
CSE392/ISE331
Web Security Goals

&
Workings of the Web

Nick Nikiforakis
nick@cs.stonybrook.edu

Goals of Web Security

• Safely browse the Web

– A malicious website cannot steal information from or
modify legitimate sites or otherwise harm the user…

– … even if visited concurrently with a legitimate site -
in a separate browser window, tab, or even iframe on
the same webpage

• Support secure Web applications

– Applications delivered over the Web should have the
same security properties we require for standalone
applications (what are these properties?)

2

All of These Should Be Safe

• Safe to visit an evil website

• Safe to visit two pages

at the same time

• Safe delegation

3

Security Vulnerabilities in 2011
Source: IBM X-Force

4

Two Sides of Web Security

• Web browser
– Responsible for securely confining Web content

presented by visited websites

• Web applications
– Online merchants, banks, blogs, Google Apps …

– Mix of server-side and client-side code
• Server-side code written in PHP, Ruby, ASP, JSP… runs

on the Web server

• Client-side code written in JavaScript… runs in the Web
browser

– Many potential bugs: XSS, CSRF, SQL injection
5

Where Does the Attacker Live?

Browser

OS

Hardware

website

Web
attacker

Network
attacker

Malware
attacker

6

Web Threat Models

• Web attacker

• Network attacker
– Passive: wireless eavesdropper

– Active: evil Wi-Fi router, DNS poisoning

• Malware attacker
– Malicious code executes directly on victim’s

computer

– To infect victim’s computer, can exploit software
bugs (e.g., buffer overflow) or convince user to
install malicious content (how?)
• Masquerade as an antivirus program, video codec, etc.

7

Web Attacker

• Controls a malicious website (attacker.com)
– Can even obtain an SSL/TLS certificate for his site ($0)

• User visits attacker.com – why?
– Phishing email, enticing content, search results, placed

by an ad network, blind luck …

– Attacker’s Facebook app

• Attacker has no other access to user machine!

• Variation: “iframe attacker”
– An iframe with malicious content included in an

otherwise honest webpage
• Syndicated advertising, mashups, etc.

8

Dangerous Websites

• Microsoft’s 2006 “Web patrol” study identified
hundreds of URLs that could successfully exploit
unpatched Windows XP machines
– Many interlinked by redirection and controlled by the

same major players

• “But I never visit risky websites”
– 11 exploit pages are among top 10,000 most visited

– Trick: put up a page with popular content, get into
search engines, page then redirects to the exploit site
• One of the malicious sites was providing exploits to 75

“innocuous” sites focusing on (1) celebrities, (2) song lyrics,
(3) wallpapers, (4) video game cheats, and (5) wrestling

9

Before we break the web

• We must first understand how it works

• Questions that need to be answered:

– How the browser works?

– What happens when we type a URL and hit
“Enter”?

– How does Facebook remember who I am?

– …

10

Browser and Network

Browser

Network
OS

Hardware

websiterequest

reply

11

12

DNS

• istheinternetonfire.com does not mean
anything to a computer

• So first your browser needs to find the IP
address belonging to that domain name
– Exact DNS workings are outside the scope of this

lecture (will come back to it in the future)

– That said, the resolution of a domain name is an
iterative procedure starting from your local
machine potentially reaching to the DNS root
servers that hold the Internet together

13

The answer from nslookup

nslookup istheinternetonfire.com

Server: 97.107.133.4

Address: 97.107.133.4#53

Non-authoritative answer:

Name: istheinternetonfire.com

Address: 166.84.7.99

14

Next step

• Now that your browser knows the address, it
can open a socket to that IP address and start
sending information

• What port is the webserver listening on?
– By default port 80

• What kind of information do we send the
server?
– We send a request for the main page using the

HTTP protocol and the GET method
15

HTTP request

GET / HTTP/1.1
Host: istheinternetonfire.com
Proxy-Connection: keep-alive
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,i
mage/webp,*/*;q=0.8
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/38.0.2125.104 Safari/537.36
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-US,en;q=0.8

16

HTTP Requests

• A request has the form:

• HTTP supports a variety of methods, but only two
matter in practice:
– GET: intended for information retrieval

• Typically the BODY is empty

– POST: intended for submitting information
• Typically the BODY contains the submitted information

<METHOD> /path/to/resource?query_string HTTP/1.1
<header>*

<BODY>

17

HTTP response
HTTP/1.1 200 OK

Date: Tue, 21 Oct 2014 16:21:44 GMT

Server: Apache/2.2.25 (Unix) mod_ssl/2.2.25 OpenSSL/1.0.1h PHP/5.2.17

Last-Modified: Tue, 21 Oct 2014 15:37:09 GMT

ETag: "3aaa5c-850-505f09ab7f211"

