
Fundamentals of Computer Security
Spring 2015

Radu Sion

Signatures
Certificate Authorities
Random Number



2February 17, 2015

Computer Security FundamentalsSignatures: Overview

Alice

Bob

publicB privateBpublicAprivateA

M=DpublicA
(SA(M)) ?

2

M=DprivateA
(EpublicA

(M))=DpublicA
(EprivateA

(M))

SA(M)=EprivateA
(M)

1

M

Mallory Eve

no problemo



3February 17, 2015

Computer Security FundamentalsMain idea

Signature …

… something that only signer can produce
… and everybody can verify

verify = check for a unique association between the signer 
identity, text to be “signed” and the signature.



4February 17, 2015

Computer Security FundamentalsOrder: encrypt then sign?

• Mallory: replaces signature with own !
• Other problems with RSA !!!
• Not useful: only illegible ciphertext is non-repudiable

When a principal signs material that has already been encrypted, it 
should not be inferred that the principal knows the content of the 
message. 

If a signature is affixed to encrypted data, then ... a third party certainly 
cannot assume that the signature is authentic, so non-repudiation is lost. 



5February 17, 2015

Computer Security FundamentalsOrder: Sign then encrypt?

• Malicious Bob: sureptitious forwarding
• decrypts EpublicB

(SA(M))
• produces EpublicC

(SA(M)) and …
• … sends it to Carol 
• Carol now believes Alice said M (to her)



6February 17, 2015

Computer Security FundamentalsFixing the mess?

1. EpublicB(SA(M;B)) 

2. EpublicB(SA(M;A;B))

3. SA(EpublicB(SA(M)))

4. EpublicB(SA(EpublicB(M)))



7February 17, 2015

Computer Security FundamentalsPublic Key Cryptography

In RSA S(m)=D(m). If we sign arbitrary stuff, e.g., 

m=E(M), then in effect we reveal M=D(E(M)) !

If you are a service, do not sign arbitrary stuff. 

Always sign a hash only ! 

Do not re-use key pair for different purposes!



8February 17, 2015

Computer Security FundamentalsCertificate Authority (Trent)

Alice

Bob

publicB privateBpublicAprivateA

EpublicB
(M)

2

M=DprivateB
(EpublicB

(M))
3

Trent

Mallory Eve

no problemo

“public key 
certificate”

ST(time,expiration,“Bob”,publicB)
1

“certificatea
uthority”



9February 17, 2015

Computer Security FundamentalsProblem

Alice needs Trent’s public key to validate 
received certificate: 

–Needs to verify signature

–Problem pushed “up” a level

–Two approaches: 
• Merkle trees

• Signature chains (* we discuss this *)



10February 17, 2015

Computer Security FundamentalsCross Certification

• Multiple CAs (validation issue)

–Alice’s CA is Trent; Bob’s CA is Tim; how 
can Alice validate Bob’s certificate?

–Have Trent and Tim cross-certify

• Each issues certificate for the other



11February 17, 2015

Computer Security FundamentalsSignature Chains

• If we have the following certificates:

– Trent<<Alice>>

– Tim<<Bob>>

– Trent<<Tim>>

– Tim<<Trent>>

• How does Alice validate Bob’s certificate ?

– Get Trent<<Tim>>

– Use public key of Trent to validate Trent<<Tim>>

– Use Trent<<Tim>> to validate Tim<<Bob>>



12February 17, 2015

Computer Security FundamentalsKey Revocation

• Certificates invalidated before expiration

– Usually due to compromised key

–May be due to change in circumstance (e.g.,
someone leaving company)

• Problems

– Is entity revoking certificate authorized to do so ?

– Does revocation propagate fast enough ?

• network delays, infrastructure problems



13February 17, 2015

Computer Security FundamentalsCRLs

• Certificate revocation list

• Online Certificate Status Protocol (RFC 2560)

• X.509: only certificate issuer can revoke

• PGP

– signers can revoke signatures

–owners can revoke certificates

• or allow others to do so



14February 17, 2015

Computer Security FundamentalsPKC is expensive! Use SKC.

Alice

Bob

EpublicB
(SA(k))

1

k k

E’k(“ok”)
2

E’k(M)
3

E’ = symmetric encryption

What about forward secrecy ? 

Station to Station protocol. Use 
PKI for signatures, variant of 
Diffie Hellman for key exchange.



15February 17, 2015

Computer Security FundamentalsAuthentication vs. Key Exchange

• Which one should come first ?

• Should we maybe couple them ?

• Why ?



16February 17, 2015

Computer Security Fundamentals“Random”

Cryptographically random numbers: a 
sequence of numbers X1, X2, … such that for 
any integer k > 0, it is impossible for an 
observer to predict Xk even if all of X1, …, Xk–1

are known.



17February 17, 2015

Computer Security FundamentalsRandom Number Generators

True RNGs cannot be deterministically algorithmic in a closed system. 
“Anyone who considers arithmetic methods … is in a state of sin” (von 
Neuman)

There exists a certain “flow” of randomness/chaos that is preserved 
within the system.

True randomness can only (arguably) be achieved by a hardware device 
that extract randomness from real-life processes (e.g. thermal noise, RF).



18February 17, 2015

Computer Security Fundamentals“Pseudorandom”

Idea: simulate a sequence of cryptographically 
random numbers but generate them by an algorithm.

Cryptographically pseudo-random numbers: a 
sequence of numbers X1, X2, … such that for any 
integer k > 0, it is hard for an observer to predict Xk

even if all of X1, …, Xk–1 are known.



19February 17, 2015

Computer Security FundamentalsPRNGs

Approximating randomness (e.g., attempting to achieve a 
uniform distribution) – will always have period (finite 
output space), many other defects !

Examples:

• Linear congruential generators: Xi = (aXi-1+b) mod n
• Mersenne Twister (for Monte Carlo simulations)

• make it “secure” by using a hash



20February 17, 2015

Computer Security FundamentalsBest PRNGs

Strong mixing function: function of 2 or more 
inputs with each bit of output depending on 
some nonlinear function of all input bits:

–Examples: DES, MD5, SHA-1

–Use on UNIX-based systems:
(date; ps gaux) | md5



21February 17, 2015

Computer Security FundamentalsPublic Key Cryptography

“pseudo-random number generators exist 
iff. one-way functions exist” 

Johan Håstad, Russell Impagliazzo, Leonid A. Levin, Michael Luby: A Pseudorandom Generator from any One-way 
Function. SIAM J. Comput. 28(4): 1364-1396 (1999)

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/H=aring=stad:Johan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Levin:Leonid_A=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Luby:Michael.html
http://www.informatik.uni-trier.de/~ley/db/journals/siamcomp/siamcomp28.html

