ISE331: Fundamentals of Computer Security

Spring 2015

File Systems Security
Encryption File Systems

© 2005- 15
anarayana and K. Th g
ine public f ormatio ces

Encryption File Systems (EFS)

What is an encryption file system?

Alternatives

B Crypt

Stores plain files during editing

Need to supply the key several times
B Integrated security in applications
Goals

B Security

B Usability

B Performance

Fundamentals of Computer Security

Goals of EFS

B Security

1 Privacy
B On disk
B On wire

1 Integrity
[0 Authentication
[0 Authorization

Fundamentals of Computer Security

Goals of EFS

B Usability
[d Convenience
[l Transparency
B User
B Applications
B Performance
[0 Encryption
[0 Integrity checking

[0 Costs with indirection
B Copying data
B Context switching (user land vs. kernel)

Fundamentals of Computer Security

Challenges in EFS

Key Management
B Storage of keys
[0 On disk

[In memory
B Swapped out pages

B Sharing of keys
0 Group management
B Key compromise

[0 Re-encrypt files
m Costly
N Givr?s adversary two versions of same file to work
wit
B Key revocation

Fundamentals of Computer Security

Challenges in EFS

Utility services

B Backup - possible after encryption ?
B File system checker

B De-fragmentation

Random access

B Cannot use stream ciphers
Reduces strength of privacy
B Use block encryption

May leak information
B Frequency analysis

Fundamentals of Computer Security

Challenges in EFS

Forward Secrecy

B Data is persistent - “sitting duck effect”
[0 Strong encryption
® Long keys
[0 File specific keys
[0 IV or Block specific encryption
B Granularity of encryption
0 All or nothing
O Per file encryption

Fundamentals of Computer Security

Agenda

CFS

[CFS

Cryptfs
NCryptfs
eCryptfs
Microsoft EFS

Fundamentals of Computer Security

CFS - Cryptographic File System

[0 First system to push encryption services in the File
System layer

O Implemented in the User Layer
B No kernel recompilation required
B Portable

Standard Unix FS API support

Can use any file systems as its underlying storage

O 0O O

Transparent encryption

0 All or nothing encryption

Fundamentals of Computer Security

CFS

Data Flow in
Standard Vnode
File System

Fundamentals of Computer Security

P mmmm
|
: Userl-Le*lfel Any
| Application Program
|
L - - — — - &] - - - =
System Calls
R
|
I
: Unix Sys. Call !nterfa::e
| Kernel '
|
| (local) FS Client
I [}
I
File System Inteface
Cleartext
(local or remote)
PR i
|
| FS Svr. Interface
| File -.
| System <
: (local or remote) Storage

10

r-r———-—--"—-—"-—"—-—" - - - - - - - === 7= 1
| |
C FS : ;J\selr'l-LeT.rel Any :
| pplication Program |
| |
L - - - - - e] - |
System Calls
Data Flow in NFS N A |
Client and server ' Uniix Sys. Call Interface | |
| |
| Kernel |
| |
' (local) FS Client |
NFS Client | |
L - - - - - - - - _d_____ |
i RPC
Auth: uid/gid
/9 ¥DR Network
NFS Server |, @ |
| FS Svr. Interface | |
| File . |
| System — :
' (local or remote) Storage !
| Media |
:____________j'_‘_t—_‘_____:

Fundamentals of Computer Security

11

CFS

EIIITIIIIII I

o

-1

S

-

|1 CFS

CFSD: | Daemon —

3 Encryption:

H

=

i deteielbefoetosiibefostoaiotbetoaonts

System Calls

R
|
|
| Unix Sys. Call |
| Kernel |
|
| (local) FS Client
| [
L]

File System Inteface

Cleartext

(internal - localhost)

MFS Svr. Interface

Decryption Engine

File System Inteface

Encrypted
(local or remote)

r-r———-—--"—-—"-—"—-—" - - - - - - - === 7= 1
| |
: iselr'l-Let}rel Any :
| Appiication Program |
| |
L - - - - - e] - |
System Calls
r-r———- - -—"—-—"-"“—-—" - - == - - = 1
| |
I I
: Unix Sys. Call !nterface :
| Kernel ' |
| |
' (local) FS Client |
[1 [
L - - - - - - - - _d_____ |
Level of Indirection
- - e 1
| |
| FS Svr. Interface | |
| File] |
| System — = :
' (local or remote) Storage !
| Media |
[T [
L e e e e e e e ____1

Fundamentals of Computer Security

CFS

CFSD - a modified NFS server

B Supports all normal NFS RPCs
B Provides additional RPCs
B Accepts RPC from localhost only

No modification to NFS client

Start CFSD at boot time

B Mount /cryptfs
0 A virtual file system

Fundamentals of Computer Security

13

CFS

Attach a cryptographic key to a
directory

S cmkdir /usr/mab/secrets
Kevy: (user enters passphrase, which does not echo)

Again: (same phrase entered again to prevent errors)

S

Directory can be local or remote

Fundamentals of Computer Security

14

CFS

Attach an encrypted directory

S cattach /usr/mab/secrets matt
Key: (same key used in the cinkdir command)

s Is -l /crypt

total 1

drwx------ 2 mab 512 Apr 1 15:56 matt
S echo "murder" > /crypt/matt/crimes

S Is -1/crypt/matt

total 1

-rw-rw-r-- 1 mab 7 Apr 1 15:57 crimes

Key verified by using a special file in
directory encrypted by the hash of the key

Fundamentals of Computer Security

15

CFS

Detach an encrypted directory

S cdetach matt
S Is-l/crypt

total O
Additional commands
B chame
B ccat

Fundamentals of Computer Security

16

CFS - Security

Uses DES in ECB - why ?

