Fundamentals of Computer Security

Spring 2015

Radu Sion

Software Errors
Buffer Overflow
TOCTTOU

Portions copyright by Bogdan Carbunar and Wikipedia. Used with permission

Why Security Vulnerabilities?

e Some contributing factors

—Few courses in computer security ©
—Programming text books do not emphasize security

—Few security audits

—C is an unsafe language

—Programmers have many other things to worry about
—Consumers do not care about security

—Security is expensive and takes time

April 7, 2015 2

I re n d S Computer Security Fundamentals

Vulnerability Disclosures Percentage of Vulnerability Disclosures
Attributed to Top 10 Vendors
2000-2009 hasad.to 1op
2009
— . 770, Top 10
R OISTT % —\ /_ Vendors: 23%

7000
6,000
5000 —
4000 —
3,000
2,000

1,000

| | I ,
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Source: IBM X-Force® B B et

April 7, 2015 3

OS Vulnerabilities

Vulnerability Disclosures Affecting Operating Systems Critical and High Vulnerability Disclosures

2005-2009 Affecting Operating Systems
2005-2009

Apple Linux SuTSoEris Microsoft BSD Py

Microsoft Apple Linux Sun Solaris BSD
120 50
45

100

40
80 35

/\% 30
60 - . \\ | o6
/ 20

40 - _ |

__ 15 —
50 — | 10
— o Ve \“___,d/%—g—’:
0 | G =7
H1 H2 H1 H2 H1 H2 HA1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2
2005 2006 2007 2008 2009 2005 2006 2007 2008 2009
Source: IBM X-Force® Source: IBM X-Force®

April 7, 2015 4

Non-malicious Errors

e How to determine of program ?
— Testing ...
— Number of faults in requirements, design and code inspections

e Example
— Module A had 100 faults discovered and fixed

— Module B had only 20
— Which one is better ?

software with more faults is likely to
have even more !!!

April 7, 2015 5

Fixing Faults

— Special teams test programs and find faults
— If no attack found, the program was OK

— Then fix faults

— Focus on fixing the fault and not its context

— Fault had side effects in other places

— Fixing fault generated faults somewhere else

— Fixing fault would affect functionality or performance

April 7, 2015 6

How many bugs/line of code

Up to 5% BPLOC!!!

Buffer Overflow Hall of Fame

overflow in fingerd
— 6,000 machines infected (10% of existing Internet)

overflow in MS-IIS web server
— Internet Information Services (lIS)
— Web server application

— The most used web server after Apache HTTP Server
— 300,000 machines infected in 14 hours

overflow in MS-SQL server
— 75,000 machines infected in 10 minutes (!!)

April 7, 2015 8

Buffer Overflow Hall of Fame (2)

overflow in Windows LSASS
— Local Security Authority Subsystem Service

e Process in Windows OS
e Responsible for enforcing the security policy on the system.

e \erifies users logging on to a Windows computer or server,
handles password changes, and creates access tokens

— Around 500,000 machines infected

overflow in Windows Server
— ~10 million machines infected

April 7, 2015 9

Memory Exploits

is a data storage area inside computer
memory (stack or heap)

—Intended to hold pre-defined amount of data

e |f executable code is supplied as “data”, victim’s
machine may be fooled into executing it

e.g. stack buffer

e Suppose Web server contains this function

void func(char *str) {GEEEECEETE,
(126 bytes reserved on stack)
char buf[126];

Strcpy (bu:E ’ Str) 7 Copy argument into local buffer

e When this function is invoked, a new frame with local
variables is pushed onto the stack

< Stack grows this way
) - -~ -\ Y J\ Y J \, v J

Local variables Pointer to Execute code Arguments
revious at this address
rame after func() finishes

April 7, 2015 11

Stack buffer (2)

e When func returns
— The local variables are popped from the stack
— The old value of the stack frame pointer (sfp) is recovered
— The return address is retrieved
— The stack frame is popped
— Execution continues from return address (calling function)

< Stack grows this way

buf

| - -\, J\ J \\ J
h g v v v

Local variables Pointer to Execute code ~ Arguments
revious at this address
rame after func() finishes

April 7, 2015 12

What if Buffer is Over-stuffed? @

e Memory pointed to by str is copied onto stack...

void func(char *str)
char buf[126];
strcpy (buf, str) ;
}

e |f astring longer than 126 bytes is copied into buffer,
it will overwrite adjacent stack locations

< Stack grows this way
buf , Topof
- stack
——
This will be
interpreted

as return address!

