
Fundamentals of Computer Security
Spring 2015

Radu Sion

Malware

© 2005-15
Portions copyright by Matt Bishop and Wikipedia. Used with permission

2March 24, 2015

Computer Security FundamentalsOverview

• What is malicious logic ?
• Types (loosely typed, can intersect !)

– Spyware/Adware
– Trojan horses
– Computer viruses
– Worms
– Other types

• Defenses
– Properties of malicious logic
– Trust

3March 24, 2015

Computer Security FundamentalsExample

• Shell script on a UNIX system:
cp /bin/sh /tmp/.xyzzy

chmod u+s,o+x /tmp/.xyzzy

rm ./ls

ls $*

• Place in program called “ls” and trick someone
into executing it

• You now have a setuid-to-them shell!

4March 24, 2015

Computer Security FundamentalsTrojan Horse

• Program with an overt purpose (known to
user) and a covert purpose (unknown to user)
– Often called a Trojan

– Named by Dan Edwards in Anderson Report

• Example: previous script is Trojan horse
– Overt purpose: list files in directory

– Covert purpose: create setuid shell

5March 24, 2015

Computer Security FundamentalsExample: Netbus

• Designed for Windows NT system

• Victim uploads and installs this
– Usually disguised as a game program, or in one

• Acts as a server, accepting and executing
commands for remote administrator
– This includes intercepting keystrokes and mouse

motions and sending them to attacker

– Also allows attacker to upload, download files

6March 24, 2015

Computer Security FundamentalsReplicating Trojan Horse

• Trojan horse that makes copies of itself

– Also called propagating Trojan horse

– Early version of animal game used this to delete copies of itself

• Hard to detect

– 1976: Karger and Schell suggested modifying compiler to include
Trojan horse that copied itself into specific programs including
later version of the compiler

– 1980s: Thompson implemented this

7March 24, 2015

Computer Security FundamentalsThomson’s Compiler

• Modify the compiler so that when it compiles login ,
login accepts the user's correct password or a fixed
password (the same one for all users)

• Then modify the compiler again, so when it
compiles a new version of the compiler, the extra
code to do the first step is automatically inserted

• Recompile the compiler

• Delete the source containing the modification and
put the un-doctored source back

8March 24, 2015

Computer Security FundamentalsTaking over the login program

login source correct compiler login executable

user password

login source doctored compiler login executable

magic password

user password or

logged in

logged in

9March 24, 2015

Computer Security FundamentalsDo the same through compiler

compiler source correct compiler compiler executable

login source

compiler source doctored compiler compiler executable

correct login executable

login source

rigged login executable

10March 24, 2015

Computer Security FundamentalsComments

• Great pains taken to ensure second version of compiler
never released

– Finally deleted when a new compiler executable from a
different system overwrote the doctored compiler

• The point: no amount of source-level verification or scrutiny
will protect you from using untrusted code

– Also: having source code helps, but does not ensure you’re safe

11March 24, 2015

Computer Security FundamentalsViruses

• Code that inserts itself into one or more files and
performs some action (“infects” something)

– Insertion phase is inserting itself into file

– Execution phase is performing some (possibly null) action

• Insertion phase must be present

– Need not always be executed

– Lehigh virus inserted itself into boot file only if boot file
not infected

12March 24, 2015

Computer Security FundamentalsPseudo-code
beginvirus:

if spread-condition then begin

for some set of target files do begin

if target is not infected then begin

determine where to place virus instructions

copy instructions from beginvirus to endvirus

into target

alter target to execute added instructions

end;

end;

end;

perform some action(s)

goto beginning of infected program

endvirus:

13March 24, 2015

Computer Security FundamentalsTrojan Horse or not?