Accept-Ranges: bytes

Content-Length: 2128

Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html><head>

<title>Is The Internet On Fire?</title>

<meta http-equiv="content-type" content="text/html; charset=UTF-8">

<link rev="made" href="mailto:jschauma@netmeister.org">
18

HTTP Responses

• A response has the form

• Important response codes:
– 2XX: Success, e.g. 200 OK

– 3XX: Redirection, e.g. 301 Moved Permanently

– 4XX: Client side error, e.g. 404 Not Found

– 5XX: Server side error, e.g. 500 Internal Server Error

HTTP/1.1 <STATUS CODE> <STATUS MESSAGE>
<header>*

<BODY>

19

Browser consumption of response

• The browser gets the response and starts
consuming it
– Drawing on the screen according to the HTML

code that was present in the response from the
web server

• <u>Lalala</u>

• <hr>

• Cool site!

20

http://a.com/

21

Automatic loading of remote resources

• As the browser is parsing the HTML, whenever it finds a
reference to a remote resource, it will automatically make
a request to get it:

• Images
–

• Cascading Style sheets
– <link rel="stylesheet" type="text/css" href="default.css"/>

• Scripts (more on that later)
– <script src=“http…”></script>

• Frames/iframes
– <iframe src=“http…”></iframe>

22

http://foo.com/a.jpg
http://securitee.org/default.css

Where are we at?

• We can ask for pages, and we get back
responses

• We can click on links, which will generate GET
requests, and navigate around

• Question

– How about personalization?

– How does a site know that we are logged in?

23

Let’s look at a login form

<form method=“POST” action=“login.php”>

Username:

<input type=“text” name=“username”/>

Password:

<input type=“password” name=“password”/>

<input type=“submit”/>

</form>

24

Let’s look at a login form

• Let’s assume that the user is typing “admin” for
username and “letmein” for a password

• The browser will emmit a “POST” request, as
Instructed by the programmer

25

HTTP POST request

POST /login.php HTTP/1.1
Host: in.gr
Proxy-Connection: keep-alive
Content-Length: 31
Cache-Control: max-age=0
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Origin: null
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/38.0.2125.104 Safari/537.36
Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip,deflate
Accept-Language: en-US,en;q=0.8

username=admin&password=letmein
26

Server-side

• The webserver receives this request, passes it to
a web application and then the web application
checks to see whether such a user really exists
– Typically in a database, present on the same machine

or on other dedicated servers

• Assume that the username and password are
correct. Now what?
– We will give the proper page to the user (e.g. wall/list

of emails/banking page,etc.)

– How will we remember the user in the next request?

27

No state

• HTTP is, by design, stateless
– There’s nothing baked in the protocol to identify

one request as part of sequence of other requests

• You can try to do it by IP address, but that’s
not going to work well
– Network Address Translation

– DHCP

– Mobile devices

28

Let’s have some state

• There are more than one ways of introducing
state, but the most popular (by far) is through
the use of Cookies

• Cookie: A small piece of data sent by the
webserver to browsers, which the browsers
are to include to all their subsequent requests
to that server.

29

What Are Cookies Used For?

• Authentication
– The cookie proves to the website that the client

previously authenticated correctly

• Personalization
– Helps the website recognize the user from a

previous visit

• Tracking
– Follow the user from site to site; learn his/her

browsing behavior, preferences, and so on

30

Browser

Cookie-based Session Management

Server

Request example.com/index.html

Response Set-Cookie: SID=12345

Request example.com/login.html
Cookie: SID=12345

Response

Request example.com/login.php
Cookie: SID=12345

Response

Cookie Jar

example.com
SID=12345

Session Store

12345
auth: false
auth: true
user: Bob

31

Sessions

• As long as different users have different
session identifiers (present in their cookies),
the web server will be able to tell them apart
– Regardless of their IP address

• When users delete their cookies, the browsers
no longer send out the appropriate session
identifier, and thus the web server “forgets”
about them

32

Session Identifiers

• Long pseudo-random strings

• Unique per visiting client

• Each identifier is associated with a specific
visitor

– ID A -> User A

• As sensitive as credentials (per session)

33

One missing piece

• We can create websites

• And we can have state, enabling us to have a
personalized web

– Banking ,Email, Social networks, etc.