Uses pass phrases
B Keyl
[0 Long Bit Mask (Prevent structural analysis)
H Key 2
0 Encrypt blocks in ECB mode
IV

Prevent structural analysis across files
XORed with each block

No Chaining

Stored in GID (High security mode)

Fundamentals of Computer Security

17

CFS - Security

Filenames are encrypted and encoded
in ASCII

B increases size of file names

An attach can be marked “obscure”
B security through obscurity

File sizes, access times and structure

of directory hierarchy is not
encrypted

Fundamentals of Computer Security 18

CFS - Performance

Data is copied several extra times

Application
-> kernel
-> CFS daemon (User Layer)
-> back to the kernel
-> underlying file system.

No write cache, only read caches

Fundamentals of Computer Security

19

TCFS - Transparent CFS

Implemented as a modified kernel-
mode NFS client

B Kernel module recompilation required
B User level tools recompilation required

Fundamentals of Computer Security 20

|
TC FS : User-Level Any
| Application Program

|
U -
System Calls
Y T
| |
' Unix Sys. Call Interface | |
| |
mountd | Kernel |
joctl | , |
' (local) FS Client |
TCFS NFS Client !
RPC
XDR Network
NFS Server v k
xattrd | FS Svr. Interface | |
| File] |
: System = :
' (local or remote) Storage !
| Media |
:_____________;__'_____'_____:

Fundamentals of Computer Security

TCFS - Operation

Server exports a directory
B /etc/exports
/exports bar(rw,insecure)
NFS server not modified
Client mounts a remote dir with type “tcfs”
mount -t tcfs foo:/exports /mnt/tcfs
A modified mount command in nfs-utils

Encrypted files are set with special attribute
B A modified xattrd

User master key must be set to access files

Fundamentals of Computer Security 22

TCFS - Operation

Password:

jack$ cd /mnt/tefs
jack$ tefsflag +X first

jack$ cat first
Hello World!

jack$ cp first second

jack$ tefsrmkey -p /mnt /tefs
jack$ cat first
permission denied

jack$ cat second
Hello World!

jack$ tefsputkey -m /mnt /tefs

jack$ echo "Hello World!” > first

Jack starts his session

giving his login password

now, Jack can encrypt/decrypt and access
transparently to encrypted files.

the file "first™ is still in clear

toggles first’s cryptographic flag

now it is stored encrypled

all standard application can access
encrypted files

while Jack’s key is available to the kernel

can be read,
copied and so on..
the file "second”™ is stored in clear

Jack removes his master key from the kernel

since the master key has been remouved,
access Lo encrypted files is not
allowed.

second is shill in clear, TCFS session
has no effect on clear files

Fundamentals of Computer Security

23

TCFS - Key Management

Raw key management

B New ioctls recognized by client

B Provides basis for other schemes
Basic Key Management

B The key database
/etc/tcfspwdb

B sysadmin registers a user

root# tefsadduser

Username to add to TCFS database: jack
Ok now jack has an empty entry in the key db

Fundamentals of Computer Security 24

TCFS - Key Management

User creates a master key

jack$ tefsgenkey

Insert your password, please: give his login password
Press 10 random keys, please:; RiHR##kdskak seed
Key succesfully generated. now jack’s enty in the key db contains his

master key, ecrypted with his login password

sysadmin can remove a user

root# tefsrmuser -u jack

Fundamentals of Computer Security 25

TCFS - Key Management

'he Kerberized Key Management
Scheme

Kerberos
Request ticket Server
icket for TCFSKS
: TCFS Key
Client Server
NFS Server

Fundamentals of Computer Security

TCFS - Key Management

'he Kerberized Key Management
Scheme

Kerberos
Server
Request master key R
! TCFS Key
lent
Client Encrypted master key Server
NFS Server

Fundamentals of Computer Security

TCFS - Key Management

'he Kerberized Key Management
Scheme

Kerberos
Server

TCFS Key

Client
Request file Server

NFS Server

Fundamentals of Computer Security

TCFS -
Group/Threshold Sharing

Key Management

B Similar to secret splitting
B sysadmin creates a group

tcfsaddgroup —g <group>
of users
name of users
threshold
password

B User activates a group

tcfsputkey —g <group>
tcfsrmkey -g <group>

Fundamentals of Computer Security

29

TCFS - Encryption

Multiple cipher support
File specific key
File header
m file specific key
B cipher
Block encryption
B block key
[0 Hash(File Key || Block no)
B Protection against structural analysis
B Authentication tag
[0 Hash(Block data || block key)
[0 Detect data change/swap

Fundamentals of Computer Security

30

TCFS - Encryption

iﬂle header (fh) iblock 1no. (bn)
master oDk 1 file &
key (mk) D =D(mk.fh file e}i Hash
file key
bk=Hash(fk . bn)
block key key len
Y
E(bk.blk)
encrypted block + & E ™
block hash (e—blk) 1008 bytes
1024 bytes block data
- o in clear (blk)
f Hash~
Hash(blk . bk) Bl

Figure 3: Encryvption of blocks in TCES

Fundamentals of Computer Security

31

TCFS - Performance

Less overhead than CFS
B data copied fewer times

Random access is slower

RTT for remote attribute checking
makes is slower than vanilla NFS

Fundamentals of Computer Security

32

Cryptfs: A Stackable Vnode Level

Encryption File System

User Space

Process

Kernel Space

A layer of abstraction

Virtual File System (VFS)

FAT

Ext2

NFS

Fundamentals of Computer Security

33

Cryptfs

VNodes

B open file, directory, device, socket

B Higher layers access all entities uniformly
VNode stacking

B Modularize file system functions

Fundamentals of Computer Security 34

cryptfs read (V}\

(cRYPTFSLAYER) (VNODE LAYER)

4

vn read/()

L.
User Process g
| ‘lread () :)
2 vn readf()
— —
<
L.
5 \L ufs read() @
(ws) X

A stackable Vnode interface

G »L disk dev read()

Local Disk

P
- =
Sy

Fundamentals of Computer Security

35

Cryptfs — Key Management

Root mounts an instance of Cryptfs
Jser passphrases
Jser Key = MD5Hash(passphrases)

Special ioctl to manage keys
B set/reset/delete keys

wo modes of operation
B Key lookup on user id alone

Fundamentals of Computer Security

36

Cryptfs — Key Management

B Key lookup on <user id, session id>

[0 What is a session? Unix sessions!