• Yes

– Overt action = infected program’s actions

– Covert action = virus’ actions (infect, execute)

• No

– Overt purpose = virus’ actions (infect, execute)

– Covert purpose = none

• Semantic, philosophical differences

– Defenses against Trojan horse also inhibit computer viruses

14March 24, 2015

Computer Security FundamentalsSome history

• Programmers for Apple II wrote some (1982)

–Not called viruses; very experimental

• Fred Cohen

–Graduate student who described them

–Teacher (Adleman) named it “computer virus”

–Tested idea on UNIX systems and UNIVAC 1108 system

15March 24, 2015

Computer Security FundamentalsCohen’s Experiment
• UNIX systems: goal was to get superuser privileges

–Max time 60m, min time 5m, average 30m

– Virus small, so no degrading of response time

– Virus tagged, so it could be removed quickly

• UNIVAC 1108 system: goal was to spread

– Implemented simple security property of Bell-LaPadula

– As writing not inhibited (no *-property enforcement),
viruses spread easily

16March 24, 2015

Computer Security FundamentalsOverview

• Brain (Pakistani) virus (1986)

–Written for IBM PCs

– Alters boot sectors of floppies, spreads to other floppies

• MacMag Peace virus (1987)

–Written for Macintosh

– Prints “universal message of peace” on March 2, 1988
and deletes itself

17March 24, 2015

Computer Security FundamentalsMore History

• Tom Duff’s experiments (1987)
– Small virus placed on UNIX system, spread to 46

systems in 8 days

– Wrote a Bourne shell script virus

• Harold Highland’s Lotus 1-2-3 virus (1989)
– Stored as a set of commands in a spreadsheet and

loaded when spreadsheet opened

– Changed a value in a specific row, column and spread
to other files

18March 24, 2015

Computer Security FundamentalsTypes of Viruses (mostly history)
• Boot sector infectors

• Executable infectors

• Multipartite viruses

• TSR viruses

• Stealth viruses

• Encrypted viruses

• Polymorphic viruses

• Macro viruses

19March 24, 2015

Computer Security FundamentalsBoot Sector Infector

• A virus that inserts itself into disk boot sector

– Section of disk containing code

– Executed when system first “sees” the disk

• Including at boot time …

• Example: Brain virus

– Moves disk interrupt vector from 13H to 6DH

– Sets new interrupt vector to invoke Brain virus

– When new floppy seen, check for 1234H at location 4

• If not there, copies itself onto disk after saving original boot block

20March 24, 2015

Computer Security FundamentalsExecutable Infector

• A virus that infects executable programs

– Can infect either .EXE or .COM on PCs

– May prepend itself (as shown) or put itself anywhere,
fixing up binary so it is executed at some point

Header Ex ecutable code and data

0 100 1000

Header Ex ecutable code and data

0 100 1000 1100

V irus code

200

First program instruction to be e xecuted

21March 24, 2015

Computer Security FundamentalsExecutable infectors examples

• Jerusalem (Israeli) virus
– Checks if system infected

• If not, set up to respond to requests to execute files

– Checks date
• If not 1987 or Friday 13th, set up to respond to clock interrupts and then run program

• Otherwise, set destructive flag; will delete, not infect, files

– Then: check all calls asking files to be executed
• Do nothing for COMMAND.COM

• Otherwise, infect or delete

– Error: doesn’t set signature when .EXE executes
• So .EXE files continually reinfected

22March 24, 2015

Computer Security FundamentalsMultipartite viruses

• A virus that can infect either
boot sectors or executables

• Typically, two parts

–One part boot sector infector

–Other part executable infector

23March 24, 2015

Computer Security FundamentalsTSR Viruses

• A virus that stays active in memory after the application
(or bootstrapping, or disk mounting) is completed

– TSR is “Terminate and Stay Resident”

• Examples: Brain, Jerusalem viruses

– Stay in memory after program or disk mount is completed

24March 24, 2015

Computer Security FundamentalsStealth Virus

• A virus that conceals infection of files

• Example: IDF virus modifies DOS service interrupt
handler as follows:
– Request for file length: return length of uninfected file

– Request to open file: temporarily disinfect file, and
reinfect on closing

– Request to load file for execution: load infected file

25March 24, 2015

Computer Security FundamentalsEncrypted Virus

• A virus that is enciphered except for a
small deciphering routine

– Detecting virus by signature now much
harder as most of virus is enciphered

Virus code Enciphered virus codeDeciphering
routine

Deciphering k ey

26March 24, 2015

Computer Security FundamentalsExample Decryption Engine

(* Decryption code of the 1260 virus *)

