorized person will wrongly be identified
 - May yield a security problem
 False Acceptance Rate (FAR)

- **False negatives**: Authorized person will not be identified
 - May yield problems regarding acceptance & usability
 False Rejection Rate (FRR)

- Biometrics is based on statistical tests; FAR and FRR cannot simultaneously be made zero!
- FAR and FRR can be influenced by adding features
- Equal Error Rate (EER)

- Mostly „dubious“ numbers based on vendor data
Parameters of a Biometric System (2)

![Diagram showing the relationship between error rate and number of features]

Error rate

FAR

FRR

EER

Number of features
Fingerprints (1)

- Most algorithms based on **minutiae**: special points of the fingerprint
- Pattern of minutiae seems to be unique for each person
- Minutiae represented by position and angle
- Comparison of minutiae only
- Problems: Spatial synchronization, missing minutiae due to noise, …
Fingerprints (2)

- Represent a fingerprint as a sequence of minutiae \((x_1, y_1, \theta_1), (x_2, y_2, \theta_2), \ldots, (x_n, y_n, \theta_n)\)

- Measure distance between minutiae

 \[
 d = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
 \]

 \[
 \Delta \theta = \begin{cases}
 |\theta_i - \theta_j|, & \text{if } |\theta_i - \theta_j| \leq 180^\circ \\
 360^\circ - |\theta_i - \theta_j|, & \text{if } |\theta_i - \theta_j| > 180^\circ
 \end{cases}
 \]
Fingerprints (3)

- Select tolerance levels \(d_{\text{Tol}} \) and \(\theta_{\text{Tol}} \)
- Two minutiae match if \(d \leq d_{\text{Tol}} \) and \(\Delta\theta \leq \theta_{\text{Tol}} \)
- Two fingerprints match, if at least \(k \) minutiae match
- Number \(k \) determines accuracy of test
Face Recognition (1)

- Several algorithms known to recognize faces on images
- One of the most known algorithms relies on “eigenfaces”

- Face image is represented as vector in high-dimensional space
 (coordinates of vector correspond to gray-scale values of pixels)

- Use of Principal Component Analysis (PCA)
 - to determine low-dimensional subspace
 - vector of high-dimensional space should be represented as linear
 combination of low-dimensional vectors with “small information loss”
 - transforms a large number of correlated values into a smaller
 number of uncorrelated variables (principal components)
Face Recognition (2)
Enrollment

- Given some training images (e.g. images of the enrollment phase),
- PCA is used to determine principal components (eigenfaces), forming the „face space“
- All enrolled images are projected into the face space to obtain a biometric template
- Face space representation represents „approximation“ of faces
Face Recognition (3) Recognition

- Every face image is thus represented as a small vector in face space.

- Upon recognition, the new face image is projected into the face space to obtain the facial template.

- The facial template is compared to templates stored in the database.

- The face template from the database with minimal Euclidean distance is chosen, or a mismatch is reported if this distance is larger than a threshold.

- Problems to be solved: light conditions, registration of images, quality of photos, ...
Privacy?

- Use of biometrics raises privacy problems!
- This is particularly true for “intrusive“ biometrics:
 - Patterns of veins (medical data!)
 - DNA (may code health-relevant data)

- Is biometric data a secret?
- Attacks:
 - Fabricate artificial fingerprint to deceive sensor (liveness test required!)
 - Attacks against person (cut off finger?)

- Privacy-Enhancing Technologies for biometric data