[0 Protected again user account compromise
Keys associated with real UID, not
effective ones

Groups

B Decouple from unix groups

B Must share the key

B Use multiple keys in different sessions

Fundamentals of Computer Security 37

Cryptfs — Security

[0 block size = page size
O Cipher: Blowfish
B Does not change the size of file
0 Mode: CBC
B Only inside a block/page
B Limits dependency between blocks
m Allows random access
One IV per mount
No file specific key
Encrypt file and directory names

B uuencode
[0 3 bytes of binary = 4 bytes of ascii (44-111)
0 File names become 33% longer

B Checksums for filenames

OooOood

Fundamentals of Computer Security 38

Cryptfs: write bytes 9000-25000

9000 25000
0 8K \ 16K "’4K—‘ 32K
Page 0 Page 1 Page 2 Page 3
o Original bytes to write |
Interposing S e |
Layer Read 1:.and:decode Reqdfi and demde

—F.—:-—d—
Bytes read. decﬂded and dls.mIded
FI—I*—

Final pages to encrypt

Actual bytes to write .

Interposed Layer

Fundamentals of Computer Security 40

Cryptfs

Works on top of any native FS
No other daemons required
Portable
B Exceptions

[0 Exporting symbols

[0 Modifications to FS data structure
Kernel resident
B Kernel memory is difficult to get at

[0 vs.:CFS stores in user level memory
B Fewer context switches than CFS and TCFS

Fundamentals of Computer Security

41

NCryptfs

Advanced version of Cryptfs

Attachments
B A single mount operation

under “/mnt/ncryptfs”

B “Attach” an encrypted directory

nc_attach -c blowfish /mnt/ncryptfs mail /home/kvthanga/mail
% Enter key:

Fundamentals of Computer Security 42

NCryptfs

Mounts

Attaches

Done by the superuser
- modify /etc/fstab

Can be done by any user
- A light weight mount

Encrypted directories can be
mounted on any other directory

Attaches are created only under
/mnt/ncryptfs

May execute many mount
commands

One mount to mount
/etc/ncryptfs

Directory mounted on must
already exist

No directories or files can be
created on /etc/ncryptfs

- Entries created in dcache

May hide underlying dirs

Does not hide any underlying
data

OS have hard limits for mounts

No limits

Fundamentals of Computer Security

43

NCryptfs

Attachments

B Encryption key
B Authorizations
B Active Sessions

Fundamentals of Computer Security

44

NCryptfs

B Encryption key

0 Long lived key for
B Data
B File names
= checksums

No file specific key
Created from hash of user passphrase

Key related data is “pinned” in memory
B Pages with keys are not swapped

0 Support multiple ciphers

0 CFB - Cipher feedback mode of operation
B File size does not change

O O O

Fundamentals of Computer Security

45

NCryptfs

Players

B System Administrator
[0 Mounts NCrytpfs

[0 Installs the NCryptfs kernel and user-space
components

B Owners
[0 Controls encryption key
[0 Delegates access rights

B Reader & Writers
[0 Don’t have the encryption key

Fundamentals of Computer Security 46

NCryptfs

Authorizations

B Gives an entity access to an attach

B Entity

process, session, user or group

B Create an authorization

Entity selects a passphrase

Sends salted MD5 hash of it to owner

B Entity does not have to share passphrase with
owner

B What is a salted MD5 hash?
Owner adds hash to configuration file

Fundamentals of Computer Security 47

NCryptfs

B Use an authorization

nc_auth /mnt/ncryptfs mail

[0 Creates a session

Active sessions
B Entity
B Permissions granted to the entity - bitmask

[0 Unix permissions
B Read, Write, Execute

Fundamentals of Computer Security

48

NCryptfs

[0 Detach

[0 Add an Authorization

[0 List Authorizations

[0 Delete an Authorization
[0 Revoke an active session
[] List active sessions

[0 Bypass VFS Permissions

Fundamentals of Computer Security

49

NCryptfs

Attach access control
B Attach - default everyone
B Authentication

Attach names
B User specified

B NCryptfs
[0 u<userid>s<sessionid>

[0 Random name
B Prevents namespace clash

Fundamentals of Computer Security

50

NCryptfs

Groups

B Supports native groups
[0 has to be setup ahead of time
B Support ad-hoc groups

[still need permission to modify low level
objects

B Use Bypass VFS permission

Fundamentals of Computer Security

51

NCryptfs

Bypass VFS permission
sys unlink { /* system call service routine */
vis unlink { /* VFS method */
call nc permission ()
if not permitted: return error

nc unlink { /* NCryptts method */
current->fsuid = owner’s call nc perm preop () /* code we added */
vfs unlink { /* VFS method */

call ext2 permission/()
if not permitted: return error

call ext2 unlink () /* EXT2 method */
/* end of mner vis_unlink */
Restore(current->fsuid) ¢a]l ne perm fixup () /* code we added */
} /* end of nc_unlink */
} /* end of outer vis_unlink */
} /* end of sys_unlink */

Fundamentals of Computer Security

NCryptfs

[0 Timeouts

B Active sessions
[0 permission denied
O new file opens fail
O new file open suspends process until re-authentication
[0 all operations suspend process until re-authentication
B Authorizations
[0 new uses can’t create new sessions
[0 old sessions may continue
B Keys
O key is deleted or
[0 use denied for new files

B User space timeout callbacks

Fundamentals of Computer Security

53

NCryptfs

Revocation
B Similar to timeout
B Can re-authenticate

Portability

B Modification to task structure

0 On-exit callbacks
B delete keys
B memory resources

[0 Challenge response authentication
B Cache clearing

Fundamentals of Computer Security

54

eCryptfs from IBM

COMotivation/ Problem
[OHistory and Overview
CeCryptfs solutions
[IDesign overview
[1Design Details

[IKey management
LOVFS operations
OUsing eCryptfs
COOFuture enhancements

Motivation

C0Confidentiality when outside host operating
environment.

