
Fundamentals of Computer Security
Spring 2015

Radu Sion

Key Exchange
Public Key Cryptography

2February 10, 2015

Computer Security FundamentalsPublic Key Cryptography

• Fundamentals

• RSA

3February 10, 2015

Computer Security FundamentalsKey Exchange

• Compute a common, shared key

–Called a symmetric key exchange protocol

• Challenges:

–I don’t know the other party

–Alice and Bob vs. Eve (who eavesdroppes)

4February 10, 2015

Computer Security FundamentalsOne Idea
• Alice: generates random a

• Bob: generates random b

• Alice sends: ma=ga

• Bob sends: mb=gb

• Alice does: (mb)a =gba =key

• Bob does: (ma)b=gab =key

• Does it work ?!!! Seems very simple !

5February 10, 2015

Computer Security FundamentalsMake it difficult for bad guy

• Discrete logarithm problem hardness:

–Given integers n and g and prime number p, compute
k such that n = gk mod p

–Solutions known for small p

–Solutions computationally infeasible as p grows large

6February 10, 2015

Computer Security FundamentalsDiffie-Hellman

• Constants: prime p, integer g ≠ 0, 1, p–1
– Known to all participants

• Alice chooses private key kAlice, computes public key KAlice = gkAlice mod p

• To communicate with Bob, Alice computes
Kshared = KBob

kAlice mod p

• To communicate with Alice, Bob computes
Kshared = KAlice

kBob mod p

– It can be shown these keys are equal

7February 10, 2015

Computer Security FundamentalsA couple of problems 

• Man in The Middle (MITM)

– solution: authenticate first

• Are we talking to the right person ?

• Forward Secrecy (PFS)

– future compromise does not impact past

– station to station (STS) Protocol

8February 10, 2015

Computer Security FundamentalsPublic Key Encryption

Mallory

Alice

Bob

Eve

publicB privateBpublicAprivateA

EpublicB
(M)

2

M=DprivateB
(EpublicB

(M))
3

no problemo
oops !!!

“here’s my key”: publicB

1

M=DprivateB
(EpublicB

(M))

How does Alice know whom it talks to ?
What if Mallory simply replaces the
public key with something else (e.g., own) !

9February 10, 2015

Computer Security Fundamentals“Signatures”

Signature …

… something that only signer can produce
… and everybody can verify

verify = check for a unique association between the signer
identity, text to be “signed” and the signature.

10February 10, 2015

Computer Security FundamentalsCertificate Authority

Mallory

Alice

Bob

Eve

publicB privateBpublicAprivateA

EpublicB
(M)

2

M=DprivateB
(EpublicB

(M))
3

no problemo

oops ? not

as much …

what is Bob’s public key ?
1

Trent

Still … how does Alice know whom it
talks to ? Everybody knows Trent.
Everybody knows Trent’s public key.

11February 10, 2015

Computer Security FundamentalsWhat does this give us (1)

• Confidentiality

– Only the owner of the private key knows it, so text enciphered with
public key cannot be read by anyone except the owner of the
private key

• Authentication

– Only the owner of the private key knows it, so text enciphered with
private key must have been generated by the owner (“digital
signature”)

• In real life: encrypt a hash of the text only !!!

12February 10, 2015

Computer Security FundamentalsWhat does this give us (2)

• Integrity

–Enciphered letters cannot be changed
undetectably without knowing private key

• Non-Repudiation

–Message enciphered with private key came from
someone who knew it

13February 10, 2015

Computer Security FundamentalsWhat we need to make it work

1. It must be computationally easy to encipher or decipher
a message given the appropriate key

2. It must be computationally infeasible to derive the
private key from the public key

3. It must be computationally infeasible to determine the
private key from a chosen plaintext attack

14February 10, 2015

Computer Security FundamentalsTrapdoor
Trapdoor function (Diffie and Hellman 1976): function that is easy to compute but
believed hard to invert without additional information (the “trapdoor”). We can
then make the trapdoor the secret key 

Example: factoring primes (computing n=p*q is easy, but given n, finding p and q is
believed to be hard)

Things can be proven otherwise after a while: e.g., Merkle-Hellman Knapsack
cryptosystem

Not all hard problems are trapdoors: e.g., discrete logarithm problem-related
functions

15February 10, 2015

Computer Security FundamentalsRSA: Rivest, Shamir, Adelman

• Exponentiation cipher

• Relies on the difficulty of determining the number
of numbers relatively prime to a large integer n

• Or equivalently, on the difficulty of factoring of
large numbers into prime factors

16February 10, 2015

Computer Security FundamentalsAnimated version

n=pq
1

e=17
2

d = e-1 mod (p-1)(q-1)

Extended Euclidean
3

message m<n

RSA Encryption

c=me mod n
4

RSA Decryption

m=cd mod n
5

Alice

Bob

17February 10, 2015

Computer Security FundamentalsMore boring version
• Key generation

– Choose large primes p,q; let n=pq
– Choose e relatively prime to (p-1)(q-1) (to have inverse !)

– Public key <e,n>
– Private key <d,n> where d = e-1 mod (p-1)(q-1)

• Can do it fast using Extended Euclidean

• Encrypt: c = me mod n
• Decrypt: m = cd mod n
• de = 1 mod (p-1)(q-1), so m = (me)d mod n
• Breakable if we can factor 

18February 10, 2015

Computer Security FundamentalsLarger Messages?

• Break message into pieces no greater in value
than n-1 (why ?)

• Encrypt each part separately

• Use some sort of “chaining” to avoid block-
related attacks

• Will likely use some padding etc. We discuss
this later.

19February 10, 2015

Computer Security FundamentalsGround Rules
• Attack: Exhaustive search for key

• Attack: Factoring n

• Timing Attacks: how long does encryption take ? –
leaks information about the key
– Solutions ?

• Attack: maintain dictionary of encrypted (public key)
messages (“forward search”)

• Common modulus problem

• etc. (many solved using smart padding)

20February 10, 2015

Computer Security FundamentalsRSA Common Modulus Problem

later, same message msame modulus n

Alice Bob

c1=me1 mod n
1

c2=me2 mod n
1

Modified Extended Euclidean

find r,s: re1 + se2 = 1
2

Extended Euclidean

c2
-1 mod n

3

m = c1
r * (c2

-1)-s = mre1+se2 mod n
4

Eve

public network

21February 10, 2015

Computer Security FundamentalsMore Problems 

• Malleable (public key is known!)
• Probing

– If I get e(m), I can check if m=m’
– Solution: random pad – we discuss semantic security later

• Efficiency: can be made faster (modulo calculus tricks)
• Potential use interference: Encryption with Signatures
• Generating keys expensive

– Select large primes
– Find e relatively prime to (p-1)(q-1)

• In practice, often e=3,5,17,65537

• For x<n no modular reduction takes place !!!
– Also, given a signatures for m1, m2; can compute signature for (some) other messages

22February 10, 2015

Computer Security FundamentalsBack to Diffie Hellman

• Man in the middle solution: authentication and
signatures on certain messages by first acquiring
public/private key pairs
–But why not use these keys to communicate then

(instead of generating key every time) ?
• Perfect forward secrecy 

23February 10, 2015

Computer Security FundamentalsThink about this

• Which one should go first:

–Authentication or Key Exchange ?