(* initialize the registers with the keys *)

rA = k1; rB = k2;

(* initialize rC with the virus;

starts at sov, ends at eov *)

rC = sov;

(* the encipherment loop *)

while (rC != eov) do begin

(* encipher the byte of the message *)

(*rC) = (*rC) xor rA xor rB;

(* advance all the counters *)

rC = rC + 1;

rA = rA + 1;

end

27March 24, 2015

Computer Security FundamentalsPolymorphic Virus

• A virus that changes its form each time it inserts itself into
another program

• Idea is to prevent signature detection by changing the
“signature” or instructions used for deciphering routine

• At instruction level: substitute instructions

• At algorithm level: different algorithms to achieve the same
purpose

• Toolkits to make these exist (Mutation Engine, Trident
Polymorphic Engine)

28March 24, 2015

Computer Security FundamentalsExample of Polymorphism

• These are different instructions (with different
bit patterns) but have the same effect:

– add 0 to register

– subtract 0 from register

– xor 0 with register

– no-op

• Polymorphic virus would pick randomly from
among these instructions

29March 24, 2015

Computer Security FundamentalsMacro Viruses

• A virus composed of a sequence of instructions that
are interpreted rather than executed directly

• Can infect either executables (Duff’s shell virus) or
data files (Highland’s Lotus 1-2-3 spreadsheet virus)

• Independent of machine architecture
–But their effects may be machine dependent

30March 24, 2015

Computer Security FundamentalsExample

• Melissa

– Infected Microsoft Word 97 and Word 98 documents

• Windows and Macintosh systems

– Invoked when program opens infected file

– Installs itself as “open” macro and copies itself into Normal
template

• This way, infects any files that are opened in future

– Invokes mail program, sends itself to everyone in user’s
address book

31March 24, 2015

Computer Security FundamentalsSpyware/Adware

• Spyware gathers information about your internet
activities

–Website visited

– Searches made

– In-page browsing behavior

• Adware is usually a form of spyware that provides
advertisements based on information collected

32March 24, 2015

Computer Security FundamentalsSpyware is very common

• Study

– 61% of surveyed users had some sort of spyware

– 92% did not know they had spyware

– 91% said they did not consent to have it installed

33March 24, 2015

Computer Security FundamentalsHow to get me some?

• Drive-by Download

– Automatically tries to install when you visit a website

• Depending on your browsers security settings a prompt may appear

34March 24, 2015

Computer Security FundamentalsHow to get me some? (2)

• Trickery

– Makes the user believe it is anti-spyware software

– Fake system alerts

– Installs when a user clicks “Cancel” instead of “Okay”

35March 24, 2015

Computer Security FundamentalsHow to get me some? (3)

• Piggybacked software installation
– Spyware downloads with programs people desire

• Peer-to-peer software comes with it

• AIM has come with viewpoint media player and wildtangent (game)

• The old versions of free DIVX came with “GAINware”

• K-Lite codecs pack

• Browser add-ons such as toolbars or animations

36March 24, 2015

Computer Security FundamentalsSo what?

• Waste CPU time and network resources

• Generates popup ads

• Reset browser’s homepage

• Reset browser security settings

• Redirect your web searches controlling the results you see

• Replace website ads with own ads

37March 24, 2015

Computer Security FundamentalsSo what? (2)

• Steal affiliate credits

–Major websites pay other websites for
directing traffic to their website

• Spyware can take credit for your directing

–Spyware vendors collect the money instead of the
legit website that forwarded you to your location

38March 24, 2015

Computer Security FundamentalsSo what? (3)

• Modify dll (dynamically linked libraries)
files causing connectivity failures

• Change firewall settings

• Prevent themselves from being removed
normally

39March 24, 2015

Computer Security FundamentalsProtection?