[JEasy to use secure data store.
[dConvenient backup procedures.
[OKey retrieval.

CIntuitive — minimal learning by users.
[1Policies and owners.

[JCost of technology and adoption.
OKnowledge and extent of risks

History/ Overview

CODerived from Erez Zadok’s cryptfs (FIST
framework).

COPart of Linux from version 2.6.19 onwards.
COEncryption at file level.

CIFile contains metadata for decryption.
[ONative kernel FS (POSIX)- no need for patches.
[0Seamless security - data encryption on the fly
[0Seamless key mgmt - Linux kernel keyring.
COIncremental development - current ver 0.1.

Why a new thing ?

[1 extends Cryptfs to provide advanced key
management and policy features

[] stores cryptographic metadata in the header
of each file written, so that encrypted files can
be copied between hosts

] the file will be decryptable with the proper
key, and there is no need to keep track of any
additional information aside from what is already
in the encrypted file itself.

eCryptfs from IBM

O]

]

CeCryptfs solutions
[IDesign overview
[1Design Details

[IKey management
LOVFS operations
OUsing eCryptfs
COOFuture enhancements

eCryptfs solutions

COConfidentiality - Integration of security into FS
(Lotus Notes analogy of secure transmission)

[JEase of deployment — No kernel modifications,
No separate partition, per-file meta data

COTPM utilization- generate key pair for session
key encryption.

[OKey Escrow usage. (Author’s suggestion)
[JEasy Incremental backups.
CLower File System independent.

Design overview

Kernel . Userspace
AES-128 i
: ecryptfsd
Crypto API
Key Module API
(netlink) TPM OpenSSL
eCryptfs

== 3| Application

VFS |«

jfs |ext3

eCryptfs from IBM

O 0O O O

[1Design Details

[IKey management
LOVFS operations
OUsing eCryptfs
[OFuture enhancements

Details: enc/decrypt individual data extents

| e e |
 eCryptfs "
E eCryptfs File E
v Metadata | @ Lo e eeeeepmm e !
S U I — :
v |Cipher| ... [FEK Data Data ;
; A Extent Extent :

P L L L L L L R] L N 4
(data) (key) (data) (data)

ey [FEK Encrypt/Decrypt
FEKEK > Mechanism Crypto API
File Encryption Key A A A

Encryption Key oo e .
(FEKEK) i ext3/jfs/... E

E Lower File :

N EEEEE N[AR S ;

E Flags| EFEK| ... |Encrypted|Encrypted E

N N R Data Data ;

' Header Extent Extent '

Design Details

Dain Crypto Contaxt | InRislbation Encryptad inttiwlbxwiinn Encrypbsd

CFile format — Follows OpenPGP format
EDeviation for PGP - Encryption on extents
BEach extent has unique IVs.

BSome extents contain only IVs for data extents
mSparse file support - fill encrypted Os
BCBC block cipher for extents

Design Details (Contd..)

Page O:
OJctets O-7: Unencrypted file =izZe
Jctets 8-15: elryptfz specizel marker PGP
Jctets 18-1%: Flags .
Octet 16: File format wersion number {(between ¢ and 255) Flle
Jctets 17-18: Rezerved
Jctet 15: Bit 1 {lsh): Reserved header
Bit 2: Encrypted?
Bits 3-8: Reserved format
Octet 20: Begin RFC 2440 suthentication token pecket =et
FPage 1:
Extent O (CBC encrypted)
Page 2:

Extent 1 (CBC encrypted)

CFile format (contd)
mPage 0- Header, Page 1-n: Data + Extent.
EBytes 0-19- Standard information for file.
BMarker- 32 bit number for uniquely identification
mByte 20 onwards
[0Set of all authentication tokens for the file
COEncrypted File Encryption Key

Design Details (Contd..)

OKernel Crypto API

BIn kernel encryption - faster

BAny symmetric cipher supported by cryptoAPI
OIV (Initialization Vector)

BAvoid risk of cryptanalysis- unique IV for extents

mInitial IV - MD5 sum of file encryption key (Kg)
OIntegrity verification

BKeyed hash over extents using Ky

BGenerate hash whenever data changes

mVerify during read, assert hash verifies.

Design Details (Contd..)

OIn-memory Cryptographic Context - Stored in
user session’s keyring.

BSession key for the file.

BEncryption status.

Hcrypto API context — cipher, key size, etc

EmSize of the extents.

[IKey revocation

BAcquire the passphrase and the session key
from it.

BMRegenerate a new session key and encrypt all
data once again.

Design Details (Contd..)

[1Is a stackable FS
BDoes not write directly onto block device.
BEach VFS object maps onto a lower object.
BAny POSIX compliant FS can act as a lower FS.