• But our pages are still static

– The server sent some HTML, the browser drew it
on the screen, and that’s it

34

JavaScript

• “The world’s most misunderstood programming
language”

• Language executed by the Web browser
– Scripts are embedded in webpages

– Can run before HTML is loaded, before page is viewed,
while it is being viewed, or when leaving the page

• Used to implement “active” webpages and Web
applications

• A potentially malicious webpage gets to execute
some code on user’s machine

35

JavaScript History

• Developed by Brendan Eich at Netscape
– Scripting language for Navigator 2

• Later standardized for browser compatibility
– ECMAScript Edition 3 (aka JavaScript 1.5)

• Related to Java in name only
– Name was part of a marketing deal

– “Java is to JavaScript as car is to carpet”

• Various implementations available
– SpiderMonkey, RhinoJava, others

36

Common Uses of JavaScript

• Page embellishments and special effects

• Dynamic content manipulation

• Form validation

• Navigation systems

• Hundreds of applications

– Google Docs, Google Maps, dashboard widgets
in Mac OS X, Philips universal remotes …

37

JavaScript in Webpages

• Embedded in HTML as a <script> element

– Written directly inside a <script> element

• <script> alert("Hello World!") </script>

– In a file linked as src attribute of a <script> element

<script type="text/JavaScript" src=“functions.js"></script>

• Event handler attribute
<a href="http://www.yahoo.com"

onmouseover="alert('hi');">

• Pseudo-URL referenced by a link
Click me

38

Document Object Model (DOM)

• HTML page is structured data

• DOM is object-oriented representation of the
hierarchical HTML structure

– Properties: document.alinkColor, document.URL,
document.forms[], document.links[], …

– Methods: document.write(document.referrer)

• These change the content of the page!

• Also Browser Object Model (BOM)

– Window, Document, Frames[], History, Location,
Navigator (type and version of browser) 39

Browser and Document Structure

40

Reading Properties with JavaScript

Sample script

– Example 1 returns "ul"

– Example 2 returns "null"

– Example 3 returns "li"

– Example 4 returns "text"
• A text node below the "li" which holds the actual text data as its value

– Example 5 returns " Item 1 "

1. document.getElementById('t1').nodeName

2. document.getElementById('t1').nodeValue

3. document.getElementById('t1').firstChild.nodeName

4. document.getElementById('t1').firstChild.firstChild.nodeName

5. document.getElementById('t1').firstChild.firstChild.nodeValue

<ul id="t1">
 Item 1

Sample HTML

41

Page Manipulation with JavaScript

• Some possibilities

– createElement(elementName)

– createTextNode(text)

– appendChild(newChild)

– removeChild(node)

• Example: add a new list item
var list = document.getElementById('t1')

var newitem = document.createElement('li')

var newtext = document.createTextNode(text)

list.appendChild(newitem)

newitem.appendChild(newtext)

<ul id="t1">
 Item 1

Sample HTML

42

All the functional pieces are in place

• Now we can create personalized and dynamic
websites. Yay!

• But what about security?

– How do we stop websites from snooping around
in each other’s business?

• An example with frames

43

securitee.org

iframe with src equal to
https://www.cs.stonybrook.edu/members-only

44

Problems?

• If there are no restrictions, securitee.org could
use the DOM to dive into
https://www.cs.stonybrook.edu/members-
only and

1. Extract details

2. Make requests in the name of the user

3. Inspect the responses

45

https://www.cs.stonybrook.edu/members-only

Content in the Browser

• Origin-based separation of documents
– Naturally enforced by the Same-Origin Policy

– Allows you to separate sensitive parts and non-sensitive
parts

– Prevents unintended sharing of information

– Prevents escalation of successful attack

SAME-ORIGIN POLICY

Content retrieved from one origin
can freely interact with other
content from that origin, but
interactions with content from
other origins are restricted

ORIGIN

The triple <scheme, host,
port> derived from the
document’s URL. For
http://example.org/forum/,
the origin is <http,
example.org, 80> 46

47

Examples of the Same-Origin Policy

SAME-ORIGIN POLICY

Content retrieved from
one origin can freely
interact with other
content from that origin,
but interactions with
content from other
origins are restricted

example.com

example.com
example.com

private.example.com

forum.example.com

private.example.com

48

Domains vs Subdomains
• Subdomains

– E.g. private.example.com vs forum.example.com

– Considered different origin

– Possibility to relax the origin to example.com using
document.domain

– Possibility to use cookies on example.com

• Completely separate domains
– E.g. private.example.com vs exampleforum.com

– Considered different origin, without possibility of
relaxation

– No possibility of shared cookies

49

Subdomains and Domain Relaxation

www.example.com

private.example.com

forum.example.com

account.example.com

50

Subdomains and Domain Relaxation

www.example.com

private.example.com

forum.example.com

account.example.com

document.domain = “example.com”;

DOMAIN RELAXATION

51

Subdomains and Domain Relaxation

www.example.com

private.example.com

forum.example.com

account.example.com

document.domain = “example.com”;

DOMAIN RELAXATION

52

So, what’s left?

• Same-Origin Policy has our backs, right?

– It will stop attacker.com from looking into the
DOM, requests, and responses.

– No malicious website can steal a user’s data,
right?

• Wrong!

53