• Anti-spyware programs

• Popup blockers

• Windows users can disable Active-X

• Use the top right ‘x’ to close windows

• OS-level protection (code segment signatures)

40March 24, 2015

Computer Security FundamentalsOur friend Microsoft

• Microsoft’s Windows Genuine Advantage
Notification application was like spyware
–Microsoft admitted its spyware tendencies

• Was sued over it

–Additional software that contacts Microsoft daily
• Microsoft says it will change it to bi-weekly instead of daily

41March 24, 2015

Computer Security FundamentalsRootkits

• The future of malware

• Can hide files, processes, registry files, and
network connections

• Obtains control of the root of an operating
system to hide its presence

• Rootkits originated on Unix operating systems

42March 24, 2015

Computer Security FundamentalsRootkits (2)

• Rootkits are not actually malware

– Alcohol 120% and Daemon Tools use rootkits

• Hide their processes from 3rd party scanners to prevent
detection or tampering with processes

• May be used in support with malware

– Hides the malware’s presence

43March 24, 2015

Computer Security FundamentalsRootkits (3)

• Virtually undetectable

– Not completely perfected

– Usually will not be discovered by anti-malware programs

• Makes them more popular due to the new anti-malware technology
and widespread knowledge about old malware techniques

• Exists for all major operating systems

44March 24, 2015

Computer Security FundamentalsHow to get me some?

• Installs itself as a driver

– In most window’s systems drivers have access to the kernel

• Installs itself as a kernel module

– This will give the rootkit access to the kernel

45March 24, 2015

Computer Security FundamentalsRootkit Type: Kernel

• Kernel

–Add/replace kernel code to help hide a hard
coded backdoor into a system

–Obtains access usually via the modules or drivers

46March 24, 2015

Computer Security FundamentalsRootkit Type: Virtualized

• Virtualized

–Causes the computer to boot from a rootkit

• The rootkit will load the operating system as a virtual machine

–Allows the rootkit to intercept hardware calls

–Allows the rootkit to control all aspects of the operating system

–First one made by Microsoft and University of Michigan

–No known way to detect this level of rootkit

47March 24, 2015

Computer Security FundamentalsRootkit Type: Memory Based

• Memory based

– Shadow Walker

• Proof of concept memory based rootkit

– Can control memory reads

• Installs a Page Fault Handler and keeps a hash of pages of memory

• Flushes the TLB so all memory access go to the Page Fault Handler

48March 24, 2015

Computer Security FundamentalsBig Companies do it

• Sony tried to protect copy-right
protections on their CDs

–Software opened a remote access
connection to Sony and hid it using rootkits

•Worms took advantage of this specific
technology

49March 24, 2015

Computer Security FundamentalsSony Rootkit Details

• Dan Kaminsky found over 550,000 DNS
servers that contained queries of Sony’s
rootkit contacting Sony

–This means there were probably millions of
infected hosts

50March 24, 2015

Computer Security FundamentalsSony Rootkit Infection

51March 24, 2015

Computer Security FundamentalsRootkit Defense

• Basic protection

–Windows is separating the drivers from the kernel

– Booting a computer form an external source

• The rootkit will not be activated allowing a scanner to
scan the system

52March 24, 2015

Computer Security FundamentalsRootkit Defense (2)

• Anti-rootkit programs

– Relatively few

– Not successful against all types of rootkits

– Attempts to detect file changes or registry additions that are
hidden from normal system utilities and security applications

– Fingerprints system files and look for unauthorized changes

– HIGH FALSE-POSITIVES

53March 24, 2015

Computer Security FundamentalsWorms

• A program that copies itself from one computer to another

• Origins: distributed computations
– Schoch and Hupp: “worm” used to do distributed computation

– Segment: part of program copied onto workstation

– Segment processes data, communicates with worm’s controller

– Any activity on workstation caused segment to shut down

54March 24, 2015

Computer Security FundamentalsHistory: Morris (1988)

• Targeted Berkeley, Sun UNIX systems
– Used virus-like attack to inject instructions into running

program and run them
– Had to disconnect system from Internet and reboot
– To prevent re-infection, several critical programs had to be

patched, recompiled, and reinstalled (rsh, sendmail, finger)

• Flaw: didn’t check for existing infection – would re-infect
• Analysts had to disassemble it to uncover function
• Disabled several thousand systems in 6 or so hours
• First US conviction for computer fraud

55March 24, 2015

Computer Security FundamentalsHistory: Christmas Worm
• Distributed in 1987, designed for IBM networks

• Electronic letter instructing recipient to save it and run
it as a program
– Drew Christmas tree, printed “Merry Christmas!”