COVFS objects’ private data holds:
BThe reference to lower objects.

mCurrent context required for encryption/
decryption.

eCryptfs from IBM

O O0O0o0aod

[IKey management
LOVFS operations
OUsing eCryptfs
[OFuture enhancements

In

memory context in the inode

_"'n.rl'.l T

Type

Jr:"n'.Hr'."."jrjl'."r'rr.'

lock

Mutex

Mutex for crypt stat ohject

root Jv

vite Array

['he root mitialization vector

v

dvte Array

The current cached initialization

vecthor

Loy

Bvite Arrav

The file encryption key

cipher

Bvte Array

Iernel crypto API cipher descrip-

tion string

Authentication
token

Bvte Arrav

H'_'n_’;:'_.--_[';:r for authentication to-

ken associated with the inode

flags

Bit vector

Status flags (encryvpted, ete.)

1w hvtes

Integer

Length of TV

nurn_header_pages

Integer

Number
file

of header pages for lower

extent_size

Integer

Number of byvtes i an extent

kev_size_bits

Integer

Length of file encryption key in

l\.'[-\.;

Crypto API Context

Bulk data crypto context

Crypto API Context

MD5 ervpto context

Key management

OSupports all ciphers and key sizes of cryptoAPI
ODefault AES-128

User mode

Kernel mode

User passphrase

+ Salt

Random number
generator

Authentication
MD5 hash token i
R 64K times File header
AT
N byte File Encrypt using
Encryption Key | Authentication | File header
FEK Token

Key management (Contd...)

LIEncryption
mAuthentication token found in keyring after mount.
BFEK encrypted with each user’s AT and stored in header.
mAuthentication token of each user stored in header

LIDecryption:
mAuthentication token matched with each token in header

BmFile Encryption Key decrypted with proper AT and stored
in keyring — Support for multiple users

Key management (Contd..)

[OPluggable Authentication Module - Configure
ways to authenticate the user (generate token)

MPassphrase (salted)- Stored in keyring
BUse passphrase to extract public key

BUse this derived key in combination with key from
TPM

BUse a smart card or USB to store the key

COPluggable PKI Module - use x509 certificates,
revocation lists etc and manage keys better

Key identifier + Plain text data

Encrypted data External PKI
> module

Authenticates the identifier
and decrypts the data if valid

Key Callout, eCryptfs Daemon

Kernel
Crypto API

AN

Kernel

Key extractor

(Key store)

/’

eCryptfs layer —

4

A

File structure
A

y

Crypto

metadata

4

A

A

y

Filesytem

User
> Keystore
callout
A V\
eCryptfs
VES daemon
syscall 7y
A 4
PKI
module
\ 4 /
PKI API

Key management (Contd..)

OKey Callout

BMeans of communication between kernel and
user module - Parses policy information on target

BFinds passphrase or public keys of users
OeCryptfs Daemon

BMeans to get to the user X-session if need to be
prompted for a passphrase

[IKey Escrow
B A centralized trusted party stores all keys
[0Secret sharing/ splitting

BIn a dynamic environment, this could be used for
a balance between key secrecy and sharing

VFS Operations (version 0.1)

C1Mount

User passphrase Authentication token
Helper .| User session

application g keyring

»
>

Set up context
for new files

Mount parameter id

entication
token from

A 4

eCryptfs

n

Set up context
for new files

VFS Operations (Contd..)

[File Open — Existing file
mValidate the unique eCryptfs marker
EMatch the Authentication token
mDecrypt File Encryption Key
mRoot IV = N bytes of MD5(File Encryption Key)
BUpdate the context in the inode with
OFile Encryption key
[OKey size
OCipher name
[JRoot IV
CONumber of header pages and extent size

VFS Operations (Contd..)

CFile Open — New file
BGenerate a File Encryption Key in kernel

HmFill inode context
OCipher name - AES 128
[ORoot IV - N bytes of MD5(File Encryption Key)
[(OHeader page - 1, extent size — kernel page size
HmInitialize the kernel crypto API context for the file
OCBC mode
BGet Authentication token, Encrypt FEK with it

BHeader to be written to disk on close

VFS Operations (Contd..)

[O0Page Read/ Write
BMFile is open and inode contains relevant context
BlLower page index= index + Num of header pages
mIV = Root IV + page index
BFetch the key and cipher used from context
BCalculate the extent boundaries for operation

BSet up state to be used by crypto API

BRead - Disk -> Encrypted page + context ->
crypto API -> Clear text page -> Caller

m\Write — Caller -> Clear text page + context ->
crypto API -> Encrypted text page -> Disk

VFS Operations (Contd..)

CFile truncation
BMFile size updated in header
m\Write encrypted Os after new EOF

CFile Append

BTranslated into write to the appropriate page in
the lower file

CFile Close
BFree up associated VFS objects
mIf new file, write the header on disk
BEXisting file, no change to the on disk header

eCryptfs from IBM

Ooooooaod

OUsing eCryptfs
OFuture enhancements

Using eCryptfs

CLinux Journal article dated 04/01/07 - Detailed
usage instructions

BSample usage

#modprobe ecryptfs - Load the module

#mount -t ecryptfs /sec /sec - overlay mount

Enter passphrase:

Enter cipher:

#cat “Hello world” > secret.txt

BPKI modules can be selected by mount options
for public key support

Future work

COIncremental development - versions 0.1, 0.2,
0.3 planned

EMount wide public key support

BFilename and metadata (size and attributes)
encryption

meCryptfs policy generators using generic utils
EConvenient GUI for ease of use
BTimeouts as supported by Ncryptfs
[lYet to address
BTemporary files left unencrypted
EData on swap partition unencrypted (!!!)

EFS (Microsoft)

[O0Background of Invention

[0Objects and Summary of invention
[0General architecture

CO0Components of EFS

LIEFS Driver

CIFile System Run Time Library (FSRTL)
COFSRTL callouts

LIEFS service

OWin32 API

[OData Encryption/ Decryption/ Recovery
[1General operations

[IMiscellaneous details

[0Security holes in EFS

FILE ENCRYPTION

Overview

Symmetric key

==

ENCRYPTION

File Encrypted file

User's public key —
@ Encrypted FEK
] Encrypted file
ENCRYPTION | with FEK in header

FILE DECRYPTION

} | DECRYPTION
@ User's

private key

DECRYPTION

Q: Forward
secrecy?