April 7, 2015 13

Attack 1: Stack SmaShing

e Suppose buffer contains attacker-created string

— For example, *str contains a string received from the
network as input to some network service daemon

Top of
ret
code stack
Attacker puts actual assembly In the overflow, a _
instructions into his input string, e.g., _ dppears in
binary code of the location where the system

expects to find return address

When function exits, code in the buffer will be

executed, giving attacker a shell
if the victim program is setuid root

April 7, 2015 14

Buffer Overflow Difficulties

e Executable attack code is stored on stack, inside the
buffer containing attacker’s string

— Stack memory is supposed to contain only data, but...
e For the basic attack, overflow portion of the buffer must
contain in the RET position

— The value in the RET position must point to the beginning of
attack assembly code in the buffer

— Otherwise application will give segmentation violation

April 7, 2015 15

Real Problem: No Range Checks

— strcpy() simply copies memory contents into starting from
*struntil “\O” is encountered, ignoring the size of area allocated to buf

— strcpy(char *dest, const char *src)
— strcat(char *dest, const char *src)
— gets(char *s)

— scanf(const char *format, ...)

— printf(const char *format, ...)

April 7, 2015 16

Does range ChECking hEIp?

e strncpy(char *dest, const char *src, size_t n)

— If strncpy is used instead of strcpy, no more than n
characters will be copied from *src to *dest

— Programmer has to supply the right value of n

e Potential overflow in htpasswd.c (Apache 1.3):

.. Strc py(reco rd 4 ,l,JS,,e I’); Copies username (“user”) into buffer (“record”),
st rcat(record ,),' then appends “:” and hashed password (“cpw")

strcat(record, cpw); ...

. strncpy(record,user);
strcat(record,”:”);
strncat(record,cpw,); ...

April 7, 2015 17

“Eix”?
IX ¢

Published “fix” for Apache htpasswd overflow:

.. strncpy(record, user,);
strcat(record, ”:”);
strncat(record,cpw,); ...

MAX_STRING_LEN bytes allocated for record buffer

A
~—~ —

contents of *user : contents of *cpw

AN
o pEar—

characters into buffer characters into buffer

April 7, 2015 18

Attack 2: Variable Overflow

Somewhere in the code authenticated is set only if login
procedure is successful

Other parts of the code test authenticated to provide special
access

char buf[80];
int authenticated = 0; buf overflow

void vulnerable() { 4
gets(buf);

}

April 7, 2015 19

Attack 3: Alter Pointer Variables

is invoked somewhere else in the program
This is only the definition

void func(char *s){

char buf[80];
int (*fnptr)();
gets(buf);
}
buf fnptr
Locaa,;iames Poin;;r to ExecJte code Ar;;ruments

revious at this address
rame after func() finishes

April 7, 2015 20

Alter Pointer Variables (2)

Computer Security Fundamentals

void func(char *s){

Send malicious code in

Overflow fnptr

Pass more than 80 bytes in gets

now points to malicious code

char buf[80];
int (*fnptr)();
gets(buf);
}
buf o'flow - malicious code
N Poin;:r to ExecJte code Ar;;uments

Local variables

revious at this address
rame after func() finishes

April 7, 2015 21

Attack 4: Frame Pointer

Send malicious code in
Change the caller’s

void func(char *<){ Pass more than 80 bytes in gets

char buf[80]; now points to malicious code
gets(buf); Caller’s return address read from sfp
}
v
buf o’flow - malicious code
| -~ 7\ v I\ Y I\, v)
Local variables Pointer to Execute code Arguments

revious at this address
rame after func() finishes

April 7, 2015 22

Attack 5: Integer Overflow

static int getpeernamel(p, uap, compat) {
// In FreeBSD kernel, retrieves address of peer to which a socket is connected

struct SOCW Checks that “len” is not too big

len = MIN(len, sa->sa_len);
... copyout(sa, (caddr_t)uap->asa, (u_int)len);

RN

Copies “len” bytes from
kernel memory to user space

April 7, 2015 23

Time of Check to Time of Use

—Successive instructions may not execute serially
—Other processes may be given control
control is given to other process

between access control check and access
operation

April 7, 2015 24

TOCTTOU Example

Path to file

int openfile(char *path) { <«
struct stat s;

f (stat(path. &s) < 0) _ Extract file meta-data

return -1, -

if (S_ISRREG(s.st_mode)) { Between check and open
erro "onIy allowed to regular files"); attacker can Change path
return -1; < Initial path is regular file

} Later path is not

return open(path, O_RDONLY); Adversary by-passes security

} \\
Open file

No symlink, directory, special file

April 7, 2015 25

TOCTTOU Defense

“owns” path

IS atomic
— No pre-emption during its execution

— Compute checksum of path before pre-emption
— Compare to checksum of path after ...

April 7, 2015 26

Use in Combination

e (Can be used together

— Use buffer overflow to disrupt code execution
— Use TOCTTOU to add a new user to system
— Use incomplete mediation to achieve privileged status

April 7, 2015 27