– Also checked address book, list of previously received email
and sent copies to each address

• Shut down several IBM networks

• Really, a macro worm
–Written in a command language that was interpreted

56March 24, 2015

Computer Security FundamentalsWho to blame for CERT? 

• Who: Robert Morris

• What: Morris Worm 1988

• How: Sendmail, finger, weak passwords

• 6,000 DEC VAX’s running Solaris/BSD

• Intellectual Exercise or Malicious intent?

• CERT (Computer Emergency Response Team)

57March 24, 2015

Computer Security FundamentalsScenario A

• Evil Eye Security (eEye) discovered a Buffer Overflow
in Microsoft’s IIS Web Server on June 18, 2001

• The exploit was remotely executable

• Patch was released on June 26, 2001 (8 Days Later)

• Worm is out July 12, 2001 (16 Days Later)

58March 24, 2015

Computer Security FundamentalsScenario A: Code Red I

• Infection Phase: If the day of the month is between 1 and 19.

• DDoS Phase: If the day of the month is between 20 and 28.

• Dormant Phase: Past the 28th

• Memory Resident

• Static seed used for the PRNG!

59March 24, 2015

Computer Security FundamentalsCode Red Iv2 & Code Red II

• Code-RedIv2 fixed the problem with the
static seed. July 19th, 2001

• Code-RedII fixed the problem of being
memory resident. August 4th, 2001

• Code-RedII also set up a backdoor
administrative panel.

60March 24, 2015

Computer Security FundamentalsScenario A: Infection Analysis

• Moore, Shannon, and Brown analyzed traffic between July
4th and August 24th

• If 2 TCP SYN’s on port 80 were sent to a non-existent
machine, they were declared infected.

• 23 Machines constantly probed by CRv1 in their /8 network

• Detected more than 359,000 unique IP address infected
with CR between July 19 - 20

61March 24, 2015

Computer Security FundamentalsCode Red I v2 Analysis

62March 24, 2015

Computer Security FundamentalsCode Red I v2 Analysis (2)

63March 24, 2015

Computer Security FundamentalsCode Red Analysis (3)

64March 24, 2015

Computer Security FundamentalsZoom-in at lower ranges

65March 24, 2015

Computer Security FundamentalsSpread

66March 24, 2015

Computer Security FundamentalsCode Red Spread

• Infection Rate peaked at 29,710 hosts a minute on August
1st in the afternoon

• Infection shows both diurnal and weekly variations

• Rate began decreasing from there due to saturation.

• 2 Million Different IP Addresses witnessed

• Selected 10,000 hosts at random that were infected and
probed them to see if they were patched. 1.5% patch rate
per day, 34% on August 1st when CRI began to re-spread.

67March 24, 2015

Computer Security FundamentalsSapphire/Slammer Worm

• Remotely executable Buffer Overflow in Microsoft SQL
Server & Microsoft Desktop Engine 2000. July 24th 2002

• Worm appeared January 25th, 2003

• Infections doubled in size every 8.5 seconds. Two
orders of magnitude faster than Code Red.

• Based on random scanning

• Infected around 75,000 hosts.

• Achieved full scanning rate (55 million scans per
second) after 3 minutes.

68March 24, 2015

Computer Security FundamentalsSuper fast

• Slammer was the fastest worm ever
seen for 2 reasons:

1.Used UDP instead of TCP to propagate

2.Entire exploit fit in a 404 byte packet

69March 24, 2015

Computer Security FundamentalsEven worms have design flaws 

• Worm was so fast that it was only limited by bandwidth and
connection speed, degraded the network.