Background of Invention

COProblem: Protecting sensitive data on disk
[0Solution: Encrypt sensitive data

[JAssociated problems with naive approach
BUsers choose weak passwords
B[l ost keys — share keys, compromise security
mKey revocation
BOverhead in encrypting each file
BIntermediate temporary files
BApplication level encryption—- key prone to attack
BNot scalable to large number of users

Objects/ Summary of Invention

[0Secure Storage- Integrate security into storage
[O0Security transparent to legitimate users
[OShare data legitimately and securely
COExtensible - Adding new users/ ciphers

[OData recovery when user key lost

OSymmetric + Asymmetric — Performance
[DReference cipher: RSA + DES

C0Quick idea

BUser chooses to encrypt — System generates a key (FEK)
and prepares the context.

EData encrypted transparently using context
BFEK encrypted with user public key in the file

General Architecture where EFS exists

34

DEVICE

INPUT -+

38—

hun

ot

[
OQUTPUT
= DEVICE

22

{

PROCESSOR

- 58

- EFS
SERVICE

/

4

CRYPTO

APPLICATION | ——30
PROGRAM

AP| :

3z

APIS
/]

/"

26

OPERATING SYSTEM |

Vo SUBSYSTEM —|

EFS DRIVER }—

M

4

|1

| 56
____H::';E /,43

FILE SYSTEM {HTFE]\

N
o] EFS

. RTL

DEVICE DRIVER

L

T——— 28
_—MEMORY

i
24

40

[/

EMCRYPTED
™1~ FILE1
STREAMS

ENCRYPTED

FILE2
STREAMS

ENCRYPTED

STREAMS

T

NON-VOLATILE STORAGE

449

FILE n B

20

OWorkstation/ Server/
Standalone system

[OProcessor

COMemory

OOperating System (Win NT)
OFile System (NTFS)

[0Set of APIs

OI/0 devices

[ONon volatile storage device
OSwap space - VM

General Architecture where EFS exists

application

!

Win3Z Layer

User Mode

A

e fEFS SErVICE jq—p
Fy

CryptoaPl

R=h Base
Provider

kernel Mode

v

/O Manager

F Y

for All Key

EFS Driver il
and FSRTL

Hard Disk

FSRTL Callouts

LPC Comnnunication

Managerment Support

Encrypting File system and Method

o

O]

O]

CO0Components of EFS

LIEFS Driver

CFile System Run Time Library (FSRTL)
COFSRTL callouts

LIEFS service

OWin32 API

[OData Encryption/ Decryption/ Recovery
[1General operations

[IMiscellaneous details

[0Security holes in EFS

Components of EFS

APPLICATIONS —

'

’,,.-—-55
L

— 30

..-""_'_-Eu

3z T

™~ WIN32 LAYER

CRYPTO APl fet—

USER MODE

ENCRYPTING
FILE SYSTEM

[

SERVICE

&

KERNEL MODE

O MANAGER |

L1
L4 S

54

i

ENCRYPTING

SERVICE f DRIVER
COMMUNICATION

EFS

r,--—d-ﬂ

ENCRYPTING FILE
SYSTEM RUNTIME
LIBRARY

STORAGE

FILE SYSTEM 46
DRIVER r
3
___ 28
AN
52
r"'_
FILE SYSTEM |_ v
(MTFS) N DATA
TRANSFORMATIOM
INTERFACE
/’/ A0
NOMN-VOLATILE |

FIG. 2

EFS Driver (EFSD)

[1Sits above NTFS
CInstantiation of EFSD
[ORegisters FSRTL CB with NTFS
OEFSD <-> EFSS

mKey mgmt services

mGenerate keys, Extract key from metadata, Get updated key
BGenerateSessionKey for secure communication

mSession Key used for EFSS<->EFSD<->FSRTL

COOEFSD <-> FSRTL through NTFS

BTo perform FS operations read/write
mUpdate with latest key

EFS FSRTL (FS Run Time Library)

OImplements callout functions for FS operations
[0Generic Data Transformation interface
COFSRTL uses this for data encryption

O0Gets FEK from EFSD

[OMaintains cryptographic context

COEFSD and FSRTL - Part of same component

OEFSD <-> FSRTL through NTFS to maintain
consistent FS state

Encrypting File system and Method

Oooodao

COFSRTL callouts

LIEFS service

OWin32 API

[OData Encryption/ Decryption/ Recovery
[1General operations

[IMiscellaneous details

[0Security holes in EFS

EFS FSRTL Callout Functions

CFileCreate for existing file
HCalled by NTFS if it determines FSRTL is interested in it.
BReads metadata from file and fills context
BEFSD later reads context, gets key from EFSS
BEFSD sets up key context with the key and stores in NTFS

CFileCreate for new file
mCalled by NTFS if the directory is set as encrypted.
BmFills up context as requisition for new key
MEFSD requests new key from EFSS
BEFSD sets up key context with the key and stores in NTFS

EFS FSRTL Callout Functions (Contd..)

OFilecontrol 1
HCalled by NTFS when the state of the file changes
mIf encrypting — no other operations until complete

COFilecontrol 2
BECommunication between EFSD and FSRTL
mVarious requests with associated data for context preparation
BEFS SET ATTR - write new metadata to FSRTL
BEFS_GET_ATTR - get stored metadata from FSRTL
BEFS_DECRYPT_BEGIN - FSRTL locks file until decrypt ends
BMEFS_DEL_ATTR - Decryption done, delete metadata

BEFS_ENCRYPT_DONE - Encryption done, allow other
operations

EFS FSRTL Callout Functions (Contd..)

