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Computer Security FundamentalsSignatures: Overview
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Computer Security FundamentalsMain idea

Signature …

… something that only signer can produce
… and everybody can verify

verify = check for a unique association between the signer 
identity, text to be “signed” and the signature.
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Computer Security FundamentalsOrder: encrypt then sign?

• Mallory: replaces signature with own !
• Other problems with RSA !!!
• Not useful: only illegible ciphertext is non-repudiable

When a principal signs material that has already been encrypted, it 
should not be inferred that the principal knows the content of the 
message. 

If a signature is affixed to encrypted data, then ... a third party certainly 
cannot assume that the signature is authentic, so non-repudiation is lost. 
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Computer Security FundamentalsOrder: Sign then encrypt?

• Malicious Bob: sureptitious forwarding
• decrypts EpublicB

(SA(M))
• produces EpublicC

(SA(M)) and …
• … sends it to Carol 
• Carol now believes Alice said M (to her)
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Computer Security FundamentalsFixing the mess?

1. EpublicB(SA(M;B)) 

2. EpublicB(SA(M;A;B))

3. SA(EpublicB(SA(M)))

4. EpublicB(SA(EpublicB(M)))
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Computer Security FundamentalsPublic Key Cryptography

In RSA S(m)=D(m). If we sign arbitrary stuff, e.g., 

m=E(M), then in effect we reveal M=D(E(M)) !

If you are a service, do not sign arbitrary stuff. 

Always sign a hash only ! 

Do not re-use key pair for different purposes!
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Computer Security FundamentalsCertificate Authority (Trent)
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Computer Security FundamentalsProblem

Alice needs Trent’s public key to validate 
received certificate: 

–Needs to verify signature

–Problem pushed “up” a level

–Two approaches: 
• Merkle trees

• Signature chains (* we discuss this *)
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Computer Security FundamentalsCross Certification

• Multiple CAs (validation issue)

–Alice’s CA is Trent; Bob’s CA is Tim; how 
can Alice validate Bob’s certificate?

–Have Trent and Tim cross-certify

• Each issues certificate for the other



11February 17, 2015

Computer Security FundamentalsSignature Chains

• If we have the following certificates:

– Trent<<Alice>>

– Tim<<Bob>>

– Trent<<Tim>>

– Tim<<Trent>>

• How does Alice validate Bob’s certificate ?

– Get Trent<<Tim>>

– Use public key of Trent to validate Trent<<Tim>>

– Use Trent<<Tim>> to validate Tim<<Bob>>
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Computer Security FundamentalsKey Revocation

• Certificates invalidated before expiration

– Usually due to compromised key

–May be due to change in circumstance (e.g.,
someone leaving company)

• Problems

– Is entity revoking certificate authorized to do so ?

– Does revocation propagate fast enough ?

• network delays, infrastructure problems
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Computer Security FundamentalsCRLs

• Certificate revocation list

• Online Certificate Status Protocol (RFC 2560)

• X.509: only certificate issuer can revoke

• PGP

– signers can revoke signatures

–owners can revoke certificates

• or allow others to do so
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Computer Security FundamentalsPKC is expensive! Use SKC.
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E’ = symmetric encryption

What about forward secrecy ? 

Station to Station protocol. Use 
PKI for signatures, variant of 
Diffie Hellman for key exchange.
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Computer Security FundamentalsAuthentication vs. Key Exchange

• Which one should come first ?

• Should we maybe couple them ?

• Why ?
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Computer Security Fundamentals“Random”

Cryptographically random numbers: a 
sequence of numbers X1, X2, … such that for 
any integer k > 0, it is impossible for an 
observer to predict Xk even if all of X1, …, Xk–1

are known.
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Computer Security FundamentalsRandom Number Generators

True RNGs cannot be deterministically algorithmic in a closed system. 
“Anyone who considers arithmetic methods … is in a state of sin” (von 
Neuman)

There exists a certain “flow” of randomness/chaos that is preserved 
within the system.

True randomness can only (arguably) be achieved by a hardware device 
that extract randomness from real-life processes (e.g. thermal noise, RF).
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Computer Security Fundamentals“Pseudorandom”

Idea: simulate a sequence of cryptographically 
random numbers but generate them by an algorithm.

Cryptographically pseudo-random numbers: a 
sequence of numbers X1, X2, … such that for any 
integer k > 0, it is hard for an observer to predict Xk

even if all of X1, …, Xk–1 are known.
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Computer Security FundamentalsPRNGs

Approximating randomness (e.g., attempting to achieve a 
uniform distribution) – will always have period (finite 
output space), many other defects !

Examples:

• Linear congruential generators: Xi = (aXi-1+b) mod n
• Mersenne Twister (for Monte Carlo simulations)

• make it “secure” by using a hash
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Computer Security FundamentalsBest PRNGs

Strong mixing function: function of 2 or more 
inputs with each bit of output depending on 
some nonlinear function of all input bits:

–Examples: DES, MD5, SHA-1

–Use on UNIX-based systems:
(date; ps gaux) | md5



21February 17, 2015

Computer Security FundamentalsPublic Key Cryptography

“pseudo-random number generators exist 
iff. one-way functions exist” 

Johan Håstad, Russell Impagliazzo, Leonid A. Levin, Michael Luby: A Pseudorandom Generator from any One-way 
Function. SIAM J. Comput. 28(4): 1364-1396 (1999)

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/H=aring=stad:Johan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Levin:Leonid_A=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Luby:Michael.html
http://www.informatik.uni-trier.de/~ley/db/journals/siamcomp/siamcomp28.html