• PRNG used for IP Address generation was a wrongly
implemented Linear Congruent Model. x’ = (x * a + b) mod m;

• x' = (x * 214013 + 2531011) mod 2^32

• Could accidentally skip entire /16 blocks

70March 24, 2015

Computer Security FundamentalsMitigation?

• Slammer already infected every machine before
any type of filtering could be done.

• Most filtering blocked all traffic to the UDP port,
what if the exploit was in Microsoft’s DNS Server?

• Are small programs safe?

71March 24, 2015

Computer Security FundamentalsCode Red vs. Slammer
• 2001 2003

• TCP UDP

• Microsoft IIS Microsoft SQL Server

• 359,000 75,000

• 2.6 1.2

• Latency Limited Bandwidth Limited

72March 24, 2015

Computer Security FundamentalsStranget.B – newer malware

• Drops itself in the Win32 folder

• Adds itself to the auto-run section of the registry

• Registers a key-logger as a Browser Helper Object

• Monitors URL’s viewed and key-logs accordingly if certain
strings detected “pass, private, admin, login”

• Cracks system passwords in the background and sends
them to attacker through it’s own SMTP server or FTP.

• Kills many different processes related to anti-virus.

73March 24, 2015

Computer Security FundamentalsOther animals: Rabbits, Bacteria

• A program that absorbs all of some class of resources

• Example: for UNIX system, shell commands:
while true

do

mkdir x

chdir x

done

• Exhausts either disk space or file allocation table (inode) space

74March 24, 2015

Computer Security FundamentalsLogic Bomb

• A program that performs an action that violates the site
security policy when some external event occurs

• Example: program that deletes company’s payroll records
when one particular record is deleted

– The “particular record” is usually that of the person writing the
logic bomb

– Idea is if (when) he or she is fired, and the payroll record
deleted, the company loses all those records

75March 24, 2015

Computer Security FundamentalsDefenses

• Distinguish between data, instructions

• Limit objects accessible to processes

• Inhibit sharing

• Detect altering of files

• Detect actions beyond specifications

• Analyze statistical characteristics

76March 24, 2015

Computer Security FundamentalsData vs. Code

• Malicious logic is both

– Virus: written to program (data); then executes (instructions)

• Approach: treat “data” and “instructions” as separate
types, and require certifying authority to approve
conversion

– Keys are assumption that certifying authority will not make
mistakes and assumption that tools, supporting infrastructure
used in certifying process are not corrupt

77March 24, 2015

Computer Security FundamentalsHistory: Honeywell LOCK (1980s)

• LOgical Coprocessor Kernel

• Compiled programs are type “data”

– Sequence of specific, auditable events
required to change type to “executable”

• Cannot modify “executable” objects

– So viruses can’t insert themselves into
programs (no infection phase)

78March 24, 2015

Computer Security FundamentalsUNIX Example
• Observation: users with execute permission

usually have read permission, too
–So files with “execute” permission have type

“executable”; those without it, type “data”

–Executable files can be altered, but type
immediately changed to “data”
• Implemented by turning off execute permission

• Certifier can change them back
–So virus can spread only if run as certifier

79March 24, 2015

Computer Security FundamentalsLimiting Access

• Basis: a user (unknowingly) executes malicious
logic, which then executes with all that user’s
privileges

–Limiting accessibility of objects should limit spread
of malicious logic and effects of its actions

• Approach draws on mechanisms for confinement

80March 24, 2015

Computer Security FundamentalsInformation Flow Metrics

• Idea: limit distance a virus can spread

• Flow distance metric fd(x):
– Initially, all info x has fd(x) = 0

– Whenever info y is shared, fd(y) increases by 1

– Whenever y1, …, yn used as input to compute z, fd(z) =
max(fd(y1), …, fd(yn))

• Information x accessible if and only if for some
parameter V, fd(x) < V

81March 24, 2015

Computer Security FundamentalsExample
• Anne: VA = 3; Bill, Cathy: VB = VC = 2

• Anne creates program P containing virus

• Bill executes P
– P tries to infect Bill’s program Q

• Works, as fd(P) = 0, so fd(Q) = 1 < VB

• Cathy executes Q
– Q tries to infect Cathy’s program R

• Fails, as fd(Q) = 1, so fd(R) would be 2

• Problem: if Cathy executes P, R can be infected
– So, does not stop spread; slows it down

82March 24, 2015

Computer Security FundamentalsIssues with implementing this
• Metric associated with information, not objects

– You can tag files with metric, but how do you tag the
information in them?