CJAfterReadProcess

BFS calls this if stream needs to be decrypted
BFSRTL decrypts the stream, FS returns to user

[OBeforeWriteProcess
BmFS calls this if stream needs to be encrypted
BFSRTL encrypts the stream, FS stores on disk

OCleanUp

BFS calls this before freeing resources for stream
BFSRTL frees up its context and resources allocated

EFS FSRTL Callout Functions (Contd..)

CJAttachVolume
BFS calls this on first user [en/de]cryption on the volume
BFSRTL requests attachment to the device
BmAIl calls routed to EFS Driver before NTFS

ODismountVolume
BFS calls this if when drive ejected or power off
BFree allocated resources during AttachVolume

EFS Service

APPLICATIONS —f— 30

E _— 50
— 5a T
32 ™ L™ ENCRYPTING
[~ WINIZ LAYER CRYPTO APl |[fa— FILE SYWSTEM
SERVICE
USER MODE -
HERNEL MODE 5B
h o ._.._--"'
o MAaAMAGER
{M
L]
ENCRYPTING e
e mner 45 SERVICE / DRIVER
_ COMMUNICATION
28
I 4 48
AN s2 r
f— -
FILE SYSTEM T EMCRYPTING FILE
(NTFS) - SATA =~ SYSTEM RUNTIME
TRAMSFORNMATION LIBRARY
INMTERFACE
p’/ A0
NON-VOLATILE |

STORAGE

FIG. 2

EFS Service

COPart of Win NT security service
[0Secure communication with kernel through LSA
OTalks to CryptoAPI in user space

[1Services provided
BGenerate Session Key
mGenerate File Encryption Key (FEK)
BExtract FEK from metadata using user’s private keys
BWin32 API support

COEFSD and EFSS synchronize with one other on
startup and exchange session key

Encrypting File system and Method

OQoooodood

OWin32 API

[OData Encryption/ Decryption/ Recovery
[1General operations

[IMiscellaneous details

[0Security holes in EFS

Win32 API

[OUser mode services by EFSS to use encryption

OInterfaces provided for operations on plain text files
MEncryptFile
mDecryptFile

OInterfaces provided for backup encrypted files
mOpenRawFile
BMReadRawFile
m\WriteRawFile
mCloseRawFile

COODuring raw file transfer, EFSS informs FSRTL through
FileControl_2 not to encrypt/decrypt data

Overview

b s

Recovery User
Agent Certificate
Zertificate

CryptoaPl

. Public keys are
Dgf;:,!g;;:?gm applied to encrypt
9 . file encryption kevy,
encryption LiE'{.f

- | Blgorithm
Library F||.3 nlnly
Applied

Encryptmn —DRF
ta data, —Encrypted

g Data
User of the E«_“l ‘

file selects L—“!:]

“Encrypt Plaintext Data
Contents.” [Data

Header

Data Encryption

TO

64 66 ENCRYPTED
PLAIN T \ S| FLE
TEXT
|_ - FILE |
ENCRYPTION E“‘-’_:FE"';I_TED
MECHANISM 68— T—
T4
72 DATA
USER'S = DECRYPTION
FUBLIC 1 76 FIELD
KEY (
82—~ [pata
DATA /
DECRYPTION REE@EHY
FIELD
GENERATOR
(au
DATA
RECOVERY
FILE - FIELD
ENCRYPTION GENERATOR
| KEY
['Y
78
60
RECOVERY ’_)
PUBLIC 4
KEY(S)
62
ranoom _| S
NUMBER
GENERATOR

FIG. 3

OOEncryption Key — Rand num
ORef symmetric cipher DES
[OData Decryption Field - DDF
[OData Recovery Field - DRF

COPrivate keys on smart card
— not used during encryption

[ORef asymmetric cipher RSA

[ONot tied to any cipher or
key length

Data Decryption

FEK used to decrypt

ENCRYPTED FILE | 70 the cipher text g4
ENCRYPTED FILE
TEXT ™ DECRYPTION = FLAIN TEXT
74
DATA ' 50
DECRYPTION E L~
FIELD ENCRYPTION
_—— KEY One of them will
:_ DATA _: s decrypt the key
: RECOVERY :
FIEL - DATA,
- - DECRYPTION 86
FIELD _|——
—» EXTRACTI
PRIVATE KEY MECHANISM |
—_ 54 OOFEK and Decryption stored

o in context info
User private key is

used to decrypt [OEase of random access
each DDF

Data Recovery

70

ENCRYPTED FILE =" / H
68 4
c ~ | N i
ENCRYPTED FILE
TEXT "' DECRYPTION PLANTEXT
—_ !
T T |
| DECRYPTION 1 FLE +—
| FELD ! ENCRYPTION
——-=-1 g KEY
oAt~ !
RECOVERY |- e "
FIELD
" RECOVERY |
FELD A
—* EXTRACTION
RECOVERY MECHANISM
AGENT'S
PRIVATE KEY| 90 FIG. 5

OWhen users leave/ lose keys

[OSearch starts from DDF and
goes on to DRF

[OReveals only FEK not user
private key

[O0Domain policy decides the
recovery agents

OPolicy contains public keys
[JOAgent specifies private key

OOPolicy MD5 hashed to ensure
authenticity

[OHash value authenticated
before using the policy

Encrypting File system and Method

HE NN ENEREpEEE

[1General operations
[IMiscellaneous details
[0Security holes in EFS

General operation — Create/ Open

API calls land at

< Begin Hormal
Create [/ DP-EI‘I
Generic Win32
API for file —— Dei{SeLaZe? FS
create/ open ’_7 ,...-ré?;:pﬁe / P
EFS creates a
1002 —’“f "’F""-"'““F“‘ f{ new context for

v / the file
EFS Create / Open

—] File Preprocessing
If stream needs (FIG. 11)

encryption, cal I 1008

FSRTL EFS Create [
— | MTFS Create
COpen FSRTL
(FIG. 12) é/cauaut (FIG. 13)