– This inhibits sharing

• To stop spread, make V = 0

– Disallows sharing

– Also defeats purpose of multi-user systems, and is
crippling in scientific and developmental environments

• Sharing is critical here

83March 24, 2015

Computer Security FundamentalsReduce Protection Domain

• Application of principle of least privilege

• Basic idea: remove rights from process so it can only perform
its (“advertised”) function

– Warning: if that function requires it to write, it can write anything

– But you can make sure it writes only to those objects you expect

84March 24, 2015

Computer Security FundamentalsWatchdogs

• System intercepts request to open file

• Program invoked to determine if access is to be allowed

– These are guardians or watchdogs

• Effectively redefines system (or library) calls

85March 24, 2015

Computer Security FundamentalsSandboxing

• Sandboxes, virtual machines also restrict rights

– Modify program by inserting instructions to cause traps
when violation of policy

– Replace dynamic load libraries with instrumented routines

86March 24, 2015

Computer Security FundamentalsHistory: detect file alteration

• Compute manipulation detection code (MDC) to generate
signature block for each file, and save it

• Later, re-compute MDC and compare to stored

– If different, file has changed

• Example: Tripwire (purdue ! )

– Signature consists of file attributes, cryptographic checksums
chosen from among MD5, HAVAL, SHS, CRC-16, CRC-32, etc.)

87March 24, 2015

Computer Security FundamentalsAntivirus

• Battle has been lost

• Most look for specific sequences of bytes
(called “virus signature” in file
– If found, warn user and/or disinfect file

• Each must look for known set of viruses

• Cannot deal with viruses not yet analyzed
– Due in part to un-decidability of whether a

generic program is a virus

88March 24, 2015

Computer Security FundamentalsDetect action beyond spec

• Treat execution, infection as errors and
apply fault tolerant techniques

• Example: break program into sequences of
non-branching instructions
– Checksum each sequence, encrypt result

– When run, processor re-computes checksum,
and at each branch co-processor compares
computed checksum with stored one
• If different, error occurred

89March 24, 2015

Computer Security FundamentalsN-version programming

• Implement several different versions of algorithm

• Run them concurrently
– Check intermediate results periodically

– If disagreement, majority wins

• Assumptions
– Majority of programs not infected

– Underlying operating system secure

– Different algorithms with enough equal intermediate results
may be infeasible
• Especially for malicious logic, where you would check file accesses

90March 24, 2015

Computer Security FundamentalsProof-carrying Code
• Code consumer (user) specifies safety requirement

• Code producer (author) generates proof that code meets this
requirement
– Proof integrated with executable code

– Changing the code invalidates proof

• Binary (code + proof) delivered to consumer

• Consumer validates proof

• Example statistics on Berkeley Packet Filter: proofs 300–900
bytes, validated in 0.3 –1.3 ms
– Startup cost higher, runtime cost considerably shorter

91March 24, 2015

Computer Security FundamentalsOverview

92March 24, 2015

Computer Security FundamentalsOverview

93March 24, 2015

Computer Security FundamentalsOverview

94March 24, 2015

Computer Security FundamentalsOverview

95March 24, 2015

Computer Security FundamentalsOverview

96March 24, 2015

Computer Security FundamentalsOverview

97March 24, 2015

Computer Security FundamentalsOverview

98March 24, 2015

Computer Security FundamentalsOverview

99March 24, 2015

Computer Security FundamentalsOverview

100March 24, 2015

Computer Security FundamentalsOverview