¥

Verification: Pass EFS Create / Open T
metadata to EFSS/:‘- Postprocessing New file- Request for FEK
New FEK: Request (FIG. 15) Existing file — Load meta
new key from v data from file to context.
EFSS ~7/ IDpCreateFlle Request verification

MNTCreateFil
Mark file as —— J HT{:I;;&nF:lg / \ Stores the updated

encrypted metadata from EFS

End Normal driver onto disk
Create /| Open

General operation - Read

FI1G. 20

{ begin READ)

2000 ———W0]

APPLICATION
REQUESTS READ

'

2002 ———_

WO SENDS TO EFS
DRIVER, DRIVER
HAMNDS TO NTF3

2006

NO

¥
2004 —_ | NTFS READS
DATA

FILE
EMNCRYPTED

(OR NTFS INTERMNAL
METADATA

2008
YES ¥ /

GET SAVED KEY
CONTEXT (NTFS)

¥

CALL ENCRYPTIOMN
DRIVER WITH KEY
INFORMATION,
DECRYPTION REQUEST

2012 T DECRYPTS TEXT,

y

ENCRYPTION DRIVER

RETURNS TO NTFS

1_

Args: File

Offset, Length,
/ Buffer, Key

\ AfterRead

Callout

2014

—

NTFS RETURNS PLAINTEXT
THROUGH IO SUBSYSTEM
TO APPLICATION

{ endaREAD)

General operation — Write

FIG. 21 (begin WRITE)

2100 —— | APPLICATION
REQUESTS WRITE

o SENDS TO EFS

2102 ——_] DRIVER, DRIVER
HANDS TO MTFS

¥

COPY DATA TO
SEPARATE BUFFER

2904 ——01ou0

Z106

FILE
ENCRYPTED
(OR NTFS INTERNAL
METADATA,

MO

e Y4

GET SAVED KEY

STREAM) CONTEXT (NTFS)
¥
CALL ENCRYPTION _
2110 —— | DRIVER WITH KEY BeforeWrite
INFORMATION, N Callout
DECRYPTION REQUEST

¥

ENCRYPTION DRIVER
2112 T~ ENCRYPTS TEXT,
RETURNS TO NTFS Deletes the
"i clear text copy
2114 — MTFS WRITES
DATA

(end WRITE)

General operation — Win32 EncryptFile

begin Encrypt Plaintext
FIG. 22 (File / Directory)

APPLICATION
2200 ——| PROVIDES NAME OF
FILE TO ENCRYPT

¥

2202 EFS SERVICE
T ———— REQUESTS OPEM FILE,
MAKES BACKUP COPY

¥ Directory is
MARK FILE FOR ENCRYPTIOM) S|m|?ly mark_ed

2204]| {(SET ENCRYPT FILE CONTROL as |ts data is
SUBCODE = ENCRYPT) not encrypted

| -
¥
READ DATA FROM
2206 — | STREAM IN COPY
[
WRITE DATA TO
2208—"_ | ORIGINAL FILE

2210 ANOTHER

STREAM

7 YES
2242
2214
2216 SUCCESS \
\‘\. i. NO 7 YES l‘
RESTORE DELETE
ORIGIMAL FILE, BACKUP FILE,
FAIL CALL SUCCEED CALL

end Encrypt Plaintext
File ! Directory

General operation — Win32 DecryptFile

Make a copy of
the original file

2300 —"| PROVIDES NAME OF

begin Decrypt Plaintext
File ! Directory

APPLICATION

FIG. 23

2312

FILE TO DECRYPT

| EFs SERVICE
2302 REQUESTS
OPEN FILE
-l
¥
2306 READ DATA FROM
M4 STREAM IN ORIGMNAL
FILE
2308 ¥
w1 WRITE DATA TO
COPY

ANOTHER

STREAM
?

YES

¥

DELETE FILE META DATA,
MARK FILE FOR
DECRYPTION (SET
ENCRYPT FILE CONTROL,
SUBCODE = DECRYPT),
WRITE BACK ALL STREAMS

¥
2314 READ DATA FROM
. 4 STREAM IM COPY
FILE
2316 ¥
WRITE DATA TO
O RIGINAL
2318

ANOTHER
STREAM

™ YES

2324

UCCESS

2322

FAIL CALL

s \
RESTORE FILE
FROM COPY, DELETE COPY,

SUCCEED CALL

end Encrypt Plaintext
File / Directory

)_—I

Directory is
<« Simply marked
as its data is
not encrypted

Overwrite the
original with
plaintext

Miscellaneous details

COIntermediate/ Temporary files encrypted too

COEFSD uses non paged pool of memory
BFEK and other context details not swapped to disk

OData sharing
BFEK encrypted with public keys of all legitimate users

[DEasy to use - no administrative effort involved

OSupport for encryption on remote server
mServer support for EFS, Data on wire in plaintext

CFile copy across FS
BCopy across EFS aware FS - encrypted content
BCopy to EFS unaware FS (FAT32) - plaintext data copied

Security holes in EFS (Win 2K)

OAdministrator — Default Recovery agent
BHas access to all user data
BWin XP has no default recovery agent — Policy decides agents

[OUser Private key protection
BProtected by user password only — Not encrypted
BWeak Hashes of pass-phrases are kept !!!

mKey lies in all kinds of other places that are accessible at
various times to different principals (e.g., pass reset etc.)

[ONo secure deletion in place
BAfter encrypting files, plaintext version only deleted
BWin XP does not yet solve this problem
mUse third part tools for secure deletion

CDirectory contents not encrypted

